
1 SUPPLEMENTARY MATERIALS

1.1 PROOF OF PROPOSITION 3.4

Proposition 3.4 x ∼ Nd(µ,Σ) if and only if z =

Σ−
1
2 (x− µ) ∼ Nd(0, I).

Proof. By eigendecomposition, Σ−1 = UΛUT . Define
Σ−

1
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1
2UT . Then Σ−1 = Σ−

1
2 Σ−

1
2 .

⇐
Let z = Σ−

1
2 (x − µ) ∼ Nd(0, I), then x = Σ

1
2 z + µ.

Since x is a linear transformation of z then x follows
multivariate normal distribution with dimension d.

E[x] = Σ
1
2E[z] + µ = µ
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Therefore, x ∼ Nd(µ,Σ).
⇒
Since z is a linear transformation of x, then z follows
multivariate normal with dimension d.

E[z] = Σ−
1
2 (E[x]− µ) = 0

Cov(z) = Cov(Σ−
1
2 (x− µ)) = Cov(Σ−

1
2 x)
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1
2Cov(x)Σ−

1
2
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1
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= I.

Therefore, z ∼ Nd(0, I).

1.2 GRADIENT OF W

Proposition 4.1 Let k be the size of the mini-batch. For
any layer `, denote Y` = Θ`Y(`−1), where Y(`−1) is an
(n× k) matrix of arbitrary activation from layer (`− 1),
Y` is an (m× k) matrix of linear activation for layer `,
and Θ` is the (m× n) matrix of parameters connecting
the layers. Let y be the (mk × 1) ascendingly sorted vec-
torization of Y`. Then, y can be computed by Aθ where
A and θ are the re-organized Y`−1 and the vectorization
of Θ`. Specifically, A is an (mk×mn) matrix with each
row containing the relevant Y(`−1) data for a particular
node’s activation. The gradient of W can be computed by

∇θW =
2aTAθ

θTZθ
aTA

[
I− θθTZ

θTZθ

]
, (6)

where Z = A(I− J
mk )AT , I is mk-dimensional identity

matrix, and J is a (mk ×mk) matrix of ones.

Proof. Following the notation, then

W =
(aTy)2

||(I− J
mk )y||22

.

Letting Z = AT (I− J
mk )A, we have

W =
(aTAθ)2

θTZθ

∇θW =
2aTAθaTA

θTZθ
− 2aTAθaTAaTAθθTZ

(θTZθ)2

Simplifying the above formula yields Eq.(6).

1.3 CONDITION VERIFICATION FOR
BOTTOU’S THEOREM

The test statistic W used for the loss, is differentiable
almost everywhere. Specifically, the first three derivatives
exist, and furthermore the second and third derivative are
continuous almost everywhere. By equivalent form of the
the regularizer λ||θ||2, then ||θ||2 ≤ η where η is some
proper value corresponding to λ. Therefore, boundedness
for the second and third derivatives follows from the fact
that a continuous function is bounded on a fixed region.
The four assertions are verified below.

(i) Choose H(w) = ∇θW

(ii) Typical assumption on the learning rate, satisfied by
Adam (Kingma and Ba, 2014).

(iii) Let q = aTAθaTA
θTZθ

, thus W = qθ. Then

H(θ) = ∇θW = 2q
[
I− θθTZ

θTZθ

]
=
(

2q− 2WθTZ
θTZθ

)
Then
E(H(θ)2) =

(
2q− 2WθTZ

θTZθ

)(
2q− 2WθTZ

θTZθ

)T
= (2q− 2W

θTZθ
θTZ)(2qT − 2W

θTZθ
ZT θ)

= 4qqT − 4W
θTZθ

(qZT θ + θTZqT ) +
4W 2

(θTZθ)2
θTZZT θ

≤ 4qqT − 4W
θTZθ

(qZT θ + θTZqT ) +
4W

(θTZθ)2
θTZZT θ

Take A = 4qqT , B =
(

4
(θTZθ)2

θTZZT θ −
4

θTZθ
(qZT θ + θTZqT )

)
, and C(w) = W .

(iv) Shapiro-Wilk W is bounded between 0 and 1, and
using lemma 3.3, from (Shapiro and Wilk, 1965),
the minimum value of W is na21

(n−1) .



1.4 INNER LOOP ITERATIONS FOR
HTAE-(M)SW

As can be seen in Fig.3, with 105 reconstruction iterations,
the encoder was able to induce failure to reject normality
in a small number of iterations. This seemed to hold as
well for other tests shown in the following section.
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Figure 3: Number of iterations needed to bring q(z) back
into class G in both univariate and multivariate hypothesis
tests.

1.5 OTHER GOODNESS-OF-FIT TESTS

After conducting a simulation study based on type I and
type II error (Mecklin and Mundfrom, 2005) concluded
that no single test was best in all situations. However, the
authors did suggest using Royston’s (Royston, 1983) and
Henze-Zirkler’s tests (Henze and Zirkler, 1990) because
of good power and type I error control. These tests as well
as the Malkovich-Afifi test (Malkovich and Afifi, 1973),
and Mardia’s Skewness test (Mardia, 1970) were reviewed
and substituted into Alg. 1 with appropriate changes to
the sign of the loss. Several of these methods for assessing
normality can be seen in (Korkmaz et al., 2014), and are
reviewed immediately, along with other techniques not
presented here. As described in the experiments each of
the following tests used the same α, network architecture,
Dropout parameters, and batch size. Generated images
for these methods along with their inner loop empirical
count distributions can be seen in Fig. 4. Run times for
our approach with these additional hypothesis tests are
included in Table 2.

1.5.1 Royston’s H Test

To test for multivariate normality, Royston’s test uses
either the Shapiro-Wilk (Shapiro and Wilk, 1965) or
the Shapiro-Francia (Shapiro and Francia, 1972) statis-
tic. When the kurtosis of the data is greater than 3, the
Shapiro-Francia test is used. Otherwise, the Shapiro-Wilk
test is used.

wj =

{
W †j Kurt[X] > 3

Wj otherwise,

where Wj is the Shapiro-Wilk statistic and W †j is the
Shapiro-Francia statistic for the jth variable. The number
of samples dictates the next step:

4 ≤ n ≤ 11 x = n wj = −log[γ − log(1−Wj)]

12 ≤ n ≤ 2000 x = log(n) wj = log(1−Wj)

Define Zj from the normality transformation in (Royston,
1992) to be Zj =

wj−µ
σ . γ, µ, σ are derived from polyno-

mial approximations where the coefficients are given in
(Royston, 1992) for different samples sizes.

γ = a0γ + a1γx+ a2γx
2 +

. . . + adγx
d

µ = a0µ + a1µx+ a2µx
2 +

. . . + adµx
d

log(σ) = a0σ + a1σx+ a2σx
2 +

. . . + adσx
d

Royston’s test statistic, H , for multivariate normality is
defined as

H =
e
∑p
j=1 ψj

p
∼ χ2

e,

where e is the degrees of freedom defined to be
e = p

[1+(p−1)c̄] and ψj is defined to be ψj =

(Φ−1[Φ(
−Zj

2 )])2 j = 1, 2, ..., p. Φ(·) is the cumulative
distribution function for the standard normal distribution,
and Φ(·)−1 its inverse. Let R be the correlation matrix,
and rij be the correlation between the ith and jth vari-
ables, then c̄ is defined as c̄ =

∑
j

∑
j

cij
p(p−1) i 6= j

where

cij =

{
g(rij , n), if i 6= j

1, if i = j

with the boundaries of g(·) as g(0, n) = 0 and g(1, n) =
1. The function g(·) is defined as g(r, n) = rλ[1 −
µ
ν (1 − r)µ]. The unknown parameters µ, λ, and ν were
estimated from a simulation (Ross et al., 1980) where
µ = 0.715 and λ = 5 for sample size 10 ≤ n ≤ 2000.
The parameter ν is a cubic function which is obtained
by ν(n) = 0.21364 + 0.015124x2−0.0018034x3 where
x = log(n). From the hypothesis test if H > Hα where
Hα is the critical value, then the null hypothesis is re-
jected, in favor of the alternative, that the data not multi-
variate normal. The HTAE using Royston’s H test as the
critic will be denoted HTAE-R.

1.5.2 Malkovich-Afifi Test

Another approach to testing for multivariate normality
was presented by (Malkovich and Afifi, 1973) where
the authors made use of Roy’s union-intersection
principle (Roy, 1953). The union-intersection approach
to hypothesis testing can be used to express the null as
an intersection. For example, it is possible to denote



H0 : θ ∈ ∩ω∈ΩΘω where Ω is an index set that may
or may not be finite. If for every ω ∈ Ω the null
is not rejected, then H0ω is not rejected. However,
if a single H0ω is rejected, the null is rejected. By
following Roy’s union-intersection principle of test
construction, H0 will be accepted when univariate
normality of the projected samples c′X is accepted for
any c 6= 0. Thus, for a particular c we can let Yj = c′Xj

for j = 1, ..., n and let Y(1), ..., Y(n) denote the order
statistics of the Yj’s. The Shapiro-Wilk form, dependent

on c, can be written as W (c) =
(
∑n
i=1 ai(Y(i)−Ȳ )2∑n
i=1(Yi−Ȳ )2

,

where Ȳ =
∑n
i=1 Yi
n and the ai’s are the same from

(Shapiro and Wilk, 1965). By using Roy’s union
intersection principle (Roy, 1953), (Malkovich and
Afifi, 1973) combined W (c), c ∈ C to define the test
WMA = inf∀c∈CW (c). As in the Shapiro-Wilk statistic,
a small value signifies rejection of multivariate normal-
ity. Stated another way, the MA test of multivariate
normality under H0 fails to reject the null hypothesis if
mincW (cTX1, c

TX2, ..., c
TXn) ≥ Kw where Kw is

a constant. Direct numerical evaluation is not possible
so the authors proposed another approach by noting
that W (cTX1, c

TX2, ..., c
TXn) has a lower bound

when cT satisfies the conditions of (Shapiro and Wilk,
1965): cT (Xl − X̄) = n−1

na1
, cT (Xj − X̄) = − 1

na1
for

j = 1, ..., n and j 6= l where X̄ is the mean vector.
A solution c for these equations does not exist, so
the authors instead find a vector cT which minimizes[
cT (Xl− X̄)− n−1

na1

]2
+
∑n
j 6=l

[
cT (Xj − X̄) + 1

na−1

]2
.

The vector c(l) = 1
a1
A−1(Xl − X̄) and

A =
∑n
j=1(Xj − X̄)(Xj − X̄)T . As c(l) may be

any of the l ∈ {1, 2, ..., n} vectors, the authors chose
c(m) ∈ {c(1), c(2), ..., c(n)} such that the denominator
of W (cTX1, c

TX2, ..., c
TXn) is maximized over these

n choices. Formally, (Xm − X̄)TA−1(Xm − X̄) =
max1≤l≤n(Xl − X̄)TA−1(Xl − X̄). Pseudo-code
for computing the test statistic WMA is detailed in
Alg.2. (Fattorini, 1986) proposed a modification of the

Algorithm 2 Malkovich-Afifi MVN UIT Test Statistic

1: Input: X1, ..., Xn

2: Xm = arg max1≤l≤n(Xl − X̄)TA−1(Xl − X̄)
3: Calculate Uj = (Xm − X̄)TA−1(Xj − X̄) j =

1, 2, ..., n
4: Denote sorted statistics Uj as U(1), U(2), ..., U(m)

5: WMA =

[∑n
j=1 ajU(j)

]2
(Xm−X̄)TA−1(Xm−X̄)

{where aj are con-
stants from (Shapiro and Wilk, 1965)}

Malkovich-Afifi statistic, into FA(X1, X2, ..., Xn) =

min1≤l≤nW (c(l)
T

X1, c
(l)TX2, ..., c

(l)TXn). The
Malkovich-Afifi (MA) and Fattorini (FA) hypothesis

tests reject the null hypothesis of multivariate normality
for small values of the statistic. Unfortunately, the null
distribution of WMA is not known, and so simulation
is necessary to identify empirical critical values prior
to using Alg.1. For our experiments 10,000 batches of
size 100 were sampled from N8(0, I). The empirical
significance point associated with α = 0.05 was used as
the critical value for the inner loop, i.e. the inner loop
became active when the test statistic was less than this
value. The HTAE using the Malkovich-Afifi test as the
critic will be denoted HTAE-MA.

1.5.3 Mardia’s Skewness Test

In (Mardia, 1970) a multivariate test for normality is pro-
posed based on multivariate extensions of skewness and
kurtosis. The skewness test statistic is defined as

γ̂1,p =
1

n2

n∑
i=1

n∑
j=1

m3
ij ,

wheremij = (xi−x̄)TS−1(xj−x̄), S = 1
n

∑n
k=1(xk−

x̄)(xk− x̄)T , and p are the number of features. Under the
null hypothesis, that the data come from a multivariate
normal distribution, n6 γ̂1,p ∼ χ2

df where degrees of free-

dom, df = p(p+1)(p+2)
6 . In (Mardia, 1974) a correction

for small samples, n < 20, was incorporated into the test.
The small sample test statistic is defined to be nb

b γ̂1,p with
b = (p+1)(n+1)(n+3)

(n(n+1)(p+1)−6) and is distributed as χ2
df where df

is defined as before. There are still problems with this
test, specifically it is not consistent against symmetric
non-normal alternatives (Baringhaus and Henze, 1991).
The HTAE using Mardia’s skewness test as the critic will
be denoted HTAE-M.

1.5.4 Henze-Zirkler’s Test

(Henze and Zirkler, 1990) proposed a multiviariate nor-
mality test based on a non-negative functional distance.
The test statistic is defined as

HZ =
1

n

n∑
i=1

n∑
j=1

e−
β2

2 Dij

−2(1 + β2)−
p
2

n∑
i=1

e
− β2

2(1+β2)
Di + n(1 + 2β2)−

p
2

where Di − (xi − x̄TS−1(xi − x̄), Dij = (xi −

xj)
TS−1(xi − xj), β = 1

sqrt2

(
n(2p+1)

4

)( 1
p+4 )

, and p is
the number of features. Under the null hypothesis the test
statistic HZ is approximately log-normally distributed



with mean µ and variance σ2 defined as such

µ = 1−
a−

p
2

(
1 + pβ

2
a + (p(p+ 2)β4)

)
2a2

σ2 = 2(1 + 4β2)−
p
2 +

2a−p(1 + 2pβ4)

a2
+

3p(p+ 2)β8

4a4

− 4w
− p2
β

(
1 +

3pβ4

2wβ
+
p(p+ 2)β8

2w2
β

)
,

where a = 1+2β2 andwβ = (1+β2)(1+3β2). Defining

µlog = log
(√

µ4

σ2+µ2

)
and σ2

log = log
(
σ2+µ2

µ2

)
. The

final Wald test statistic is given as log(HZ)−µlog
σlog

. The
HTAE using the Henze-Zirkler test as the critic will be
denoted HTAE-HZ.

Table 2: Run time in seconds for 105 iterations for the
8-dimension multivariate cases using an NVIDIA GTX
1080Ti GPU.

Method 8-D
HTAE-R 1429.77
HTAE-M 550.61
HTAE-MA 1356.86
HTAE-HZ 734.84
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Figure 4: The top row plots random samples generated from each HTAE model. Row two contains the p-values with a
100 batch SMA for HTAE-R, HTAE-M, and HTAE-HZ. The HTAE-MA model used the critical value in place of the
p-value. Row three are frequency counts of inner loops necessary to ensure failure to reject was met.
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