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Abstract 
In this paper, Steiner and non-Steiner 2-( v, 3) trades of minimum volume 
are considered. It is shown that these trades are composed of a union 
of some Pasch configurations and possibly some 2-(v', 3) trades with 6 :::; 
VI :::; 10. We determine the number of non-isomorphic Steiner 2-( v, 3) 
trades of minimum volume. As for non-Steiner trades the same thing is 
done for all v, except for v == 5 (mod 6). 

1. Introduction 

For given v, k, and t, let X = {I, 2, ... ,v} and let Pk(X) denote the set of all k­
subsets of X. The elements of X and Pk(X) are called points and blocks, respectively. 

A t-(v, k) trade T = {T+, T-}, consists of two disjoint collections of blocks T+ 
'and T- such that for every A E Pt(X), the number of blocks containing A is the 
same in both T+ and T-. 

The foundation of a trade is the set of elements covered by T+ and T- and is 
denoted by found(T). In a t-(v, k) trade, we take v to be the foundation size. The 
number of blocks in T+ (T-) is called the volume of the trade T and is denoted by 
vol(T). 

A t-( v, k) trade T is called Steiner, if each element A E Pt(X) occurs at most 
once in T+ (T-). T is called simple, if there are no repeated blocks in T+ (T-). Here, 
we are concerned only with simple 2-(v, 3) trades. 

A trade T is called fundamental, if it contains no proper trade. 
Two trades Tl = {T1+, T1-} and T2 = {T2+, T2-} are called isomorphic, if there 

exists a bijection a : found(T1) --t found(T2 ) such that a(Tl) = {a (T1+) , a(T1-n = 
{T2+, T2-} = T2. 

Bryant [1] has determined the spectrum ( the set of allowable volumes) of Steiner 
2-(v,3) trades. In Table 1, the minimum volume of such trades is given. In this pa­
per, we determine the number of non-isomorphic Steiner 2-(v, 3) trades of minimum 
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volume. When a 2-( v, 3) trade is not Steiner, we determine the possible minimum 
volume for all v, except for v == 5 (mod 6), and obtain the number of non-isomorphic 
non-Steiner 2-(v, 3) trades of minimum volume. 

Table 1. 
Minimum volume of Steiner 2-(v,3) trades. 

v (mod 6) 

o 

2 

3 

4 

5 

2. Preliminaries 

minimum volume 
2v 
3 

2v+4 

2v +2 

2v +3 

2v+4 
3 

2v+2 

We denote a trade T with foundation size f and volume s by T = T(s,1). The 
number of occurrences of a point x in T+(T-) is denoted by rx. If rx = 2, we call 
x a regular point, otherwise x is said to be an irregular point. Symbols 1,2, ... , 
and A, B, . .. , are used for regular and irregular points respectively, and x, y, ... , to 
refer to either kind. The number of occurrences of the pair xy is denoted by Axy. If 
Axy ::; 1, we call the pair Steiner, otherwise non-Steiner. Clearly for a non-Steiner 
pair xy, we have r x 2:: 3 and r y 2:: 3. The points x and yare said to be adjacent if 
Axy =1= 0, and the collection of all (not necessarily distinct) adj acencies of x is denoted 
by N(x). The elements occurrence sequence ofT (abbreviated to EOS(T)) is the non­
decreasing sequence aI, a2, . .. ,at where ai denotes the number of occurrences of the 
ith element of the foundation of T. 

A trade T may consist of two trades such as Tl and T2, then we use the notation 
T = Tl + T2. When the foundations of Tl and T2 are disjoint T = Tl EB T2 is used 
instead. 

The unique trade T( 4,6) is commonly called a Pasch configuration or briefly a 
Pasch. 

The special case of the following Lemma for r = 2 and its corollary has been 
proved in [1]. 

Lemma 2.1. Let T be a fundamental trade. Let x E found(T) with at most one 
irregular adjacency and let rx = r. Then, T = T(2r,2r + 2) and has a unique 
structure with EOS(T) = 2, ... ,2, r, r. 
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Proof. Let N(x) = {Yl,'" ,Y2r}' With no loss of generality, we can assume that 
the blocks of T containing x are: 

~ 
XY1Y2 
XY3Y4 
XY5Y6 

T must also contain the following blocks: 

~ 
XY1Y3 
XY2Y5 
XY4Y7 

Clearly, the only possible way to fill the blanks is to use a fixed new point. 0 

Corollary 2.1. If EOS(T) = 2, ... ,2, r, then r is even and T is the union of disjoint 
Pasches, except possibly for some Pasches, which contain the irregular point. 

3. Steiner trades of minimum volume 

In this section, we are concerned with Steiner trades of minimum volume. Bryant [1] 
has determined the minimum volume of these trades (Table 1). Here, we investigate, 
up to isomorphism, the structure as well as the number of such trades. If f == 0 
(mod 6), then by Table 1, the minimum volume is 2f /3 and by Corollary 2.1, the 
trade has a unique structure. Thus we have: 

Lemma 3.1 [1]. If f == 0 (mod 6), then the Steiner trade of minim1Hft>-Volume is 
the union of disjoint Pasches. 

For the sake of simplicity in the statements of lemmas, we make the following 
note, which is also used in Section 4. 
Note. Let T be a trade. By Te, we denote the part of T which is the union of disjoint 
Pasches consisting only of regular points. By P(A, B), we mean a Pasch containing 
irregular points A, B in which AAB = 0 and by P(AB), we mean AAB = 1. The 
union of Pasches of T containing some irregular points is denoted by Tp. Clearly, if 
A E found(T) and r A = 3, then A ~ found(Tp ). 

Apart from Te and Tp , we have in T a Pasch-free trade T'. Let x E found(T') be an 
irregular point with rx = r such that N(x) contains at most one irregular point. By 
Lemma 2.1, x appears in a T(2r, 2r + 2). We denote the union of such parts of T' by 
Tm. By Tm(A), we mean A E found(Tm ). Therefore, we have T = TcEB (Tp+Tm +Tr) 
where Tr = T(sn fr) is a Pasch-free trade in which for each x E found (Tr) , N(x) 
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contains at least two irregular points. Hence, lr :::; R in which R is the sum of 
occurrences of irregular points of found(Tr ). 

In the following lemmas, we use the above notations and determine Tp , T m and 
Tr to give a complete description of the structure of the trade T: Tc obviously has a 
unique structure and we omit it from our statements. A, B, . .. will denote irregular 
points in non-increasing occurrence order. The small trades which appear in the 
following lemmas are listed in Table 2 in the Appendix. 

(21+2) . Lemma 3.2. Let T = T -3-,1 be a Stemer trade. Then 

(i) If EOS(T) = 2, ... ,2,4, then 1 == 5 (mod 6), Tp P(A) + P(A) and Tm = 
Tr 0. 

(ii) IfEOS(T) = 2, ... ,2,3,3, then 1 == 2 (mod 6), Tp = Tr = 0 and Tm = T(6, 8). 

Proof. 

(i) This is just Corollary 2.1. 

(ii) Clearly Tp 0. There are just two irregular points, hence Tr = 0. By Lemma 
2.1, Tm T(6,8). 0 

(21+3) . Lemma 3.3. Let T = T -3-,1 be a Stemer trade. Then 

(i) EOS(T) i= 2, ... ,2,5; 2, ... ,2,3,4. 

(ii) If EOS(T) = 2, ... ,2,3,3,3, then 1 == 3 (mod 6), Tp = Tm = 0 and Tr = 
T(7,9). 

Proof .. 

(i) By Lemma 2.1 and Corollary 2.1, both cases are impossible. 

(ii) If Tm i= 0, then by Lemma 2.1, Tm = T(6, 8) and EOS(Tr) = 2, ... ,2,3 which 
is by Corollary 2.1 impossible. So Tm = 0. We have lr :::; 9, hence Tr = T(7, 9) 
which is unique by Table 2. 0 

(
21 + 4 ) Lemma 3.4. ,Let T = T -3-,1 be a Steiner trade. Then 

(i) If EOS(T) = 2, ... ,2,6, then 1 == 4 (mod 6), Tp = P(A) + P(A) + P(A) and 
Tm Tr = 0. 

(ii) If EOS(T) = 2, ... ,2,3,5, then 1 == 1 (mod 6), Tp = P(A), Tm(A) = T(6, 8) 
and Tr 0. . 
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(iii) If EOS(T) = 2, '" ,2,4,4, then I == 4 (mod 6), Tr = 0 and for Tp and Tm one 
of the following occurs: 

(a) Tp = 0 and Tm = T4(8, 10); 

(b) Tp = (P(A) + P(A)) ED (P(B) + P(B)) and Tm = 0; 

(c) Tp = (P(A) EB P(B)) + P(AB) and Tm = 0; 

(d) Tp = (P(A) EB P(B)) + P(A, B) and Tm = 0; 

(e) Tp = P(A, B) + P(A, B) and Tm = 0; 

(f) Tp = P(A, B) + P(AB) and Tm = 0. 

(iv) If EOS(T) = 2, ... ,2,3,3,4, then I == 1 (mod 6), Tr = 0 and for Tp and Tm 
one of the following occurs: 

(a) Tp = P(A) + P(A) and Tm = T(6, 8); 

(b) Tp = P(A) and Tm(A) = T(6, 8). 

(v) If EOS(T) = 2, ... ,2,3,3,3,3, then Tp = 0 and for Tm and Tr one of the 
following occurs: 

(a) I == 1 (mod 6), Tm = 0 and Tr = T1 (6, 7); 

(b) I == 4 (mod 6), Tm = 0 and Tr = T1(8, 10); 

(c) I == 4 (mod 6), Tm = T(6, 8) EB T(6, 8) and Tr = 0. 

Proof. 

(i) This is just Corollary 2.1. 

(ii) There are just two irregular points, so Tr = 0. By Lemma 2.1, Tp = P(A) and 
Tm(A) = T(6, 8). 

(iii) There are just two irregular points, so Tr = 0. If Tp = 0, then by Lemma 2.1, 
Tm = T4(8, 10). Otherwise Tm = 0 and Tp can be any of the forms (a)-(e). 

(iv) We have Ir ::; 10. But Tr = T(6,7) and Tr = T(8,10) with EOS(Tr) = 
2, ... ,2,3,3,4 do not exist (cf. Table 2). So Tr = 0. If Tp = 0, then 
EOS(Tm) = 2, ... ,2,3,3,4 which forces a Pasch containing an irregular point, 
a contradiction. 

If Tp = P(A), then EOS(Tm) = 2, ... ,2,3,3 and by Lemma 2.1, Tm(A) = 
T(6,8). If Tp = P(A) + P(A), then EOS(Tm) = 2, ... ,2,3,3 and by Lemma 
2.1, Tm = T(6, 8). 

(v) Clearly Tp = 0 and Ir :::; 12. If Tr = 0, then by Lemma 2.1, Tm = T(6, 8) EB 
T(6,8), otherwise we have Tr = Tl(6, 7) or Tr = Tl(8, 10), with EOS(Tr) = 
2, ... ,2,3,3,3,3. Hence, Tm = 0.0 
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4. Non-Steiner trades of minimum volume 

In this section, we consider non-Steiner trades of minimum volume. In order to 
establish the main results, we need the following lemmas. 

Lemma 4.1. Let T be a non-Steiner trade. If there is a point A E found(T) such 
that T A = 3, then T must have at least three irregular points. 
Proof. Suppose T has only two irregular points A and B. Clearly the pair AB is 
non-Steiner. Thus T contains the following blocks: 

~ ~ 
AB1 AB3 
AB2 AB4 
A34 A12 
B3- B1-
B4- B2-
12- 34-

The only possible way to complete the blocks containing 3 and 4 is to use a fixed 
point z which is irregular, a contradiction. 0 

Lemma 4.2. Let T = T(s, f) contain a non-Steiner pair AB with TA = TB = 3. 
2f +6 . 

Then s 2:: -3-' If equalIty holds, then T = Tc EB T(6, 6). 
Proof. With no loss of generality, we can assume that T contains the following 
blocks: 

~ ~ 
ABx ABz 
ABy ABt 
Azt Axy 
Bzt Bxy 

Now, the pairs xy and zt are non-Steiner, hence Tx , Ty , T z , Tt 2: 3. Therefore s 2:: 
2f + 6 2f + 6 
--. If s = --, then xyz, xyt E T+ and ztx, zty E T- and we have a T(6, 6). 
0 33 

For a non-Steiner trade T = T(s, j), by Lemmas 4.1 and 4.2, we have EOS(T) =I-
2f+4 

2, ... ,2,3,4; 2, ... ,2,3,3,3. Hence s 2:: -3-' 

We make a modification to the note in Section 3. 
Note (continued). When Tr is non-Steiner, we improve the upper bound for fr to 
R - 2 or R - 3. We omit some details. If fr = R, then each point has exactly two 
irregular adjacencies. Let nx be the number of (not necessarily distinct) irregular 
adjacencies of x. To prove fr ~ R - 3, we show that there exists a set of points like 
Q such that LXEQ(nX - 2) 2: 6. 
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Let AB be a non-Steiner pair in Tr . If ABC E T/, then each of A and B has 
three irregular adjacencies. Now, let AB1 E T/. We can assume, with no loss of 
generality, that Tr contains the following blocks: 

T+ 
r 

T-
_r_ 

lAB lAx 
1xy 1By 
Ax- AB-
By- xy-

If x is an irregular point (so we can let x = D), then 1 and A have at least three 
irregular adjacencies each and AD1 E Tr-. When both x and yare regular points (so 
let x = 2 and y = 3), then blanks in the blocks of T/ are necessarily filled with an 
irregular fixed point. Thus A and B have at least three irregular adjacencies each, 
and we have AE2, AE3 E T/. Therefore, we have four "groups" of blocks each of 
which can be of three types: ABC (type 1), AD1 (type 2) and AE2, AE3 (type 3). 

Since at least two groups are in T/ or Tr-, we have 1r ::; R - 2. Furthermore, in 
the following cases 1r ::; R - 3: 

At least three groups appear in T/(Tr-). 

'fwo groups appear in each of T/ and Tr- and one of these four groups is of 
type 2. 

There are three groups of type L 

If two groups appear in each of T/ and Tr- (all of types 1 or 3), we have: 

If all groups are of type 3, then Tr contains T(7, 9) + T(7, 9). 

If T/ contains one group of type 1 and Tr- contains one group of type 3, then 
Tr will contain a Pasch, a contradiction. 

So we have the following lemma: 

Lemma 4.3. If Tr is non-Steiner, then 1r ::; R - 2. If equality holds, Tr contains 
T(7, 9) + T(7, 9). 

In what follows, A, B, ... will denote irregular points in non-increasing occurrence 
order. Table 3 (in the Appendix) consists of the small trades which appear in the 
following lemmas. 

(
21 + 4 ) Lemma 4.4. Let T = T -3-,1 be a non-Steiner trade. Then 

(i) EOS(T) i= 2, ... ,2,3,5; 2, ... ,2,3,3,3,3. 

(ii) If EOS(T) = 2, ... ,2,4,4, then 1 == 4 (mod 6), Tp = P(AB) + P(AB) and 
Tm = Tr = 0. 
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(iii) If EOS(T) = 2, ... ,2,3,3,4, then f == 1 (mod 6), Tp = Tm = 0 and Tr = 
T2 (6, 7). 

Proof. 

(i) This is clear by Lemmas 4.1 and 4.2. 

(ii) There are only two irregular points and AAB 2:: 2, so Tm = 0. We have fr ~ 5, 
so Tr = 0 and consequently we have Tp = P(AB) + P(AB). 

(iii) By Lemma 4.1, Tp = 0. If Tm =1= 0, then Tm = T(6,8) and EOS(Tr) = 
2, ... ,2,4, so Tm +Tr is a Steiner trade. Hence Tm = 0. Since fr ::; 7, we have 
Tr = T2 (6, 7) (Table 3). 0 

(
2f + 5 ) . Lemma 4.5. Let T = T -3-' f be a non-Stemer trade. Then 

(i) EOS(T) =1= 2, ... ,2,3,6; 

(ii) EOS(T) =1= 2, ... ,2,4,5; 

(iii) EOS(T) =1= 2, ... ,2,3,3,5; 

(iv) EOS(T) =1= 2, ... ,2,3,4,4; 

(v) EOS(T) =1= 2, ... ,2,3,3,3,3,3; 

(vi) If EOS(T) = 2, ... ,2,3,3,3,4, then f == 2 (mod 6), Tp = Tm = 0 and Tr = 
T(7,8). 

Proof. 

(i) It follows from Lemma 4.l. 

(ii) By Corollary 2.1 and Lemma 4.1, Tp = 0. As AAB 2:: 2 and there are only two 
irregular points, we have Tm = 0. By fr ~ 6, it follows that Tr = 0. 

(iii) By similar arguments as in (ii), we have Tp = 0. If Tm =1= 0, then Tm = 
T(6, 8) and EOS(Tr) = 2, ... ,2,5 which is impossible. Since fr ::; 8, we have 
Tr = T(7, 8) with EOS(Tr) = 2, ... ,2,3,3,5 and such a trade does not exist(cf. 
Table 3) . 

(iv) By similar arguments as in (iii), Tp = Tm = 0 and Tr = T(7, 8) with EOS(Tr) = 
2, ... ,2,3,4,4, which does not exist (cf. Table 3). 

(v) By Lemma 4.2, this is obvious. 

(vi) By Lemma 4.2, Tp = 0. If Tm =1= 0, then Tm = T(6,8) and EOS(Tr) = 
2, ... ,2,3,4, which is by Lemma 4.1 impossible. So Tm = 0 and since fr ~ 10, 
we have Tr = T(7, 8). 0 
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(
21 + 6 ) . Lemma 4.6. Let T = T -3 -, 1 be a non-Stemer trade. Then 

(i) EOS(T) f:. 2, ... ,2,3, 7; 2, ... ,2,5,5. 

(ii) If EOS(T) 2, ... ,2,4,6, then 1 == 3 (mod 6), Tp P(AB) + P(AB) + peA) 
and Tm = Tr = 0. 

(iii) If EOS(T) = 2, ... ,2,3,3,6, then 1 == 0 (mod 6), Tp = peA), Tm = 0 and 
Tr(A) = T2 (6, 7). 

(iv) If EOS(T) = 2, ... ,2,3,4,5, then 1 == 0 (mod 6), Tp = peA), Tm = 0 and 
Tr(A) = T2 (6, 7). 

(v) If EOS(T) 2, ... ,2,4,4,4, then 1 == 3 (mod 6), Tm 0. We have either 
Tp = 0 and Tr = T2 (8, 9), or Tr = 0 and for Tp, we have one of the following: 

(a) (P(A) + peA)) EB (P(BC) + P(BC)); 

(b) peA) + P(BC) + P(ABC); 

(c) peA) + P(BC) + P(AB, BC); 

(d) P(ABC) + P(AB, AC); 

(e) P(AB, AC) + P(AB, AC); 

(f) P(AB, AC) + P(AB, BC). 

(vi) If EOS(T) 2, ... ,2,3,3,3,5, then 1 == 3 (mod 6), Tp = Tm = 0 and Tr = 
T6(8, 9). 

(vii) If EOS(T) 2, ... ,2,3,3,4,4, then 1 == 0 (mod 6) and for Tp, Tm and Tr one 
of the following occurs: 

(a) Tp peA) + peA), Tm = 0 and Tr = T2 (6, 7); 

(b) Tp = peA), Tm = 0 and Tr(A) = T2 (6, 7); 

(c) Tp = P(AB) + P(AB), Tm = T(6, 8) and Tr = 0; 

(d) Tp P(AB), Tm(AB) = T(6, 8) and Tr = 0. 

(viii) If EOS(T) = 2, ... ,2,3,3,3,3,4, then 1 == 3 (mod 6), Tp 0 and for Tm and 
Tr one of the following occurs: 

(a) Tm = T(6, 8) and Tr = T2 (6, 7); 

(b) Tm = 0 and Tr = T3(8, 9). 

(ix) If EOS(T) 2, ... ,2,3,3,3,3,3,3, then 1 == 0 (mod 6), Tp = Tm = 0 and 
Tr = T(6, 6). 

Proof. 
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(i) By Lemma 4.1, EOS(T) =I 2, ... ,2,3,7. 

Let EOS(T) = 2, ... ,2,5,5. By Lemmas 4.1 and 4.2, Tp = Tm = 0. 

Since ir :::; 7, we must have Tr = T(6, 6). Since this trade has a different 
EOS(cf. Table 3), Tr = 0. 

(ii) Clearly Tm = 0. Since ir :::; 7, we must have Tr = T(6,6), which has a 
different EOS(cf. Table 3), hence Tr 0. As AAB ~ 2, we must have Tp = 
P(AB) + P(AB) + peA). 

(iii) Clearly Tm = 0. If Tp = peA), then EOS(T - Tp) = 2, ... j 2; 3, 3, 4 and by 
Lemma 4.4(iii) Tm = 0 and Tr = T2 (6, 7). So let Tp = 0. Since ir :::; 9, 
we have Tr = T(6,6) or Tr = T(8, 9). Neither of these two trades with the 
specified EOS exists(cf. Table 3). 

(iv) By similar arguments as in (iii), the result follows. 

(v) Clearly Tm = 0. Since ir :::; 9, we have Tr = T(6,6), which has a different 
EOS (cf. Table 3), Tr = T3(8, 9)(cf. Table 3) or Tr = 0. If Tr = 0, then for 
Tp , one of the cases (a)-(f) occurs. 

(vi) By Lemmas 4.1 and 4.2 Tm = Tp = 0. As ir :::; 11, Tr = T(6, 6), which has a 
different EOS, or Tr = T7(8, 9) (cf. Table 3). 

(vii) Suppose Tp =I 0. If Tp = peA) or Tp = peA) + peA), then EOS(T - Tp) = 
2, ... ,2,3,3,4. By Lemma 4.4(iii), Tm = 0 and for Tr we have Tr(A) = T2 (6, 7) 
or Tr = T2 (6, 7). IfTp = P(AB) or Tp = P(AB)+P(AB), then EOS(T-Tp) = 
2, ... ,2,3,3. By Lemma 2.1, we have Tr = 0 and Tm(AB) = T(6,8) or 
Tm = T(6, 8). Now let Tp = 0. If Tm =I 0, it must neccessarily be T(6, 8) and 
hence EOS(Tr) = 2, ... ,2,4,4. But then, Lemma 4.4(ii) forces Tp =I 0. So 
Tm = 0. Since ir :::; 11, we have Tr = T(6, 6), or Tr = T(8, 9) . None of these 
has the specified EOS (cf. Table 3). 

(viii) By Lemma 4.2, Tp = 0. If Tm =I 0, then Tm = T(6,8) and EOS(Tr) = 
2, ... ,2,3,3,4. Therefore, by Lemma 4.4 (iii) , Tr = T2 (6, 7) (Table 3). We now 
assume that Tm = 0. Since ir :::; 13, Tr = T3(8, 9) (Table 3) or Tr = T(lO, 12). 
We show that no such T(lO, 12) exists. Suppose r A = 4 and rB = 3. With no 
loss of generality, we consider the following blocks: 

T+ _r _ T-_ r_ 
AB1 ABy 
ABx ABz 
Byz Blx 
Ayr AIr 
Azs Axs 
lxr 
xs-
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The three remaining blocks in T/ must contain four new regular points and 
are of the form 234,25-,35-, but then 2 has at most one irregular adjacency 
which is a contradiction. 

(ix) By Lemma 4.2, the result follows. 0 

5. Conclusions 

In the following theorems, we summarize the results of Sections 3 and 4 on the 
number of non-isomorphic trades of minimum volume. 

Theorem 5.1. Up to isomorphism, the number of Steiner trades of minimum vol­
ume is as follows: 

/ (mod 6) minimum volume # trades exceptions 

0 
2/ 

1 
3 

1 
2/ +4 

3 
4 #T(6, 7) = 1, 

#T(lO, 13) = 3 

2 
2/ +2 

3 

3 
2/ + 3 

3 

4 
2/ +4 

3 
9 #T(8, 10) = 4, 

#T(12, 16) = 8 

5 
2/ +2 

3 

Theorem 5.2. Up to isomorphism, the number of non-Steiner trades of minimum 
volume is as follows: 
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/ (mod 6) minimum volume # trades exceptions 

0 
2/ + 6 

3 
7 #T(6, 6) = 1, 

#T(10, 12) = 5 

1 
2/+4 

3 
1 

2 
2/ +5 

1 
3 

3 
2/ +6 

10 #T(8,9) = 6, 
3 

4 
2/+4 

3 
1 
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Appendix 

Table 2 contains, up to isomorphism, all Steiner trades of minimum volume for 
7 S f s 10 [2, Table 2]. In Table 3, all non-isomorphic non-Steiner trades of 
minimum volume are given for 6 ::; f ::; 9 [3,4]. 

Table 2. 

Steiner trades of minimum volume for 7 ::; / ::; 10. 

Tl(6, 7) T(6,8) T(7, 9) T1 (8, 10) T2(8, 1O) T3(8, 1O) T4(8, 1O) 
123 123 123 127 123 123 123 
167 145 145 138 145 145 145 
247 167 167 28A 167 167 167 
256 248 248 379 189 189 189 
346 368 358 459 24A 24A 24A 
357 578 369 46A 268 35A 36A 

579 57A 279 68A 58A 
689 35A 79A 79A 

127 124 124 128 124 124 124 
136 136 136 137 135 135 136 
235 157 157 27A 168 168 158 
246 238 238 389 179 179 179 
347 458 359 45A 23A 23A 23A 
567 678 458 469 267 45A 45A 

679 579 289 67A 67A 
68A 45A 89A 89A 
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Table 3. 
Non-Steiner trades of minimum volume for 6 ::; f ::; 9. 

T(6,6) T2(6, 7) T(7, 8) Tl (8,9) T2(8, 9) T3(8, 9) T4(8, 9) T5(8, 9) T6(8, 9) 
123 123 123 123 123 123 123 123 123 
124 124 147 145 145 145 145 145 145 
156 156 148 247 248 248 246 239 248 
256 157 156 268 249 249 248 247 249 
345 267 245 356 267 347 239 268 347 
346 345 358 357 345 356 347 346 356 

678 239 568 589 356 357 467 
589 579 679 789 489 789 

125 126 124 124 124 124 124 124 124 
126 127 138 135 135 135 135 135 135 
134 135 145 236 234 234 234 236 234 
234 145 167 237 268 289 236 237 289 
356 234 235 289 279 367 289 289 367 
456 567 478 359 458 458 379 349 456 

568 457 459 479 456 457 478 
568 567 569 478 468 479 
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