Extensions of a-polynomial classes
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Abstract

Let a(G) be the stability number of a graph G. A class of graphs P is
called a-polynomial if there exists a polynomial-time algorithm to deter-
mine «(G) for G € P. For every hereditary a-polynomial class P we
construct a hereditary extension of P which is either an a-polynomial
class or a can be approximated in polynomial time in the extended class.

1 Introduction

Let G = (V(G), E(G)) be a graph. A set S C V(G) is called stable if no two vertices
in S are adjacent. The stability number a(G) of G is the maximum cardinality
of a stable set of G. A class P of graphs is called a-polynomial if there exists a
polynomial-time algorithm to determine a(G) for G € P.

For a set X C V(G), the graph G(X) induced by X in G has vertex set X and
edge set {uv : u,v € X and wv € E(G)}. A graph H is an induced subgraph of a
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graph G if H is isomorphic to G(X) for some X C V(G). For a set F of graphs,
a graph G is called F-free if no induced subgraph of G is isomorphic to a graphs
in F. The graphs in F are called forbidden induced subgraphs for the class of all
F-free graphs. A class P of graphs is called hereditary if it is closed under taking
induced subgraphs. Note that a class P of graphs is hereditary if and only if there
is a (possibly infinite) set F of graphs such that P is the class of F-free graphs.

Definition 1. Let Gy and G be two graphs and let Iy C V(Gy) be a mazimal stable
set Of Go, i.e. V(Go) = NG[) [Io] = IO U NG[)(IO)~

(i) A (G, Ip)-extension G (g,.1,) of G is a graph that arises from disjoint copies of
Go and G by adding edges (possibly none) between the vertices in V(Go) \ Iy
and V(G).

(ii) A (Go, Iy)-stable set of G is a stable set [ C V(G) of G such that there is an
isomorphism ¢ : V(Go) — V(Go) where Gy is an induced subgraph of G and
o(Io) = INV(Gy) (see Figure 1).

We define o(cy,10)(G) as the mazimum cardinality of a (G, Iy)-stable set in G

or as 0 if no such set exists.
1y

G

- (f |
R I

Figure 1

(111) Let F be a set of graphs and let P be the class of F-free graphs. The (Gy, Iy)-
extension of P is the class Pay,1y) Of Flcop0)-free graphs where Figy 1) =
{F(Go10) : F € F} is the set of all (Go, Ip)-eatensions of graphs in F.

Proposition 1. Let Go, Iy and P be as in Definition 1. Let G € P, 1,) and let
6 : V(Go) — V(Go) be an isomorphism where Gy is an induced subgraph of G. Then
G\ Nelo(lo)] € P.

Proof. Let G' = G\ Ng[¢(Ip)]. If G' ¢ P, then G’ contains an induced subgraph
F € F where F is as in Definition 1. By the maximality of Iy, V/(Go) NV (F) = 0.
Now G(V(Go) UV (F)) is a (G, Ip)-extension of F, a contradiction to G € Pgy, 1y)-

g
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Theorem 1. Let Gy, Iy and P be as in Definition 1. If P is an a-polynomial class
of graphs then there is a polynomial time algorithm to determine o gy, 1) for graphs
mn P(GnJo)'

Proof. First, it is possible to find all induced subgraphs of G € P(g, 1, that are
isomorphic to G in polynomial time. If G is Go-free, then a (g, ) (G) = 0. If G is
not Go-free, then for each of the polynomially many isomorphisms ¢ such that ¢ :
V(Gp) — V(Gy) for some induced subgraph Gy of G, the graph Gy = G'\ Ng[o(Io)]
belongs to P (Proposition 1). Hence we can determine o(Gy) in polynomial time.
Obviously, o gy, 10)(G) = |[Io| + max{a(Gy) : ¢ as above}. O

Before we proceed to some specific applications for which we consider special
choices of Gy and Iy we want to point out that o ¢, 1,) always approximates o within
some additive term for graphs of bounded maximum degree that are not Gy-free.

Therefore, let G be some graph that is not Go-free and let ¢ : V(Go) — V(Gy)
be an isomorphism for some induced subgraph Gy of G. Let I be a maximum
independent set of G, i.e. |I| = a(G) and let I} = ¢(Lp) \ I. The set I' = (I \
Ne(13)) U 1§ is a (Go, Ip)-independent set of G and hence

@Gty 2 ' 2 | = [Na(lp)] + 5] = o(G) = (A = 1)|Io] 2 a(G) — (A = D)L

where A denotes the maximum degree of G.

2 Some applications

Let K; 4 denote the star of order d + 1.

Proposition 2. Ford > 2 let Go = K14 and let Iy consist of the d vertices of degree
Lin Ky 4. Let G be a graph that is not K, 4-free. Then ok, ,.1,)(G) > a(G)—d(d—2).

Proof. We prove the existence of a (K 4, Iy)-stable set of G of cardinality at least
a(G) —d(d —2). Let I be a maximum stable set of G. If |[Ng(u) N I| > d for some
vertex u € V(G) \ I, then [ is a (K 4, Ip)-stable set of G and we are done. Hence,
we can assume that [Ng(u) N I| < d— 1 for all vertices u € V(G) \ I.

Let the vertices vp, v1,...,v4 € V(G) induce a graph in G that is isomorphic to
K 4 such that vy is the vertex of degree d. Let {vy, vq, ..., v4}\I = {v1,vq,...,v;} for
some 1 <[ <d. Theset I' = (I U, Ng(l}i)) U{vr,va, ..., v} is a (K 4, Ip)-stable
set of Gand [I'| > |I| —I(d—1)+1=|I| = 1(d—2) > |I| —d(d — 2). O
Theorem 2 (Berman [1], Halldérsson [4]). For d > 2 there is a polynomial
time algorithm to approzimate o for K, 4-free graphs within a factor of g, i.e. to

determine a stable set I of a given K 4-free graph G such that || > %a(G).

Note that the case d = 2 of the above theorem is trivial.
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Corollary 1. Ford > 2 let Gy = K1 4 and let Iy consist of the d vertices of degree 1
in Kiq4. If P is an a-polynomial hereditary class of graphs then there is a polynomial
time algorithm to approzimate o for graphs in P, , 1) within a factor of g

Proof. Let G € Pk, ,1,)- First, we check in polynomial time whether o(G) < d? and
determine a(G) in this case. Hence we can assume that «(G) > d?, or equivalently
o(G)—d(d—2) > 2a(G). If G is K; 4-free, then Theorem 2 yields the desired result.
If G is not K g-free, then cx, ,.1)(G) = a(G) — d(d — 2) > 2a(G), by Proposition
2. Now, Theorem 1 yields the desired result. 0

Note that % = 1for d = 2,i.e. acanbe determined exactly for graphs in Pk, , 1,)-
Below P, denotes the path of order n.

Example 1. The class P of all {G1, Gy, ..., Gg}-free graphs (see Figure 2) is a-
polynomial, since P is the (K o, Iy)-extension of the a-polynomial class of all Ps-free
graphs.

Gy Go Gs
ANZARAN AN
—o
G4 G5 GG
Figure 2

Example 2. The class P of all {F1, Fy,..., Fig}-free graphs (see Figure 3) is a-
polynomial, since P is the (K 2, lp)-extension of the a-polynomial class of all cographs
(Py-free graphs; see [2]).
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Figure 3
For the case d = 3, i.e. claw-free graphs, we can actually prove something

stronger.

Proposition 3. Let Gy = K, 3 and let Iy consist of the three vertices of degree 1 in
Ky 3. Let G be a graph that is not Ky 3-free. Then a(p, 1,)(G) > a(G) — 1.

Proof. We prove the existence of a (K3, Iy)-stable set of G of cardinality at least
alG) —1.

Let I be a maximum stable set of G. If some vertex in V(G) \ I has three
neighbors in I, then we are done. Hence |[Ng(u) N1I| < 2 for every u € V(G) \ I.
Since G is not claw-free, let a,b, ¢, d € V(@) induce a claw such that d is the vertex
of degree three. Obviously, a,b,c € I does not hold.

If a,b € I and ¢,d ¢ I then I’ = (I \ Ng(c)) U {c} has the desired properties.
Hence each claw in G has at most one vertex in I.

Now we assume that a € I and b,c,d & I. If |(Ng(b) U Ng(c)) N I] < 3, then
I'=(I'\ (Ng(b)UNg(c)))U{b, c} has the desired properties. Hence |[Ng(b)NI| = 2,
[Ng(c) N 1I| =2 and Ng(b) N Ng(c) NI = 0. Since either Ng(d) N Ng(b) NI =0 or
Ng(d) N Ng(e) NI =0, the set I' = (I \ Ng(d)) U {d} has the desired properties.

Hence we may assume that a,b,c ¢ I. If |(Ng(a) U Ng(b) U Ng(c)) NI < 4
then I’ = (I'\ (Ng(a)U Ng(b) U Ng(c)))U{a,b,c} has the desired properties. Hence
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|(Ng(a)UNg(b)UNg(c))NI| > 5 which implies that {a, b,c} € Ng(e) for each e € 1.
Thus d & 1.

If a,b € Ng(e) for some e € Ng(d) N1 then it is easy to see that |Ng(a) N 1| =2,
|[Ng(b) N I| =2 and Ng(a) N Ng(b) NI = (. Since each claw has at most one vertex
in I, we have Ng(d) N Ng(a) NI # () and Ng(d) N Ng(b) N I # () which implies the
contradiction |[Ng(d) NI| > 3. Hence |Ng(e) N{a,b,c}| =2 for each e € Ng(d) N 1.
Since Ng(d) NI # (), we can assume that Ng(e) N {a,b,c} = {a,b} for some e €
Ng(d) N I. This implies that |Ng(c) N I] =2 and Ng(c) N (Ng(a) U Ng(b)) NI = 0.

If No(c) N Ng(d)NI =10, then I' = (I\ Ng(d)) U {d} has the desired properties.
Hence there is some f € Ng(c) N Ne(d)NI. Since Ng(f) N{a,b} # 0, we obtain the
contradiction |(Ng(a) U Ng(b) U Ng(c)) N 1| < 4. O

Theorem 3 (Minty [3], Sbihi [5]). The class of all K, 3-free graphs is a-poly-
nomial.

Corollary 2. Let Gy = K3 and let Iy consist of the three vertices of degree 1 in Ps.
Let P be an a-polynomial hereditary class of graphs.

Then there is a polynomial time algorithm to approximate o for graphs in Pk, 4.1,)
within 1, i.e. for every graph G' € Pk, ,1,) we can determine in polynomial time
some o such that a(G) — 1 < o < a(G).

Proof. Let G € Pk, , 1,). If G is K 3-free, then Theorem 3 yields the desired result.
If G is not K7 s-free, then ok, ,1,)(G) > a(G) — 1, by Proposition 3. Now the result
follows from Theorem 1. O

As an example, we consider the (K3, I) extension of K 3-free graphs. Let C be
the set of graphs shown in Figure 4 (dotted lines represent potential edges). In fact,
C consists of 8 pairwise non-isomorphic graphs.

Figure 4. The configuration C

Clearly, the class of all C-free graphs is exactly Pk, , 1,), Where P denotes the
class of all K 3-free graphs and Iy is as before. By Corollary 2, there is a polynomial
time algorithm to approximate « for C-free graphs within 1 and we pose the following
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Open Problem 1. Is there a polynomial time algorithm to determine o for C-free
graphs?

Finally, we want to point out that our extension operations can obviously be
iterated.
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