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Abstract

A graph G is 1-homogeneous if certain isomorphisms between similarly
embedded induced subgraphs of G extend to automorphisms of G. We
show that the only connected composite 1-homogeneous graphs are the
cube, and K,, x K, and K,, x K,, with n > 2.

1 Introduction

The homogeneity of a graph G may be measured in terms of which isomorphisms
between its induced subgraphs extend to automorphisms of G. In the extreme we
may insist that all such isomorphisms so extend. Shechan [10] and Gardiner [3]
studied these graphs to find, not surprisingly, that there are only a few. Gardiner
called them ultrahomogeneous and proved the following characterisation.

Theorem 1 The ultrahomogeneous graphs are:
1. the disjoint union, tK,, of t copies of the complete graph on r vertices,
2. the complete multipartite graph K., the complement of tK,,
3. the cartesian product K3 x K3 = L(Ks3),

4. the pentagon Cs.

Although C5 (= K3), Cy (= Ka2), and Cs are ultrahomogencous, the cycles C,
for n > 6 are large enough to allow isomorphic induced subgraphs to be embed-
ded in different ways. For example, take two vertices at distance 2 in C, as one
subgraph and two at distance 3 for the other. Both subgraphs are isomorphic to
2K, but no isomorphism between them extends to an automorphism of C,, because
automorphisms preserve distance.
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Size permits a similar situation in K, x K, for n > 4. To see how exactly we
recall the definition of the cartesian product and the nature of its automorphism
group. The cartesian product, G x H, of graphs G and H is the graph with vertex
set VG x VH and edges ((¢g1, h1), (g2, he)) only where g; = g2 and h, is adjacent to
hs or hy = hy and ¢ is adjacent to go. A graph is composite if it is the product of at
least two non-trivial graphs. A graph is prime if non-trivial and not composite. We
note that K, is prime for n > 2 because it is connected and has no chordless square.
Two graphs are relatively prime if they have no non-trivial factor in common. G x H
has obvious automorphisms that are essentially permutations of copies of GG induced
by automorphisms of H or permutations of copies of H induced by automorphisms of
G. The cartesian product G™ has additional automorphisms induced by permuting
the coordinates of every vertex with the same permutation. The following theorems
tell us that these automorphisms generate all others.

Theorem 2 ([9]) If G and H are relatively prime connected graphs, then every au-
tomorphism of G x H has the form v = («, 8) where « and § are automorphisms of
G and H respectively and (g, h) = (ag, Bh).

Theorem 3 ([5]) For a connected prime graph G, the automorphism group of G™
is the set of all permutations v = (o; P, ..., Bm) where & € Sy, and [y, ..., By are
automorphisms of G, and v is defined by ¥(g1, ..., gm) = (B19a1; - - -, BmGam)-

An edge in G x H of the form ((g;, i), (g;, he)) will be called horizontal and an
edge of the form ((gx, hi), (g, h;)) will be called vertical. Two edges are parallelif they
are both horizontal or both vertical. From Theorems 2 and 3, any automorphism will
map parallel edges to parallel edges. Now consider two induced subgraphs of K, x K,
that are isomorphic to 2K5. We suppose both edges in one subgraph are horizontal
(this is possible for n > 4) and in the other subgraph one edge is horizontal and the
other is vertical. No isomorphism between them will extend to an automorphism of
K, x K,.

Following Myers [7, 8] we relax the homogeneity condition by limiting the isomor-
phic induced subgraphs to only those that, in some sense, are similarly embedded
in the graph. He made the following inductive definition. Let X and Y be induced
subgraphs of a graph G. Any isomorphism f from X to Y is called a 0-isomorphism.
For positive integer k, f is also called a k-isomorphism if for each vertex x in G there
is a vertex y in G such that the mapping fU (z,y) is a (k — 1)-isomorphism from the
induced subgraph (VX U{z}) to (VY U{y}) and f~! satisfies the analagous condition
from Y to X. Graph G is k-homogeneous if, for every pair of its induced subgraphs
X and Y, every k-isomorphism from X to Y can be extended to an automorphism of
G. The notion of k-homogeneity has been studied in other areas such as logic [2] and
geometry [1]. The 0-homogeneous graphs are precisely the ultrahomogeneous graphs
of Theorem 1. Clearly, if G is k-homogeneous, then it is [-homogeneous for [ > k and
every component is k-homogeneous. Also the complement of G is k-homogeneous if
and only if G is k-homogeneous. Exploiting the near uniqueness of G for a given line
graph L(G), Myers [7] showed that L(K,) is 1-homogeneous for all n and L(K3.,)
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is 4-homogeneous for all ¢ and r. In what follows we will confine our attention to
1-homogeneous graphs.

The study of 1-homogeneous graphs can be reduced to certain simpler cases. For
a graph G let F'(G) denote the set of all vertices in G of full valency, that is, adjacent
to all other vertices in G. From the definition of 1-homogeneous graphs we have the
following immediate results.

Lemma 4 ([4], [8]) For any graph G:
1. G is 1-homogeneous if and only if its complement is 1-homogeneous.

2. If G is 1-homogeneous and connected, then G — F(G) is 1-homogeneous and
transitive.

3. If G is 1-homogeneous and connected, then the diameter of G is at most 3.

Thus the investigation of 1-homogeneous graphs reduces to the study of con-
nected, transitive graphs of diameter at most 3. By routine argument the only
connected 1-homogeneous graphs regular of degree two are the cycles C,, for n < 7.
Myers [8] classifed the trivalent variety.

Theorem 5 The connected cubic 1-homogeneous graphs are:
1. Ky,

K3 x Ky, the complement of Cg,

Ko, the complement of 2K,

the Petersen graph, the complement of L(Ks),

the cube, K3,

S & e e

the Heawood graph.

We note that only the cube and the Heawood graph have diameter 3 and all
except K3 X K, are distance transitive. It was shown in [4] that all connected 1-
homogeneous graphs are distance transitive or almost so. This result, Lemma 4,
and the comprehensive catalogue of transitive graphs in [6] can be used to find all
connected transitive 1-homogeneous graphs on fewer than 20 vertices. Inspection
of these graphs suggests various infinite families of 1-homogeneous graphs. In the
following section we look at composite graphs.
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2 Composite graphs

Lemma 6 If a connected composite graph is 1-homogeneous, then it is one of the
following:

1. the cube, K3,
2. K, x Ky withn > 2,

3. K, x K, withn > 2.

Proof. Let P be a connected composite 1-homogeneous graph. From Lemma 4
the diameter of P is at most 3 so it has at least one factor of diameter 1. Thus
P = K, x H where H has diameter 1 or 2.

Case 1: P=K, x K, withr > s> 2.

If s > 2 then any edge in a copy of K, is l-isomorphic to any edge in a copy of
K. Hence there is an automorphism of P that maps one edge to the other. This
contradicts Theorem 2 unless r = s.

Case 2: P = K, x H where r > 2 and H has diameter 2.

From Lemma 4 P is transitive and hence H is regular of degree at least 2. We
label the vertices of K, and H with the integers 0, 1,2, ... and write ij for the vertex
(i,7) in P. Let vertices 0 and 2 in H be at distance 2 and mutually adjacent to
vertex 1. The induced subgraphs (00,02) and (00, 11) are l-isomorphic in P and
hence there is an automorphism of P that maps one to the other. This contradicts
Theorem 2 if K, and H are relatively prime. So P = K, x K, x K, where s > 2.
If r # s we write P = Ky x H where H = K, x K, and repeat our argument to
contradict Theorem 2.

If r = s, then we have P = K3. Suppose r > 3. We label the vertices in K,
with the integers 0,1,2,..., and write ijk for the vertex (i,j, k) in K3. Consider
G1 = (000,222, 102,210) and Gy = (000,222,102,021). Let f be the isomorphism
from G; to Gy that fixes 000, 222, 102, and maps 210 to 021. It is easy to check
that f is a l-isomorphism. Therefore f extends to an automorphism « of P. Since
010 is at distance 1 from both 000 and 210, a(010) = 001 or 020. But 010 and 001
are respectively at distance 3 and 2 from 102 while 010 and 020 are respectively at
distance 3 and 2 from 222 giving us a contradiction. a

By Theorem 5, K3 is 1-homogenecous. We show below that K,, x K, and K, x K,,
are 1-homogeneous for all n. First a general lemma that allows us to move induced
subgraphs around.

Lemma 7 Let Gi and Gy be induced subgraphs in a graph G and let o and (3 be
automorphisms of G. An isomorphism o : G1 — Gq is a 1-isomorphism in G if and
only if acB3~' 1 BG1 — aGy is a 1-isomorphism in G. Moreover, ¢ estends to an
automorphism of G if and only if ac3™" does.

Proof. Let g; be a vertex in G' and suppose ¢ is a l-isomorphism. There is a
vertex g, in G such that o U (871g;, a7 lgs) : (G1 U {B7tg1}) — (Ga U {a"1g})
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is an isomorphism. Hence acB7' U (g1,92) : (BG1 U {g1}) — {(aGay U {g2}) is an
isomorphism. Similarly, if g» is a vertex in G, then there exists a vertex g; in G
such that So a= U (g, 91) : (@G U{ga}) — (8G2U{g1}) is an isomorphism. Thus
acB 'is a l-isomorphism in G. Also, if o extends to an automorphism * of G, then
ac B! extends to the automorphism ac*3~" of G. The converses are immediate. O

The next two lemmas show that parallel edges in an induced subgraph of K, x K»
and K, x K, stay parallel under any 1-isomorphism. In both products let H and V/
denote respectively the set of all their horizontal and vertical edges.

Lemma 8 Let Gy and Go be induced subgraphs of G = K,, X Ky with n > 3. If
o : Gy — Gy is a 1-isomorphism in G, then o (EG1NH) = EGoNH and o(EG1NV) =
EG,NV.

Proof. Suppose e is a horizontal edge in G; and o(e) is a vertical edge in Gs.
There is a vertex in G adjacent to both vertices of e but no corresponding vertex
adjacent to both vertices of o(e). Hence o can not be a l-isomorphism. Similarly,
if e is a vertical edge in Gy and o(e) is a horizontal edge in Gy, then o~ is not a
1-isomorphism. O

Lemma 9 Let Gy and G be induced subgraphs of G = K, x K, with n > 2.
If 0 : Gy — Gsq is a I1-isomorphism in G, then {c(EG, N H),0(EG; NV)} =
{EGyNH,EG,NV}.

Proof. Suppose e and d are edges in G with e, d, o(e) horizontal and o(d) vertical.
Because G and G4 are isomorphic induced subgraphs of K,, x K,,, simple inspection
of the few possible cases shows that (e,d) and (c(e),o(d)) are both isomorphic to
2K5. Hence there is a vertex in G adjacent to both vertices in e but only one vertex
in d, while each vertex in G that is adjacent to both vertices in o(e) is adjacent to
both or none of the vertices in o(d). Thus ¢ is not a 1-isomorphism of G. a

For simplicity in what follows we denote the vertices (i, j) of K,, x Ky and K, x K,
by ij.
Theorem 10 K, X Ky is 1-homogeneous for n > 1.

Proof. From Theorem 1 K, x K3 is 0-homogeneous for 1 < n < 2 so we may
assume n > 3. Let G; and Gy be isomorphic induced subgraphs of G = K,, x K,
and suppose 0 : G; — (G5 is a l-isomorphism in G. If G has no vertical edge
then, by Lemma 8, neither does G and both are therefore isomorphic to a complete
graph or the union of two complete graphs. From Theorem 2 and Lemma 7 we
may assume that G; = Gy = (AU B) where A = {11,21,...,r1} and B = @ or
{(r+1)2,(r+2)2,...,52} where 1 <r <nandr < s <n. Thus o fixes all vertices
in G; and extends to the identity automorphism of G.

If G; does have a vertical edge then, from Theorem 2 and Lemma 7, we may
assume Gy = ({11,21,...,r1} U {12,22,...,72} U AU B) where A =) and B =
or A={(r+11,(r+2)1,...,s1} and B=0or A= {(r+1)1,(r+2)1,...,s1}
and B = {(s+1)2,(s +2)2,...,2} where 1 < r < s <t < n. From Theorem 2,
Lemma 7, and Lemma 8 we may assume G5 = GG1. Again o extends to the identity
automorphism of G. m|
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Theorem 11 K, x K, is 1-homogeneous for n > 1.

Proof. From Theorem 1, K, x K, is 0-homogeneous for 1 < n < 3. We use
induction on n. Let Gy and G5 be isomorphic induced subgraphs of G = K,, x K,
and suppose o : G — G5 is a l-isomorphism in G. Let X = {11,21,...,n1} U
{11,12,...,1In}, ' =G — X, G} = G; — X, and ¢’ denote o restricted to G.

Case 1: (G; contains an isolated vertex.

From Lemma 7 and Theorem 3 we may assume the isolated vertex is 11 and
011 = 11. We claim ¢’ is a 1-isomorphism in G’. If ¢; is a vertex in G’, then there
is a vertex go in G such that o U (g1, ¢2) is an isomorphism from (VG; U {g1}) to
(VGoU{g2}). Because g; is not adjacent to 11, neither is go and therefore go is in G'.
By induction ¢’ extends to an automorphism 7’ of G’. From Theorem 3, 7’ extends
to an automorphism 7 of G that fixes 11. Thus o extends to 7.

Case 2: (G; contains an edge.

From Lemma 7 and Theorem 3 we may assume that the edge is (11,41), 11 = 11,
and oil = j1 where 1 < 4,7 < n. From Lemma 9 we may also assume that
VG N {11,21,...,n1} = {11,21,...,r1} = VGy N {11,21,...,n1} and VG; N
{11,12,...,1n} = {11,12,...,1s} = VG, N {11,12,...,1n} for some r and s with
2<r<nand1<s<n.

Case 2.1: (] contains no edge.

Let ¢ = min(r, s). Again from Lemma 7 and Theorem 3 we may assume that Gy
contains at most ¢ vertices 11,22, .. .; at most r — ¢ vertices (t +1)(s+ 1), (t+2)(s+
2),...; and at most s — ¢ vertices (r + 1)(t + 1), (t + 2)(s + 2), . ..; and every vertex
in GG is fixed by o. Thus o extends to the identity automorphism of G.

Case 2.2: (] contains an edge.

As in Case 1, ¢ is a 1-isomorphism in G’ and by induction extends to an au-
tomorphism 7" of G'. From Lemma 9, under o the horizontal edges of G remain
horizontal and the vertical edges remain vertical. In particular the edge we have in
G| remains either horizontal or vertical under o, hence under o, and therefore under
7. For 2 < k < mnlet A, = {k2,...,kn} and B, = {2k,...,nk}. From Theorem
3, 7'A, = A; for some | and 7' B, = B,, for some m. To ease notation we assume
that o fixes each vertex in VG7 N X as permitted by Lemma 7. If for some k where
2 < k <r, A; contains a vertex of Gy or Gy, then 7’ fixes Ay. If A; does not contain
a vertex of Gy or Go, then we may change 7/ = (71, 74) by deleting the disjoint cycle
in 7 that contains k. The resulting automorphism of G’ still extends ¢’ but fixes
Ag. So we may assume that 7/ fixes Ay, for 2 < k < r and By, for 2 < k < s. Thus
7' extends to an automorphism 7 of G that fixes each vertex in VG N X and so o
extends to 7. a

From Lemma 6 and Theorems 5, 10, and 11 we have our characterisation of
connected composite 1-homogeneous graphs.
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Theorem 12 The connected composite 1-homogeneous graphs are:
1. the cube, K3,
2. K, x Ky withn > 2,

3. K, x K, withn > 2.
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