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Abstract

Let G be a simple graph and let A(G) and D(G) be the adjacency matrix
and degree matrix of G respectively. We call Q(G) = A(G) + D(G) the
quasi-Laplacian matrix of G. In this note, we study the spectrum of
Q(G) and give the upper and lower bounds of the k-th largest eigenvalue

of Q(G).

1 Introduction and notation

Let G be an undirected simple graph with vertices {vy, vs, -+, v,} and edges {e1, e,
-+, en}; we call G an (n,m)-graph. The adjacency matrix A = A(G) = [a;j] of G
is an n X n symmetric matrix of 0’s and 1’s with a;; = 1 if and only if v; and v;
are joined by an edge. Since G has no loops, the main diagonal of A contains only
0’s. Suppose the valence or degree of vertex v; equals d; for i = 1,2,---,n, and let
D = D(G) be the diagonal matrix whose (i,%)-entry is d;. Set

L(G) = D(G) — A(G) and Q(G) = D(G)+ A(G).

The matrix L = L(G) = D(G) — A(G) is called the Laplacian matriz of G.
With its great important applications in graph theory, the Laplacian matrix has
been studied extensively in the literature. For convenience, we call Q(G) the quasi-
Laplacian matriz of G. It is well-known that graph spectra have great importance in
many fields. Several graph spectra have been defined in [1], such as the characteristic
polynomial of A(G),

Po(N) = ]I — 4],
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and its spectrum

SpP(G) = [)‘la )\2a T, >\n]P7
the characteristic polynomial of L(G),

L¢ = |\ - L,

and its spectrum
SpL(G) = [)\1’ )\Qa ) AH]IM

the characteristic polynomial of Q(G),
Q(G) =M - Q),
with its corresponding spectrum
Sp(G) = [A1, Azy -+, Al

The spectra of A(G) and L(G) are well studied, but the spectrum of Q(G) seems
to be less well known. It is not until recently that some authors found that the
spectrum of (G) has strong connections with the structures of graphs (see [2], [3]).
It is easy to see that Q(G) is a symmetric, positive semi-definite matrix, so we can
set that 0 < A, < A1+ A2 < A;. Another two important properties of Q(G) (see
[3]) are stated in the following Lemmas 1.1 and 1.2.

We introduce some definitions first. If a component of G does not contain an odd
cycle, we call it a bipartite component of G. Let w = w(G), wy = wo(G) denote the
number of components, bipartite components of G, respectively. For convenience, let
us call a connected graph containing exactly one cycle, with that cycle having odd
length, an odd unicyclic graph. (The graph may contain other edges and vertices
as well, as long as they do not create another cycle or another component.) Thus,
an odd unicyclic graph consists of an odd cycle together with (possibly trivial) trees
growing out of each vertex in the cycle.

We call a spanning subgraph S of a connected graph G an essential spanning
subgraph of G if either of the following conditions is true:

(i) G is a bipartite and S is a spanning tree of G;

(i) G is not bipartite, V(S) = V(G), and every component of S is an odd unicyclic
graph.

Lemma 1.1 [3] The rank of Q(G) is n — wy, where wg is the number of bipartite
components of G.

Lemma 1.2 [3] If G has no bipartite components, then
det Q = 24“’(5),
S

where the sum is taken over all essential spanning subgraphs of G.
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In this note, we are concerned mainly with the bound of the k-th largest eigen-
value of Q(G). However, we want to say more about A; and \,. Now \(Q) has a
natural upper bound A\; < 2A, where A is the largest vertex degree of G. However,
A1(Q) has a more precise upper bound which is similar to A;(L) given in [5].

Proposition 1.1 Let G be a graph of order n. Then
(1) M(L) < M(Q);
(ii) M (Q) < max{d; +d; : vv; € E(G)}.

If G is connected, then equality in (ii) holds if and only if G is a bipartite graph and
the degree is constant on each class of vertices.

Proof. (i) Let L(G) = [l;;], and denote by |L| the matrix obtained by replacing l;;
by its absolute value |/;;| (1 <4 < j <n). Then Q(G) = |L(Q)|. So, A\i1(L) < \(Q).

(ii) Let M be the verter-edge incidence of G. It is well-known that Q@ = MMT.
Let N = MTM. It is easy to show that the two matrices Q and N share common
non-zero eigenvalues, therefore, A\;(Q) = p(N); here p(N) is the spectral radius of
N. Since the spectrum of G is the union of the spectra of its components, we only
need to consider connected graphs. Then N is irreducible, by the classic theory of
nonnegative matrices, p(N) < maximum row sum of N. If e = vv; € E(G), then
the row sum in the row corresponding to e is d; + d;. Thus we complete the proof of
the inequality.

If G is bipartite, then p(N) = max row sum if and only if all row sums are equal;
i.e. if and only if the condition of the proposition holds. Equivalently, equality holds
if and only if the line graph of G is regular. O

With A,, it does not always equal to 0, which is different from A, of L(G). As
the next proposition shows, the value of A\,(Q) has a connection with the bipartite
component of G.

Proposition 1.2 \,(Q) = 0 if and only if we(G) > 0.

Proof. )\, =0&det(0I—-Q)=det Q=0 rankQ <n&n—wy<n<
w0>0.D

2 The k-th largest eigenvalue of Q(G)

In this section, we discuss the upper and lower bounds for the k-th largest eigenvalue

>\k of Q(G)
Lemma 2.1 [4] Let G be a (n,m)-graph with degree sequence (dy,ds,---,d,). Then

" nm?
Zdi2 S n— 17
i—1

with equality if and only if G is a star graph Ky ,_1.
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Theorem 2.1 Let G be a (n,m)-graph. Write

M(G) = min{2m(n? — 2m),m[(7;__21)2m +2n)]}.

Then for k=1,2,---,n,

Akg%{szr n;k-M(G)}, (1)

with the equality in (1) holding for some 1 < ko < n if and only if G is K, or Ky 1.

Proof.
1 n
ZA + Z A2 Z)\) (D M)
i=k+1 [
k N2 (2m — Ng)?
Let N, = > \;; then Tr(Q?) > T}” + % Therefore,
=1 v n—r
1
kA < Ni < {2km + VEk(n — K)[nTr(Q?) — 4m2]}
Hence,

1
)\AS—{Qm—i—\/n
n

Moreover, by Lemma 2.1, we have

—k 2 2
- [nTr(Q?) — 4m }}

nTr(Q*) —4m*> = n Zdiz + nz d; — 4m?*
=1 i=1

n

IN

n-

-m? 4+ 2mn — 4m?
n—1

(n—2)°
n—1

=

-m + 2n]m

On the other hand, since d; <n — 1 for each 1 < i < n,
nTr(Q*) —4m* = nz di® + nz d; — 4m?*
i=1 i=1

< n(n- 1)zn:di+nzn:di — 4m?
i=1 i=1

= 2mn? —4m?

= 2m(n* - 2m).
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Hence, nTr(Q?) — 4m? < M(G). So the result follows.

When G = K, the equality in (1) holds for & = 1. If the equality in (1) holds

nmz

n
for some 1 < ky < n, then nTr(Q?) — 4m? = M(G). Hence Y d* = T or
=1

i —

S di* = (n — 1) Y d;. Therefore, in the former case, G = K, ,_; by Lemma 2.1; in
i=1 i=1
the latter case, G = K, by d; =n — 1 for each ¢. O

For a regular graph, we have

Corollary 2.1 Let G be a d-regular graph of order n. Then for k =1,2,--+ n,

)\kS%{Zm—F\/n;knd(n—d—l)}. (2)

If G has no bipartite components, then we can obtain the lower bound of Ag.

Theorem 2.2 Let G be a graph of order n, with no bipartite components in it. Then
fork=2,--- n—1,

1 n—k w(S) ;1
Akzm{(n—l)@ 2534 )T —2mp . (3)
Proof. N N N N
DetQZ()\1"'/\k—1)()\k"')\n)S( 1R+ k—1)k71( P R n—1)n,k'
\ \ k-1 n—k
Letting M, — %th M, < A\ and
—
om — (n — k)M, . :
det Q < (L0 Bk ]E" : WMiyir, s,

Note that, if a > 0,0 > 0 and 0 < p < 1, then a?b'? < pa + (1 — p)b with equality
holding if and only if a = b. Hence,

2m —]571 zk)Mk)%@Mk)%

k=1 2m—(n—k)My n-—k

2" F det Q)T < (

<
) 1 +n—1 2 M,
_ 2m+(n = k)M
N n—1 '
By Lemma 1.2, we obtain,
1 .
N> M > A{(n—l)@"”“det Q)1 — 2m}
n—k

1 n—k w(S ;1_
n_k{(n—l)(Z '2524())% Qm}.
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Theorem 2.3 Let G be a graph of order n,with no bipartite components in it. Then
fork=2,---,n,

N
A > {Z‘lw(s)(ﬁ)kl} : (4)
S

Proof. Since,

A4 Am g .
( 1+k_—; k 1)L—1>\Z—k+1
AN+t A, o1 k
< s tom AP +1

< (LR
2m

()

det Q = (>\1 s )\k—l)()\k T )\n)

IN

k=1 )\n—k—O—l
i .

recalling Lemma 1.2, the result follows immediately. O

Example 2.1 Let G be a (4,5)-graph as in Fig. 1.

Q(G) =

O = =N
— =
— W = =
[ e

Fig. 1

It is easy to see that > 4¢(%) = 16, by a simple computation, Spo(G) = [ 3 +
5

V5, 2, 2, 3—+/5]. The following table shows the bounds of eigenvalues of Q(G) by
the above theorems.

AR 5.236| A =2 A3 =2 A = 0.764
Th21|A <5854 | A <4.436| A3 <3.618 | A\ <25
Th.2.2 A >1 | A3 > —0.475
Th.2.3 Ay > 1.17 A3 > 0.8 | Ay >0.432
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