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Abstract

A Cayley map is a Cayley graph embedded in an oriented surface in such
a way that the cyclic order of generators is the same at each vertex. The
distribution of inverses of a Cayley map is the involution indicating the
position of mutually inverse generators in the cyclic order at a vertex.
In a regular Cayley map, the orientation-preserving map automorphism
group acts regularly on darts. An exponent of a regular Cayley map is a
number e with the property that (roughly speaking) the Cayley map is
isomorphic to its ‘e-fold rotational image’.

In this paper we prove that there exist regular Cayley maps of a given
valence with any given exponents and any given distribution of inverses.

1 Introduction

Maps with a large number of symmetries have been one of the central topics of
investigation in algebraic and topological graph theory. The most symmetrical maps
are regular maps. The question of when a Cayley map is regular was studied in [2],
[13] and [12] for balanced and antibalanced maps and in [6] and [11] for arbitrary
Cayley maps.

In [9] the authors introduced the concept of an exponent of a map as a tool for
classification of regular maps with a given underlying graph. As a number of impor-
tant regular maps turn out to be Cayley maps, it is natural to consider exponents of
Cayley maps in more detail.

While it is not hard to construct regular Cayley maps of a given valence with
any given exponent, or with any given distribution of inverses, it is not at all ob-
vious if the two requirements can be combined. The aim of this contribution is to
present a construction of regular Cayley maps with given exponents and with a given
distribution of mutually inverse elements in the cyclic order of generators.
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1.1 Cayley graphs

Graphs in this paper are finite or countably infinite and locally finite. In our graphs
we allow multiple edges, loops and semiedges. An edge endowed with one of the two
possible orientations is a dart. A semiedge admits just one orientation and gives rise
to a unique dart.

Let G be a finite group with unit element 15 and let Q = g, z1,...,2,_1 be a
finite sequence of elements of G together with an involutory permutation 7 of the
set [n] = {0,1,...,n — 1}, such that z; ' = z;, for each i € [n]; the permutation 7

is called the distribution of inverses. Moreover, let the collection of elements of 2
generate the group G. The Cayley graph C(G,Q, ) for G, © and 7 is an undirected
graph with vertex-set G, where for each g € G and each i € [n] there is a dart (g,7)
with initial vertex g. The dart (g,4) is a semiedge if z; = 1g and ¢ = i1, a directed
loop at g if x; = 1g and i # i7, and a directed edge incident with two distinct vertices
if x; # 1g. In the last two cases the terminal vertex of the dart (g,4) is the vertex
gz;, and the reverse of (g,1) the dart (gz;,i7). A pair of mutually reverse darts forms
an undirected edge in C(G,Q, 7).

An automorphism of a Cayley graph is a permutation of its dart set which pre-
serves the incidence between darts and vertices. Observe that for each a € G the
left translation that sends a dart (g,7) onto the dart (ag,i) is an automorphism of
the Cayley graph C(G,Q, 7). The set of all such translations forms a subgroup of
the automorphism group Aut(C(G, €, 7)); this subgroup is isomorphic to G and acts
transitively on vertices. Hence every Cayley graph is vertex-transitive. Conversely,
if the group Aut(K) of a graph K contains a subgroup that acts regularly on the
vertex set of K, then the graph K is a Cayley graph [10].

1.2 Cayley maps

Let Q = (wo,...,2—1) be a cyclic sequence of generators of a group G. We will
assume throughout that the set of elements appearing in €2 is a generating set for G.
A Cayley map CM(G,Q,7) is a cellular embedding of a Cayley graph C(G, €, 7) on
a closed oriented surface S such that for each i € [n] the dart (g,7 + 1) immediately
follows the dart (g,¢) in the orientation of S; here the second coordinate is taken
modulo n.

In general, there are numerous ways a Cayley graph C(G,,7) can be embedded
in an orientable surface. For example, one can take another cyclic permutation of
the generating sequence. The most natural way to do this is to use a power 6°
of the mapping 6 : i — i+ 1, i € [n], such that ged(e,n) = 1. This way we
obtain an embedding of C(G,Q,7) on some orientable surface in which the dart
(9,7 + e) immediately follows the dart (g,7) in the orientation of the surface. We
may now rearrange the sequence € in the form Q¢ = (yo,y1, ..., yn—1) where y; = ;.
This gives a new distribution of inverses 7, associated with 2¢; the new and old
distributions are related, for each i € [n], by

e(ite) = (ei)T. (1)
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In order to identify face boundary walks in a Cayley map CM(G, 2, 7) we may pro-
ceed as follows. For auxiliary reasons we will assume that all faces carry orientation
opposite to the orientation of S. Define a permutation « on [n] by 7o = i7+1. Then,
the dart (gu;,ic) immediately follows the dart (g, ) in the boundary walk of the face
incident with (g,7) such that the orientation of the face agrees with the dart (g,1).
It follows that the entire boundary walk of the face has the form (g,%), (gx;,ic),
(9210, 102), . .., (9TiTiq - - - Tins—1,704), ... The length of the boundary walk is the
smallest positive j such that ia/ = i and 2;T4 ... 2Zj-1 = lg; in particular, the
length is a multiple of the size of the orbit of a containing 7.

A map isomorphism f : M; — M, is any bijection from the dart set of M; onto
the dart set of M, which preserves the cell structure of the maps and induces an
orientation preserving homeomorphism between the supporting surfaces of the two
maps. If M; = My, = M, then f is a map automorphism of M. Clearly, each map
automorphism is also an automorphism of the underlying graph. It can be shown
that for any pair of darts of M there exists at most one map automorphism taking
one dart onto the other [7]. Thus the order of Aut(A/), the automorphism group of
M, is bounded above by the number of darts. If |[Aut(M)| is equal to the number of
darts of M, the map M is called regular. Similarly, if Aut(M) acts transitively on
vertices of M, the map is called vertex-transitive.

In general, a Cayley map CM(G,,7) need not be regular. However, since
the translation automorphisms of the underlying Cayley graph are, in fact, map
automorphisms of CM(G,Q, 1), every Cayley map is vertex-transitive.

1.3 Exponents

Let M = CM(G,8,7) be a Cayley map of valence [2] = n and let e be an integer
such that ged(e,n) = 1. Let Q° be the e-th power of the cyclic sequence € as
introduced in subsection 1.2 and let 7. be as in (1). We say that e is an ezponent
of M if the Cayley maps M and M¢ = CM(G,Q¢,1.) are isomorphic. Note that
having exponent —1 means that M is isomorphic to its 'mirror image’ M 1.

If an integer e is an exponent of a map M with valence n and f = e (mod n), then
the maps M€ and M7 are identical, and hence f is also an exponent of M. Therefore
we will make no distinction in notation between an exponent of M and its residue
class (mod n). Further, let v: M — M¢ and u: M — M/ be isomorphisms corre-
sponding to exponents e and f, respectively. Then pt) is an isomorphism associated
with ef. Thus ef is an exponent of M. It follows that the residue classes (modulo
the valence of M) of exponents of the map M form a multiplicative group Ex(M),
the exponent group of M. Clearly, Ex(M) is a subgroup of Z?, the multiplicative
group of invertible elements of the ring Z,,.

2 Exponents and distributions of inverses

We indicated in the Introduction that regular Cayley maps with a given distribution
of inverses, or with a given exponent, may be constructed with no difficulty. However,



6 LUBICA LISKOVA

simultaneous requirement of the two instances leads to a much harder problem. In
what follows we will discuss this in detail.

First, it is easy to construct regular Cayley maps with a given distribution of
inverses. We begin with one-vertex maps, that is, Cayley maps for the trivial group
temporarily abandoning the regularity requirement. Let 7 be an involution on [n],
let s = |{i = i7,i € [n]}|, and let (1g) be the trivial group presented in the form
(lg) = (zo,...,Tn-1|®o = 21 = -+ = z4—1 = lg); note that we trivially have
zix;r = lg. The Cayley map M = CM((1g), (zo,...,Zn-1),7) has one vertex,
namely lg, s semiedges and (n — s)/2 loops. For any ¢ such that ¢ # ir, the pair of
mutually reverse darts (1¢,2;) and (1g, ;) form one loop. Clearly, the distribution
of inverses of M is 7.

In order to construct less trivial examples we just invoke Theorem 7.3 of [11] which
implies that if a map M’ regularly covers a one-vertex Cayley map CM((1g),Q,7)
with no branch point at the single vertex, then M’ is a Cayley map with the same
distribution of inverses 7. Any number of such maps can be obtained from one-vertex
maps by voltage assignments, cf. [4] and [11]. The existence of infinitely many finite
regular Cayley maps with a given distribution of inverses then follows from Theorem
7.3 of [11].

In the case of Cayley maps of valence n with a given exponent e such that
ged(e,n) = 1, one-vertex maps help again. Namely, the one-vertex Cayley map M
with 7 = id, that is, 22 = 1 for all i € [n], has the exponent group Ex(M) = Z.
This is a regular Cayley map formed by an n-semistar embedded in a sphere. If each
of the semiedges is given a voltage in the group (Z,)" in any 1—1 fashion, the lift will
be a regular Cayley map for the group (Zs)™ whose exponent group will remain Z?.
In general, however, it is not true that exponent groups lift onto covering spaces. For
example, the classical regular embedding of K7 in a torus does not have exponent
—1 while it can be obtained as a lift of a one-vertex, three-loop regular toroidal map
which admits —1 as an exponent.

It is not true that every one-vertex Cayley map has the full exponent group. The
following result from [8] gives an answer to the question when an integer e is an
exponent of M.

Proposition 2.1. A one-vertex Cayley map M = CM(G,Q, 1) of valence n has an
exponent e if and only if there exists z € Z,, such that (z +ei)T = z+ (i7)e (mod n).

What happens if one wants to construct a regular Cayley map in which both a
distribution of inverses 7 and an exponent e are prescribed in advance? Observe
that for some pairs of 7, e it is possible to begin with one-vertex map M whose
existence follows from Proposition 2.1 and then try to construct voltage assignments
on the underlying graph of M such that the isomorphism M — M?¢ lifts onto the
corresponding covering space [1]. We will not pursue this direction here because of
its limited applicability. Instead, we will base our approach on the following result
of [8] which is a special case of a general Cayley map isomorphism result of [11].
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Theorem 2.2. Let M = CM(G,, 1) be a Cayley map. Then an integer e such that
ged(e,n) = 1 is an exponent of M if and only if there exist two mappings n : G — Zn,
w: G — G and an integer k such that, for each a € G and x; € €,

(1) w(lg) = 1g and w(ax;) = w(a)Tp(a)tei
(i1) n(lg) = ek and n(az;) = (n(a) + ei)T — e(i7).

An isomorphism % from M onto M¢ can then be defined by ¢(a,t) = (w(a),n(a)+
et) for an arbitrary dart of M. It may be useful to observe that w maps vertices to
vertices and 7 determines the images of neighbours of a vertex. Accordingly, we will
refer to w and 7 as to the global and local part of the isomorphism 1), respectively.

To be able to state our main result we need to introduce appropriate notation.
Let 7 be an involution on [n] and let p,q € & where £ is any given subgroup of
Z?. Let 7, be the involution given by (1). Then, p(gi)7, = (pgi)T = pg(ity,) for
i € [n] =Z, and we have

q(i7pq) = (qi) 7. (2)

For each p € £ we now define a one-vertex Cayley map
MP =CM((1g), (zo, .-, Tp1), Tp)-

Also, let o : Z,, = Z, be a mapping such that i«, = i1, + 1. Consider an orbit
(i, 1ap, i, . . .,

icy = i) of the element i under a,. Let [ be the least common multiple of all orbit
lengths of a, for every p € £. Further, for each i € [n] and p € & let

Tip = xpixp(mp) PN xp(iagfl))' (3)
Finally, for any p € £, f € Z! and i € [n] we set
1oy 5 =17y + f, (4)

with the identification o, = «.
The main result of this paper is:

Theorem 2.3. Let 7 be an involution on [n] and let € be a subgroup of Z%. Let iy, be
given by (3) and G be the group given by G = (o, 1, .. ., To1|TiTir = 1g,r§fp =1g)
where d is a fized positive integer, and let Q = (xo,x1,...,Tn—1). Then, the map
M =CM(G,Q,71) is a regular Cayley map with exponent group Ex(M) > E.

The proof will be based on establishing an isomorphism ¢ from M = CM(G,Q, 1)
onto M€ as in Theorem 2.2. The local part n and the global part w of the isomorphism
are constructed in the next subsection.
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2.1 The local and global part of the isomorphism

Let F = (z;,¢ € [n]|@) be the free group of rank n and let  : F — [n] be the
mapping defined recursively by 7(1lg) = 1 and by

n(az;) = [n(a) + hilr = hit),

n(az;t) = [n(a) + h(it)|r — hi

where h € Z} and a € F. To show that the mapping 1 : F' — [n] is well defined it is
sufficient to prove that the above recursions imply 7(az;z;*b) = n(az] z:b) = n(ab).
This follows immediately from our next lemma.

Lemma 2.4. Let a,b,z; € F. Then

(i) n(a) = n(b) implies n(az:) = n(ba:) and n(az;") = n(bz;?)
(it) n(aziwy") = n(az; ) =n(a)
(#ii) n(a) = n(b) implies n(ac) = n(bc) for any c € F.

Proof. (i) Assume first that 7(a) = n(b) for some a,b € F. Using the definition of 7
only, for each z; € F, we have:

n(az)) = (1(a) + hi)T — h(iT) = (n(8) + hi)r — h(iT) = n(ba,),

which gives the first part of (i). For n(az; ') the argument is similar.
(ii) As in the previous part we just prove that n(az;z;*) = n(a), which is a conse-
quence of the computation below:

n(aziz;t) = (n(ax;) + h(it))T — h(it)T = ((n(a) + hi)T — h(iT) + h(iT))T — hi
= ((n(a) + hi)r)T — hi = n(a) + hi — hi = n(a).

The part (iii) is obtained by induction on the length of the word ¢ from (i). O

Corollary 2.5. For any wy,wy € F, if n(w1) = n(1lg), then n(wiws) = n(ws).

Let n be the well defined mapping from the beginning of the subsection. Let w
be recursively defined on F by w(1lg) = 1¢ and

w(az;) = w(a)Tn(a)+hi;
wlaz; ') = w(a)zy(a)4h(in)-

We shall again prove that w : FF — F is a well defined mapping.

Lemma 2.6. Let a,b,z;,x;; € F. Then:

(i) w(a) = w(b) and n(a) = n(b) imply w(az;) = w(bz;) and w(az;') = w(bz;*)
(i) w(ara;) = wa) = wlaz] z;)
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(#ii) w(a) = w(b) and n(a) = n(b), then w(ac) = w(be).

Proof. The proof is similar to the proof of Lemma 2.4. For illustration we only show
that w(azz;') = w(a). First we use twice the definition of w, then the definition of
n and finally the relation z;z;, = 1g:

w(awixiT) = w(a«’vi)wn(amm(w) = W(a)wn(a)ﬁ»hixn(azl)Jrh(i-r)
= w(@)Tya)+ninia)y+hiyr = w(a).

a

Lemma 2.6 implies that w(az;z;7'b) = w(ab) = w(az; z;b), and hence the map-
ping w : F — F is well defined.

Corollary 2.7. If w(w1) = w(lg) and n(wi) = n(lg), then w(wiws) = w(ws) for
Wi, W2 S F.

Our aim is to show that the mappings 77 : F — [n] and w : F — F project down
onto the quotient group G = F/N where N is the normal subgroup of F' generated by
the elements z;z;; and r;, where i € [n] and p € €. This will be achieved if we prove
that n(a) = 1 and w(a) = 1 for any a € N. Indeed, if this is satisfied, we may define
n(Nb) = n(b) and w(Nb) = w(b); the correctness of such a definition follows from
Corollary 2.5 and Corollary 2.7. To this end we prove a series of auxiliary results.
In order not to be repetitious we will be using throughout the notation introduced
before the formulation of Theorem 2.3.

Lemma 2.8. Letp € &£, f € 2} and k, = (fp)~'n(g). Then, for each z > 0 we have

(’) U(gmpiwp(iap) s JU]U(m;’,)) = p[((fkp + fi)o‘z,f)Tp - f((io‘z)Tp)}

(i) w(9TpiTpiiay) - - - Tp(iaz)) = W(G)Tp(fhytfi)Tp( kot fidap s - - - Lol Fhotfi)acs -

Proof. (1) We use induction on z. Since ged(p,n) = 1 and ged(f,n) = 1, we may
assume that

n(g) = frk, (5)

where k, = (fp)~tn(g). In the first step we use just the definition of 7 for an exponent
f, in combination with (5) and (2).

n(gzyi) = (n(g) + fpi)r — f((pi)T) = p(fky + fi)7 — fD(iTp).

Now, let 1(92piTp(iay) - - - Tptiaz)) = PI((fEp + fi)ay, ;)7p — f(iap)7,]. With the help of
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the definition of 1, (2) and the induction hypothesis we successively obtain:
N(9TpiTp(ia,) - - - 'rp(ia;Jrl))
= [n(g2piptia) - - Tptiag)) + foliag™)]T = fplicg )T,
= [PI((Fhy + Fi)a )1y — fliad)y] + Fpliazt)]r — fplias™ ),
using (2)
= pl((fhy + Fi)a, ) — Fiad)T, + FliaZt)]r, — fa(iai)r,
routine computation and (4)
= pl((fhy + fi)og )7 = fliog) Ty + f((i05) T + Dy — fpliog )T,
pl((fhy + fi)og )7 + fl7p = fp(iog ™)
= pl(fhy + fi)ag ) — fliag™)7,).

(ii) The proof is similar to (i). O

Lemma 2.9. Let p € £, f € Z}, and k, = (fp)~'n(g). Then, (fi)aj ;= f(ia};) for
each z > 0.

Proof. By an alternate use of (4) and (2) we obtain:
(fi)ops = (F1)1p + | = flimys + 1] = fliayy).
Let (fi)a; ; = f(ia,,). Using (4), the induction hypothesis and (2) we obtain:

(fi)agl = (fi)ag 1 + f = (fliagy))my + f = fliag)mos + f = fliogfh).

Proposition 2.10. Let 7;,, be a relator. Then, for each g € F,
(1) n(grip) = n(g)

(i) wlgrip) =w(g).

Proof. (i) Using Lemma 2.8, Lemma 2.9 and (2) we have:

N(g2piptiay) - - - Lptiaz)) = PI((FRy + fi)ag f)7y) — [(iog)m]
= pl(f(ky +i)agp)my — fliag)m)]
= plf((ky +i)agp)Tps — flia))T)]

= fol((ky + D)agp)Tpr — (i07)7].

Moreover if z =1—1and f € &, from i7, = ia, — 1 and za =1 (if p, f € &, then
iaj,; = i) we have:
1(gTpiTpiia,) - - 'xp(ialp_l)) = fpl((kp + i)alp}l)Tpf - ((w‘]lu )7p)]
= folky +i-1-(i = 1)] =n(g).
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Similarly, Lemma 2.8 for f =1 and z =1 — 1 gives:

N(GTpiTptia) - - Loiai1y) = Pl((kp + )y 1)y — (10717
= p[((kp + i)ajla_l)Tp - (ia _I)Tp]
=plhy+i—-1-(i—1)]=nlg)

(ii) Setting z = [ —1 in the part (ii) of Lemma 2.8 and applying Lemma 2.9 for f € £
we obtain:

[l

W(gTpiptiay) - - Tyialt)) = WG Loty +1) Loty b Fitns -+ - Tty pigall D)
= w(g)xfﬁ(kwri)xfp(kfri)apf s xfp(kp+i)a;l;1)
= w(g)Tk,+ips = w(9)le = w(g).

Similarly, for f =1 and z = — 1 the part (ii) of Lemma 2.8 implies:

W(gTpipliay) - - Tpiat)) = W(G)Tplky+) Tplhy iy - - Lpp 4iraliD

= w(g)rt,+ip = w(g)le = w(g). p

We are now ready to show that n and w are equal to 1 on N.

Proposition 2.11. For each g € N we have n(g) = 1 and w(g) = 1g.

Proof. By the computation in the proof of Lemma 2.4 we know that n(gz;z;) =
n(gzi-z;) = n(g). Also, Proposition 2.10 says that n(gr;,) = n(g) for each relator
Ti,p-

Next we prove that n(gw™'rw) = 7(g) where g € N, w is an arbitrary word over
F and r is any relator of the form r;, or x;z;,. The facts mentioned in the above
paragraph imply that

n(gw™'r) =n(gw™)

for each relator 7.

The third and second part of Lemma 2.4 imply that

n(gw™trw) = n(gw™tw) = n(g).
We now complete the proof by induction on the length of the word g € F. If
g = 1lg then clearly n(g) = 1. Assume that ¢ = gw™'rw where ¢ € N, 7 is a
relator, and w € F. By the induction hypothesis we have n(g) = 1, and by the above
computation, n(g’) = n(gw™*rw) = n(g) = 1. The proof for w is almost identical —
it suffices to replace n by w. a

This allows us to project our mappings 7 : F — [n] and w : F — F onto the quo-
tient group G = F/N by letting n(Ng) = n(g) and w(Ng) = w(g), respectively. We
have thus accomplished the first step of our plan, that is, to establish the correctness
of the definition of the local and global part of the isomorphism 1 : M — M€ to be
constructed.
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2.2 Conclusion of the proof and examples

At this point we have just proved that the Cayley maps from Theorem 2.3 have
exponents from £. In order to prove their regularity we use the following approach.
It is obvious that a Cayley map M = CM(G,,7) is regular if and only if there is
an automorphism ¢ of M such that ¢(1g,0) = (1g,1). This requirement, however,
exactly corresponds to the conditions in Theorem 2.2 when the map has exponent 1
(which is always the case) and when 7(1lg) = 1. We therefore have:

Theorem 2.12. A Cayley map CM(G,Q,7) is regular if and only if there exist two
mappings 0, : G = Z,, and w, : G = G such that:

(i) wr(le) = o and w,(az;) = w(a)a,, o4
(ii) mr(l6) = 1 and n,(az;) = (n,(a) + i) — (i7)

for each a € G and z; € €.

The arguments in subsection 2.1 actually show that a pair of functions 7, and w,
as in Theorem 2.12 exist. Indeed, it suffices to prove that the mappings w, and 7,
from Theorem 2.12 are well defined. Lemma 2.4 clearly holds for e = 1, and hence
ne(az;2;7b) = n,(ab). Proposition 2.10 for f = 1 implies that ,(gr;,) = 7.(g) for
all g € F. As in the previous subsection one can prove that 7, is well defined, and
the same is valid for w,. Therefore the Cayley maps constructed in Theorem 2.3 are
regular. This completes the proof of Theorem 2.3.

Example 2.1. Let us illustrate the above approach by constructing a Cayley map
with the distribution of inverses 7 = (0)(12)(34) and with the exponent e = 2 (or
equivalently with & = Z}). This is the smallest non-trivial example, i.e. e # £1 and
the corresponding one-vertex map has not e as its exponent. The generating set is
Q = (zy,...,2y1). Trivially, we have the equations 22 = z 29 = 2324 = 1lg. Now
we have to construct the relators r;, for 0 < ¢ <4 and 1 < j < 4. By (4) or from
tracing the faces of the corresponding one-vertex maps (see Figure 1) we obtain:

3 3

To,1 = (9770251253)5 To2 = (100772253101104) To,4 = ($0$4$2)5 T0,3 = (250103772254251)
Ty = (331333330)5 T2 = («’02333331504500)3 T4 = (504502500)5 7,3 = (333502334331330)3
Taq = 23’ oo = (zaomawsay)® roq = 3’ Ta3 = (2120T32224)°
31 = (3?333?303731)5 32 = (501334330502503)3 T34 = (502500504) 3,3 = (334501330333332)3
T41 = 174115 T42 = (JIU:«‘,977125431003102)3 T4,4 = $}5 T4,3 = (2523104251250253)3

It follows that [ = 15 and the corresponding Cayley group has a presentation
of the form G = (xg,..., 4|22 = 1122 = 2374 = 2P = 24 = (zozy23)%

(womam3m174)3¢ = 1), where d is any fixed positive integer.

Example 2.2. For the distribution of inverses 7 = (0)(14)(23) and the exponent
e=—1,ie. &= {1,—1}, we obtain the group G = (z¢, 71, ..., z4|2? = lg,70 = 7, =
Ty = x3 = x4) and the Cayley map M is in Figure 2. Observe that Ex(M) = Z} # £,
hence we cannot claim that Ex(M) = £ in Theorem 2.3.
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Figure 1: Cayley maps M(5,(0)(12)(34)), M?, M™" and M3.

Figure 2: Distribution of inverses 7 = (0)(14)(23) and the corresponding map M for
d=1.

3 The size of the constructed Cayley maps

The maps constructed in the previous section are infinite in many cases. We will
prove this by showing that the group G has often an infinite quotient group. We will
assume that n > 3 and divide the analysis in three cases depending on 7.

(1) First, let 7 = id. Then the group from Theorem 2.3 has a presentation of the form
G = (xo,. ., Tp1]z} = (@0 Tpe1)® = (ToZe .. Te(n1))® = (ToTe2 ... Te2(nor))? =
-+ =1g). We set z; = 1g for ¢ > 3. Then we have a quotient group H of G with
presentation:

H = (xg, 21, 72]72 = (vor122)" = 1¢).

By [3], the group H is infinite for any d > 2.

(ii) Second, assume that 7 has at least one fixed point and 7 # id. Without loss of
generality we can assume that 07 = 0 and 17 = 2. Setting z; = 1g for ¢ > 3 we
obtain a quotient group of the form

H = (wg, 21, 2|78 = 2120 = 2% = (2011)" = (712072)" = 1¢).

If ¢ is odd then H reduces to a cyclic group (z;). However, if ¢ is even then the
last relator is redundant and H is isomorphic to the triangle group T'(2,u,v). These
groups are infinite if 1/u + 1/v < 1/2 [3].

To illustrate this we revisit Example 2.1. Setting there z3 = x4 = 1g we obtain
the quotient group

5d _ ..15d

H = (20,71, 72|75 = 2179 = (2071) x> = (azlazoazz)‘w = 1g).

If d is even then H = T(2,15d, 5d) which is infinite for any even d, because 1/15d +
1/5d < 1/2.
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(iil) Finally, let 7 have no fixed point. Without loss of generality we may assume that
7(0) = 2 and 7(1) = 3 (the situation when, say, 7(0) = 1 and 7(2) = 3 is analogous).
Setting z; = 1 for ¢ > 4 we have a quotient group the most general form of which is

H = (xq, 21, Ta, 3|woxs = 2103 = x5 = @] = (xex1)? = (@ox3)* = (vox12223)? = 1g).

If there is no relation of type (zox3)° we have a Coxeter group which is infinite for
u=2,v=3,p> 14 and q > 12, see [5].

The problem of deciding (in)finiteness of the group remains open when all the
relations above are present. Another open problem is to find a construction (or to
prove existence) of finite maps with given exponent (group) and given distribution
of inverses.

Acknowledgement

I would like to thank Jozef Sirafi for many helpful comments and suggestions.
Partial support from the APVT grant No. 023302 and VEGA grant 1/9176/02
is acknowledged as well.

References

[1] D. Archdeacon, R.B. Richter, J. Siran and M. Skoviera, Branched coverings of
maps and lifts of map homomorphisms, Australas. J. Combin. 91 (1994) 109-
121.

[2] N. Biggs and A.T. White, Permutation Groups and Combinatorial Structures,
London Math. Soc. Lec. Notes 33 (Cambridge Univ. Press, Cambridge, 1979).

[3] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete
Groups, Springer, Berlin, 1965.

[4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley, New York, 1987.

[5] J. Howie and R.M. Thomas, The Groups (2,3,p;q); Asphericity and a Conjec-
ture of Coxeter, J. Algebra 154 (1993) 289-309.

[6] R. Jajcay and J. Sirafi, Skew-morphisms of reqular Cayley maps, Discrete Math.
244 (2002) 167-179.

[7] G.A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc.
London Math. Soc. (3) 31 (1978), 211-256.

[8] L. Liskova, Ezponents of Cayley maps, J. Electrical Engineering, Vol.53,
No. 12/s (2002) 97-99.

[9] R. Nedela and M. Skoviera, Ezxponents of Orientable Maps, Proc. London Math.
Soc. (3) 75 (1997) 1-31.



CAYLEY MAPS 15
[10] G. Sabidussi, On a class of fized-point free graphs, Proc. Amer. Math. Soc. 9
(1958) 800-804.

[11] R.B. Richter, J. Siraii, R. Jajcay, T.W. Tucker and M.E. Watkins, Cayley maps,
to appear in J. Combin. Theory Ser. B.

[12] J. Siraii and M. Skoviera, Regular maps from Cayley graphs II: Antibalanced
Cayley maps, Discrete Math. 124 (1994) 179-191.

[13] M. Skoviera and J. Sirait, Regular maps from Cayley graphs I: Balanced Cayley
maps, Discrete Math. 109 (1992) 265-276.

(Received 1 Mar 2004; revised 23 Feb 2005)



