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Abstract

A graph G is 1-homogeneous if certain isomorphisms between similarly
embedded induced subgraphs of G extend to automorphisms of G. We
show that the only connected composite 1-homogeneous graphs are the
cube, and Kn × K2 and Kn × Kn with n ≥ 2.

1 Introduction

The homogeneity of a graph G may be measured in terms of which isomorphisms
between its induced subgraphs extend to automorphisms of G. In the extreme we
may insist that all such isomorphisms so extend. Sheehan [10] and Gardiner [3]
studied these graphs to find, not surprisingly, that there are only a few. Gardiner
called them ultrahomogeneous and proved the following characterisation.

Theorem 1 The ultrahomogeneous graphs are:

1. the disjoint union, tKr, of t copies of the complete graph on r vertices,

2. the complete multipartite graph Kt;r, the complement of tKr,

3. the cartesian product K3 × K3 = L(K2;3),

4. the pentagon C5.

Although C3 (= K3), C4 (= K2;2), and C5 are ultrahomogeneous, the cycles Cn

for n ≥ 6 are large enough to allow isomorphic induced subgraphs to be embed-
ded in different ways. For example, take two vertices at distance 2 in Cn as one
subgraph and two at distance 3 for the other. Both subgraphs are isomorphic to
2K1 but no isomorphism between them extends to an automorphism of Cn because
automorphisms preserve distance.

Australasian Journal of Combinatorics 26(2002), pp.147–153



Size permits a similar situation in Kn × Kn for n ≥ 4. To see how exactly we
recall the definition of the cartesian product and the nature of its automorphism
group. The cartesian product, G × H, of graphs G and H is the graph with vertex
set V G × V H and edges 〈(g1, h1), (g2, h2)〉 only where g1 = g2 and h1 is adjacent to
h2 or h1 = h2 and g1 is adjacent to g2. A graph is composite if it is the product of at
least two non-trivial graphs. A graph is prime if non-trivial and not composite. We
note that Kn is prime for n ≥ 2 because it is connected and has no chordless square.
Two graphs are relatively prime if they have no non-trivial factor in common. G×H
has obvious automorphisms that are essentially permutations of copies of G induced
by automorphisms of H or permutations of copies of H induced by automorphisms of
G. The cartesian product Gn has additional automorphisms induced by permuting
the coordinates of every vertex with the same permutation. The following theorems
tell us that these automorphisms generate all others.

Theorem 2 ([9]) If G and H are relatively prime connected graphs, then every au-
tomorphism of G×H has the form γ = (α, β) where α and β are automorphisms of
G and H respectively and γ(g, h) = (αg, βh).

Theorem 3 ([5]) For a connected prime graph G, the automorphism group of Gm

is the set of all permutations γ = (α; β1, . . . , βm) where α ∈ Sm and β1, . . . , βm are
automorphisms of G, and γ is defined by γ(g1, . . . , gm) = (β1gα1, . . . , βmgαm).

An edge in G × H of the form 〈(gi, hk), (gj, hk)〉 will be called horizontal and an
edge of the form 〈(gk, hi), (gk, hj)〉 will be called vertical. Two edges are parallel if they
are both horizontal or both vertical. From Theorems 2 and 3, any automorphism will
map parallel edges to parallel edges. Now consider two induced subgraphs of Kn×Kn

that are isomorphic to 2K2. We suppose both edges in one subgraph are horizontal
(this is possible for n ≥ 4) and in the other subgraph one edge is horizontal and the
other is vertical. No isomorphism between them will extend to an automorphism of
Kn × Kn.

Following Myers [7, 8] we relax the homogeneity condition by limiting the isomor-
phic induced subgraphs to only those that, in some sense, are similarly embedded
in the graph. He made the following inductive definition. Let X and Y be induced
subgraphs of a graph G. Any isomorphism f from X to Y is called a 0-isomorphism.
For positive integer k, f is also called a k-isomorphism if for each vertex x in G there
is a vertex y in G such that the mapping f ∪ (x, y) is a (k−1)-isomorphism from the
induced subgraph 〈V X∪{x}〉 to 〈V Y ∪{y}〉 and f−1 satisfies the analagous condition
from Y to X . Graph G is k-homogeneous if, for every pair of its induced subgraphs
X and Y , every k-isomorphism from X to Y can be extended to an automorphism of
G. The notion of k-homogeneity has been studied in other areas such as logic [2] and
geometry [1]. The 0-homogeneous graphs are precisely the ultrahomogeneous graphs
of Theorem 1. Clearly, if G is k-homogeneous, then it is l-homogeneous for l ≥ k and
every component is k-homogeneous. Also the complement of G is k-homogeneous if
and only if G is k-homogeneous. Exploiting the near uniqueness of G for a given line
graph L(G), Myers [7] showed that L(Kn) is 1-homogeneous for all n and L(Kt;r)
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is 4-homogeneous for all t and r. In what follows we will confine our attention to
1-homogeneous graphs.

The study of 1-homogeneous graphs can be reduced to certain simpler cases. For
a graph G let F (G) denote the set of all vertices in G of full valency, that is, adjacent
to all other vertices in G. From the definition of 1-homogeneous graphs we have the
following immediate results.

Lemma 4 ([4], [8]) For any graph G:

1. G is 1-homogeneous if and only if its complement is 1-homogeneous.

2. If G is 1-homogeneous and connected, then G − F (G) is 1-homogeneous and
transitive.

3. If G is 1-homogeneous and connected, then the diameter of G is at most 3.

Thus the investigation of 1-homogeneous graphs reduces to the study of con-
nected, transitive graphs of diameter at most 3. By routine argument the only
connected 1-homogeneous graphs regular of degree two are the cycles Cn for n ≤ 7.
Myers [8] classifed the trivalent variety.

Theorem 5 The connected cubic 1-homogeneous graphs are:

1. K4,

2. K3 × K2, the complement of C6,

3. K2;3, the complement of 2K3,

4. the Petersen graph, the complement of L(K5),

5. the cube, K3
2 ,

6. the Heawood graph.

We note that only the cube and the Heawood graph have diameter 3 and all
except K3 × K2 are distance transitive. It was shown in [4] that all connected 1-
homogeneous graphs are distance transitive or almost so. This result, Lemma 4,
and the comprehensive catalogue of transitive graphs in [6] can be used to find all
connected transitive 1-homogeneous graphs on fewer than 20 vertices. Inspection
of these graphs suggests various infinite families of 1-homogeneous graphs. In the
following section we look at composite graphs.
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2 Composite graphs

Lemma 6 If a connected composite graph is 1-homogeneous, then it is one of the
following:

1. the cube, K3
2 ,

2. Kn × K2 with n ≥ 2,

3. Kn × Kn with n > 2.

Proof. Let P be a connected composite 1-homogeneous graph. From Lemma 4
the diameter of P is at most 3 so it has at least one factor of diameter 1. Thus
P = Kr × H where H has diameter 1 or 2.

Case 1: P = Kr × Ks with r ≥ s ≥ 2.
If s > 2 then any edge in a copy of Kr is 1-isomorphic to any edge in a copy of

Ks. Hence there is an automorphism of P that maps one edge to the other. This
contradicts Theorem 2 unless r = s.

Case 2: P = Kr × H where r ≥ 2 and H has diameter 2.
From Lemma 4 P is transitive and hence H is regular of degree at least 2. We

label the vertices of Kr and H with the integers 0, 1, 2, . . . and write ij for the vertex
(i, j) in P . Let vertices 0 and 2 in H be at distance 2 and mutually adjacent to
vertex 1. The induced subgraphs 〈00, 02〉 and 〈00, 11〉 are 1-isomorphic in P and
hence there is an automorphism of P that maps one to the other. This contradicts
Theorem 2 if Kr and H are relatively prime. So P = Kr × Kr × Ks where s ≥ 2.
If r �= s we write P = Ks × H where H = Kr × Kr and repeat our argument to
contradict Theorem 2.

If r = s, then we have P = K3
r . Suppose r ≥ 3. We label the vertices in Kr

with the integers 0, 1, 2, . . ., and write ijk for the vertex (i, j, k) in K3
r . Consider

G1 = 〈000, 222, 102, 210〉 and G2 = 〈000, 222, 102, 021〉. Let f be the isomorphism
from G1 to G2 that fixes 000, 222, 102, and maps 210 to 021. It is easy to check
that f is a 1-isomorphism. Therefore f extends to an automorphism α of P . Since
010 is at distance 1 from both 000 and 210, α(010) = 001 or 020. But 010 and 001
are respectively at distance 3 and 2 from 102 while 010 and 020 are respectively at
distance 3 and 2 from 222 giving us a contradiction. �

By Theorem 5, K3
2 is 1-homogeneous. We show below that Kn×K2 and Kn×Kn

are 1-homogeneous for all n. First a general lemma that allows us to move induced
subgraphs around.

Lemma 7 Let G1 and G2 be induced subgraphs in a graph G and let α and β be
automorphisms of G. An isomorphism σ : G1 → G2 is a 1-isomorphism in G if and
only if ασβ−1 : βG1 → αG2 is a 1-isomorphism in G. Moreover, σ extends to an
automorphism of G if and only if ασβ−1 does.

Proof. Let g1 be a vertex in G and suppose σ is a 1-isomorphism. There is a
vertex g2 in G such that σ ∪ (β−1g1, α

−1g2) : 〈G1 ∪ {β−1g1}〉 → 〈G2 ∪ {α−1g2}〉
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is an isomorphism. Hence ασβ−1 ∪ (g1, g2) : 〈βG1 ∪ {g1}〉 → 〈αG2 ∪ {g2}〉 is an
isomorphism. Similarly, if g2 is a vertex in G, then there exists a vertex g1 in G
such that βσ−1α−1 ∪ (g2, g1) : 〈αG2 ∪{g2}〉 → 〈βG2 ∪{g1}〉 is an isomorphism. Thus
ασβ−1 is a 1-isomorphism in G. Also, if σ extends to an automorphism σ∗ of G, then
ασβ−1 extends to the automorphism ασ∗β−1 of G. The converses are immediate. �

The next two lemmas show that parallel edges in an induced subgraph of Kn×K2

and Kn ×Kn stay parallel under any 1-isomorphism. In both products let H and V
denote respectively the set of all their horizontal and vertical edges.

Lemma 8 Let G1 and G2 be induced subgraphs of G = Kn × K2 with n ≥ 3. If
σ : G1 → G2 is a 1-isomorphism in G, then σ(EG1∩H) = EG2∩H and σ(EG1∩V ) =
EG2 ∩ V .

Proof. Suppose e is a horizontal edge in G1 and σ(e) is a vertical edge in G2.
There is a vertex in G adjacent to both vertices of e but no corresponding vertex
adjacent to both vertices of σ(e). Hence σ can not be a 1-isomorphism. Similarly,
if e is a vertical edge in G1 and σ(e) is a horizontal edge in G2, then σ−1 is not a
1-isomorphism. �

Lemma 9 Let G1 and G2 be induced subgraphs of G = Kn × Kn with n ≥ 2.
If σ : G1 → G2 is a 1-isomorphism in G, then {σ(EG1 ∩ H), σ(EG1 ∩ V )} =
{EG2 ∩ H, EG2 ∩ V }.

Proof. Suppose e and d are edges in G1 with e, d, σ(e) horizontal and σ(d) vertical.
Because G1 and G2 are isomorphic induced subgraphs of Kn ×Kn, simple inspection
of the few possible cases shows that 〈e, d〉 and 〈σ(e), σ(d)〉 are both isomorphic to
2K2. Hence there is a vertex in G adjacent to both vertices in e but only one vertex
in d, while each vertex in G that is adjacent to both vertices in σ(e) is adjacent to
both or none of the vertices in σ(d). Thus σ is not a 1-isomorphism of G. �

For simplicity in what follows we denote the vertices (i, j) of Kn×K2 and Kn×Kn

by ij.

Theorem 10 Kn × K2 is 1-homogeneous for n ≥ 1.

Proof. From Theorem 1 Kn × K2 is 0-homogeneous for 1 ≤ n ≤ 2 so we may
assume n ≥ 3. Let G1 and G2 be isomorphic induced subgraphs of G = Kn × K2

and suppose σ : G1 → G2 is a 1-isomorphism in G. If G1 has no vertical edge
then, by Lemma 8, neither does G2 and both are therefore isomorphic to a complete
graph or the union of two complete graphs. From Theorem 2 and Lemma 7 we
may assume that G1 = G2 = 〈A ∪ B〉 where A = {11, 21, . . . , r1} and B = ∅ or
{(r + 1)2, (r + 2)2, . . . , s2} where 1 ≤ r ≤ n and r < s ≤ n. Thus σ fixes all vertices
in G1 and extends to the identity automorphism of G.

If G1 does have a vertical edge then, from Theorem 2 and Lemma 7, we may
assume G1 = 〈{11, 21, . . . , r1} ∪ {12, 22, . . . , r2} ∪ A ∪ B〉 where A = ∅ and B = ∅
or A = {(r + 1)1, (r + 2)1, . . . , s1} and B = ∅ or A = {(r + 1)1, (r + 2)1, . . . , s1}
and B = {(s + 1)2, (s + 2)2, . . . , t2} where 1 ≤ r < s < t ≤ n. From Theorem 2,
Lemma 7, and Lemma 8 we may assume G2 = G1. Again σ extends to the identity
automorphism of G. �
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Theorem 11 Kn × Kn is 1-homogeneous for n ≥ 1.

Proof. From Theorem 1, Kn × Kn is 0-homogeneous for 1 ≤ n ≤ 3. We use
induction on n. Let G1 and G2 be isomorphic induced subgraphs of G = Kn × Kn

and suppose σ : G1 → G2 is a 1-isomorphism in G. Let X = {11, 21, . . . , n1} ∪
{11, 12, . . . , 1n}, G′ = G − X , G′

1 = G1 − X , and σ′ denote σ restricted to G′
1.

Case 1: G1 contains an isolated vertex.
From Lemma 7 and Theorem 3 we may assume the isolated vertex is 11 and

σ11 = 11. We claim σ′ is a 1-isomorphism in G′. If g1 is a vertex in G′, then there
is a vertex g2 in G such that σ ∪ (g1, g2) is an isomorphism from 〈V G1 ∪ {g1}〉 to
〈V G2∪{g2}〉. Because g1 is not adjacent to 11, neither is g2 and therefore g2 is in G′.
By induction σ′ extends to an automorphism τ ′ of G′. From Theorem 3, τ ′ extends
to an automorphism τ of G that fixes 11. Thus σ extends to τ .

Case 2: G1 contains an edge.
From Lemma 7 and Theorem 3 we may assume that the edge is 〈11, i1〉, σ11 = 11,

and σi1 = j1 where 1 < i, j ≤ n. From Lemma 9 we may also assume that
V G1 ∩ {11, 21, . . . , n1} = {11, 21, . . . , r1} = V G2 ∩ {11, 21, . . . , n1} and V G1 ∩
{11, 12, . . . , 1n} = {11, 12, . . . , 1s} = V G2 ∩ {11, 12, . . . , 1n} for some r and s with
2 ≤ r ≤ n and 1 ≤ s ≤ n.

Case 2.1: G′
1 contains no edge.

Let t = min(r, s). Again from Lemma 7 and Theorem 3 we may assume that G1

contains at most t vertices 11, 22, . . .; at most r− t vertices (t + 1)(s + 1), (t+ 2)(s +
2), . . .; and at most s − t vertices (r + 1)(t + 1), (t + 2)(s + 2), . . .; and every vertex
in G1 is fixed by σ. Thus σ extends to the identity automorphism of G.

Case 2.2: G′
1 contains an edge.

As in Case 1, σ′ is a 1-isomorphism in G′ and by induction extends to an au-
tomorphism τ ′ of G′. From Lemma 9, under σ the horizontal edges of G1 remain
horizontal and the vertical edges remain vertical. In particular the edge we have in
G′

1 remains either horizontal or vertical under σ, hence under σ′, and therefore under
τ ′. For 2 ≤ k ≤ n let Ak = {k2, . . . , kn} and Bk = {2k, . . . , nk}. From Theorem
3, τ ′Ak = Al for some l and τ ′Bk = Bm for some m. To ease notation we assume
that σ fixes each vertex in V G1 ∩ X as permitted by Lemma 7. If for some k where
2 ≤ k ≤ r, Ak contains a vertex of G1 or G2, then τ ′ fixes Ak. If Ak does not contain
a vertex of G1 or G2, then we may change τ ′ = (τ ′

1, τ
′
2) by deleting the disjoint cycle

in τ ′
1 that contains k. The resulting automorphism of G′ still extends σ′ but fixes

Ak. So we may assume that τ ′ fixes Ak for 2 ≤ k ≤ r and Bk for 2 ≤ k ≤ s. Thus
τ ′ extends to an automorphism τ of G that fixes each vertex in V G1 ∩ X and so σ
extends to τ . �

From Lemma 6 and Theorems 5, 10, and 11 we have our characterisation of
connected composite 1-homogeneous graphs.
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Theorem 12 The connected composite 1-homogeneous graphs are:

1. the cube, K3
2 ,

2. Kn × K2 with n ≥ 2,

3. Kn × Kn with n > 2.
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