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Abstract

A diagonally switchable 4-cycle system of order n, briefly DS4CS(n), is
a 4-cycle system in which by replacing each 4-cycle (a,b,¢,d) covering
pairs ab, b, cd, da by either of the 4-cycles (a, ¢, b,d) or (a,b, d, ¢) another
4-cycle system is obtained. We prove that a DS4CS(n) exists if and only
if n =1 (mod 8), n > 17 with the possible exception of n = 17.

1 Introduction

A 4-cycle system of order n, briefly 4CS(n), is a decomposition of the complete graph
K, into 4-cycles. Such a decomposition exists if and only if n = 1 (mod 8), [5]. In this
paper we consider a class of 4-cycle systems having a particular property. In order to
define this property first note that a 4-cycle (a, b, ¢, d) covers the pairs ab, be, cd, da
but not the diagonals ac,bd. Using the four points a,b,c,d two further 4-cycles,
(a,¢,b,d) and (a,b,d,c) may be constructed by replacing, respectively, each pair of
non-adjacent edges of the original 4-cycle by the diagonals. We refer to such transfor-
mations as diagonal switches. If a 4-cycle is written (a, b, ¢,d) and we wish to replace
it by the 4-cycle (a, ¢, b, d) we will refer to this as a type 1 transformation; if we wish to
replace it by the 4-cycle (a, b, d, ¢) we will refer to this as a type 2 transformation. Of
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course, if we write the 4-cycle (a,b,c,d) as (a,d, ¢, b) and apply a type 1 transforma-
tion then we get (a, ¢, d,b) = (a, b,d, ¢), so that the classification into types 1 and 2is a
purely lexicographical convenience. A set of 4-cycles, not necessarily a 4CS(n), is said
to be diagonally switchable if each 4-cycle can be transformed by diagonal switches
so that the set of transformed 4-cycles covers the same pairs as the original 4-cycles.
For example, the set of 4-cycles {(Ao, A1, As, Bs), (Bo, B, Ba, A3), (Ao, Az, As, B1),
(Bo, By, B3, A1), (Ao, As, A1, Bs), (Bo, Bs, B, As) } is diagonally switchable, by apply-
ing type 1 transformations to all six 4-cycles, to the set of 4-cycles {(Ao, A2, A1, Bs),
(Bo, By, By, A3), (Ao, As, Ay, By), (Bo, Bs, B2, A1), (Ao, A1, As, By), (Bo, B1, B3, As)}.
We determine, with one value left in doubt, the existence spectrum of 4-cycle systems
of order n having the diagonally switchable property, and denote such systems by
DS4CS(n). In particular we prove the following theorem.

Theorem 1.1 There exists a 4-cycle system of order n having the diagonally switch-
able property if and only if n = 1 (mod 8), n > 17, with the possible exception of
n=17.

Such systems are related to a problem considered in [3]. In that paper, three of the
present authors studied configurations in 4-cycle systems. There are precisely four
configurations of pairs of 4-cycles which can occur in a 4CS(n). These are as follows,
with each letter representing a distinct point.

1) (a,b,¢,d) (w,z,y,2) (disjoint),

2) (a,b,c,d) (a,z,y,z) (intersecting at a point),

3 a,z,b,z) (intersecting in two points, with no common diagonal),

(1) ( ) (
(2) ( ) (
(3) (a,0,¢,d) (
(4) ( ) (

a,b,e,d) (a,z,c,y) (intersecting in two points, with a common diagonal).

All of the configurations (1), (2) and (3) occur in every 4CS(n) but configuration
(4), the double-diamond, may be avoided. The following theorem was proved in [3].

Theorem 1.2 A double-diamond-avoiding 4-cycle system of order n exists if and
only if n =1 (mod 8), n > 17.

Since, in a 4CS(n) having the diagonally switchable property, all diagonals of the
4-cycles of the system appear as edges of 4-cycles of the transformed system, every
DS4CS(n) is necessarily double-diamond avoiding. Hence, except for the value n =
17, this paper provides an alternative proof of Theorem 1.2, which provides some
motivation for studying the systems. However the systems constructed in the proof
of Theorem 1.1 have a much richer structure than those given in the earlier result.

It is also worth remarking that the pair of 4CS(n)s arising from a DS4CS(n) contain
no common 4-cycles, but that if we consider the 4-cycles in each 4CS(n) as blocks
of points, then the two systems contain the same blocks. We note that it is not
possible to find three such 4CS(n)s (that is, a triple of 4CS(n)s in which no 4-cycle is
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repeated, but which contain the same blocks if we consider each 4-cycle as a block).
To see this, consider a pair ab which does not occur as a diagonal in a 4CS(n). Since
there are only two distinct 4-cycles on the points a, b, ¢, d that contain the edge ab,
it follows that no triple of such systems exists.

2 Some lemmas

In order to prove Theorem 1.1 we first need some preliminary lemmas. The design
theoretic terms and ideas used in this and later sections such as group divisible
design, transversal design and equivalence with mutually orthogonal Latin squares,
and Steiner system are standard and can be found in most books on Design Theory
and in particular in [1].

Lemma 2.1 The complete 4-partite graph K209 can be decomposed into a set of
4-cycles that is diagonally switchable.

Proof. Denote the four partitions of Kys09 by {A4;, B;}, i =0,1,2,3. The decom-
position is then that given in the Introduction. O

Lemma 2.2 The complete 5-partite graph Ks 2992 can be decomposed into a set of
4-cycles that is diagonally switchable.

Proof. Denote the five partitions of Ky 2242 by {4, B;}, i =0,1,2,3,4. The decom-
pOSitiOH into 4—CyC1€S is {(A“ Ai+17 Bi—la .BZ‘+2)7 (1417 Ai+2, .BZ‘_27 Bi—l) = 0, ]., 2, 3, 4}
where all subscript arithmetic is modulo 5. The transformed set of 4-cycles, all
by type 2 transformations, is {(A4;, Ait1, Biy2, Bi—1), (Ai, Aig2, Bic1,Bis) 1 1 =
0,1,2,3,4}. O

Lemma 2.3 The complete 6-partite graph Ks 20222 can be decomposed into a set of
4-cycles that is diagonally switchable.

Proof. The 15 4-cycles are:

(A1, By, B3, As), (A1, By, Bs, As), (Ao, A1, A4, B),

(Ao, By, Az, Bs), (Ao, Az, A1, Bs), (Bo, Az, As, By),

(Bo, B3, Az, A4), (B1,Bs, B3, As), (As, As, As, Ao),

(BS7BI7A57AO)7 (A17BS7B57 0)3 (BI7B57BQaBO)7

(A37 B?a A57 BO)7 (A37 B57 B47 Bl)a (A3a A47 B57 A2)

The transformed set of 4-cycles is obtained by applying type 1 transformations to
all of the above. 0O

Lemma 2.4 The complete 4-partite graph Kgggs can be decomposed into a set of
4-cycles that is diagonally switchable.

Proof. Take a transversal design TD(4, 4), that is, a pair of mutually orthogonal
Latin squares of order 4. Inflate each point by factor 2. Each block then becomes a
copy of Ky 19 which can be decomposed as in Lemma 2.1. O
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Lemma 2.5 The complete 5-partite graph Kggggg can be decomposed into a set of
4-cycles that is diagonally switchable.

Proof. Take a transversal design TD(5, 4), that is, a set of three mutually orthogonal
Latin squares of order 4. Inflate each point by factor 2. Each block then becomes a
copy of Ky 9992 which can be decomposed as in Lemma 2.2. O

4-cycles that 1s diagonally switchable.

Proof. Take a Steiner system S(2, 5, 25) and remove all blocks through a specified
point to obtain a 5-GDD (group divisible design) of type 4°. Inflate each point by
factor 2. Each block then becomes a copy of K3 2492 which can be decomposed as
in Lemma 2.2. 0O

3 Some systems constructed by computer

For technical reasons, in particular as outlined in the remarks following Theorem
4.2, we will construct DS4CS(8s + 1), for all s : 3 < s < 46. Those for s =
3,4,5,6,7,8,9,10,11,13,14, 17 were constructed by computer and are given below.
s=3,n=25

Let the vertices of the complete graph Kys be {(z,y) : =z = 0,1,2,3,4; y
0,1,2,3,4}. The DS4CS(25) is then constructed under the group action (z,y)
(z+1,y (mod 5), on the following set of 15 starter 4-cycles.

(1) (0,
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To obtain the transformed 4-cycle system, apply a type 1 (respectively type 2) trans-

formation to those 4-cycles obtained from a starter listed under 1 (respectively 2).

);
) 2,4)
) 1,4)
); 3,4)
) 1,4)
) 4,1)
) 4,3)
0) 4,4)

This convention will be used in describing the other 4-cycle systems in this section.
All of these are defined on the set Z, and are cyclic. They are obtained under the
group action i — i+ 1 (mod n) on the sets of starters listed.

s=4,n= 33
(1) (0,1,3,6),  (0,5,9,17).
(2) (0,10,1,21), (0,14,7,22).

(1) (0,1,3,6),  (0,4,11,16), (0,9,17,27).
(2) (0,13,1,23), (0,15,4,24).
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(1) (0,1,3,6), (0,4,11,23), (0,5,36,17).
(2) (0,8,24,9), (0,10,35,14), (0,20,9,36).
s="17,n=>57
( (0,1,3,6), (0,4,11,19), (0,5,33,18), (0,9,41,17).

1)
(2) (0,10,31,11), (0,12,43,16), (0,22,9,43).

s =8, n=65
(1) (0,2,5,13), (0,4,16,6), (0,5,22,44), (0,28,37,38).
(2) (0,7,46,15), (0,20,1,24), (0,25,14,49), (0,29,15,47).

s=9,n="73

(1) (0,3,41,21), (0,1,3,7), (0,5,13,19), (0,9,20,34),
(0,10,57,15).

(2) (0,17,4,48), (0,22,10,46), (0,23,64,24), (0,28,12,55).

s =10, n = 81

(1) (0,5,32,33), (0,8,24,13), (0,34,56,35), (0,30,4,41),
(0,3,34,9).

(2) (0,2,44,32), (0,7,3,67), (0,10,63,18), (0,15,38,57),
(0,20, 14, 43)

s =11, n = 89

(1) (0,15,24,40), (0,1,3,6), (0,4,11,19), (0,5,17,27),
(0,11,29,43), (0,13,54,23).

(2) (0,21,4,63), (0,28,63,29), (0,33,8,47), (0,36,16,67),
(0,37,13,57)

s =13, n = 105

(1) (0,6,34,57), (0,9,23,16), (0,8,5,17), (0,47,15,49),
(0,1,11,13), (0,4,22,46), (0,11,52,31).

(2) (0,19,70,20), (0,25,30,70), (0,26,68,30), (0,27,72,33),
(0,29,81,37), (0,36,21,83).

s =14, n = 113

(1) (0,23,21,24), (0,6,55,28), (0,1,5,10), (0,7,15,26),
(0,9,23,36), (0,12,29,44), (0,16,76,46).

(2) (0,18,40,88), (0,20,41,74), (0,31,101,38), (0,34,88,37),
(0,35,16,73), (0,42,13,81), (0,47,6,58).

s =17, n = 137

(1) (0,5,91,102), (0,3,20,28), (0,82,15,98), (0,2,24,31),
(0,1,5,14), (0,6,18,33), (0,16,42,63), (0,18,59,84),
(0,20, 82, 58) (0,23,73,44),  (0,27,76,30), (0,32,80,43).

(2) (0,10,23,42) (0,34,100,40), (0,36,83,38), (0,52,128,59),
(0,56,129, 57)

149
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4 Main constructions

In this section we give three constructions which collectively enable us to prove
Theorem 1.1. The first of these is direct and allows us to deal with the case where
n =1 (mod 24). In fact we only need it for six values of n but it is still a simple
construction in its own right. We present all three constructions as theorems.

Theorem 4.1 There exists o DS4CS(24t 4 1), ¢ > 4.

Proof. Take a 4-GDD of type 12°. These exist for all ¢ > 4, [2]. Now inflate
each point by factor 2. Each block then becomes a copy of K522 which can be
decomposed as in Lemma 2.1. Further adjoin an extra point, say oo, and on each
inflated group of points of the 4-GDD together with the point oo, place a copy of
the DS4CS(25) given in Section 3. 0O

The next two constructions are recursive: the first of which is the main construction
used to establish the result.

Theorem 4.2 If there exist a set of three mutually orthogonal Latin squares of order
n, a DS4CS(8n + 1) and a DS4CS(8m + 1) where 0 < m < n, then there ezists a
DS4CS(8(4n +m) +1).

Proof. The set of three mutually orthogonal Latin squares of order n is equivalent
to a transversal design TD(5, n). Remove k = n — m points from one of the groups
of the transversal design. Now inflate each remaining point by factor 8. Each block
then becomes either a copy of Kgggs (if it previously contained one of the removed
points) or a copy of Kggsgss, and these can be decomposed as in Lemmas 2.4 and
2.5. Further adjoin an extra point, say co, and on each inflated group of points of
the transversal design together with the point oo, place a copy of a DS4CS(8n+1)
or, in the case of the group which has had % points removed, a DS4CS(8m+1).

O

We should perhaps remark at this point that, since there is no DS4CS(9), the theorem
is vacuous for m = 1. In addition, for m = 2 we have been unable to determine the
existence or otherwise of a DS4CS(17). However we will never apply the theorem in
either of these cases. The values of n for which the theorem is known to hold are
n >4, n # 6,10. The exclusion of the number 10 from the range of values is because
it is not known whether there exist a set of three mutually orthogonal Latin squares
of order 10. The resolution of this problem or the existence of a DS4CS(17) in the
affirmative would result in a huge simplification of the proof of Theorem 1.1.

The third construction is a modification of the previous construction.

Theorem 4.3 If there exist a set of four mutually orthogonal Latin squares of order
n, a DS4CS(8n + 1) and a DS4CS(8m + 1) where 0 < m < n, then there ezists a
DS4CS(8(5n +m) +1).
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Proof. The proof is analogous to the proof of the previous theorem where the blocks

aaaaa

decomposed as in Lemmas 2.5 and 2.6. O

5 Remaining “small” systems

We are now in a position to complete the proof that there exists a
DS4CS(8s+1) for all s : 3 < s < 46.

1. For s = 12,15,18, 21,27, 30, use Theorem 4.1.

2. For s = 16,19, 20, use Theorem 4.2 with n =4, m = 0, 3,4 and the DS4CS(33)
and DS4CS(25) given in Section 3.

3. For s = 23,24, 25, use Theorem 4.2 with n = 5, m = 3,4, 5 and the DS4CS(41),
DS4CS(33) and DS4CS(25) given in Section 3.

4. For s = 28, use Theorem 4.2 with n =7, m = 0 and the DS4CS(57) given in
Section 3.

5. For 31 < s < 42, use Theorem 4.2 with 7 < n < 9, 3 < m < 6 and the
appropriate diagonally switchable 4-cycle systems given in Section 3.

6. For s = 43,44, 45, use Theorem 4.2 with n = 9, m = 7,8,9 and the DS4CS(73),
DS4CS(65) and DS4CS(57) given in Section 3.

7. For s = 29, use Theorem 4.3 with n = 5, m = 4 and the DS4CS(41) and
DS4CS(33) given in Section 3.

8. For s = 46, use Theorem 4.3 with n = 8, m = 6 and the DS4CS(65) and
DS4CS(49) given in Section 3.

We now have DS4CS(8s+1) for all s : 3 < s < 46, s # 22,26. We give proofs of
the existence of diagonally switchable 4-cycle systems of these two orders in the next
two theorems.

Theorem 5.1 There exists a DS4CS(177).
Proof. Take a transversal design TD(6, 16), that is, a set of four mutually orthogonal
Latin squares of order 16. Delete four points from each of two rows of the design to

aaaaa

aaaaa

an extra point, say oo, and on each inflated group of points of the decomposition
together with the point oo, place a copy of the DS4CS(33) or DS4CS(25) given in
Section 3. The result is a DS4CS(2 x4 x 16+2x2x 12+1), that is, DS4CS(8x22+1).

O
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Theorem 5.2 There exists a DS4CS(209).

Proof. Take a PBD(27,{4,5,6}), [4] and remove all blocks through a specified point
to obtain a {4,5,6}-GDD with groups of size 3, 4 or 5. Now inflate each point by
can be decomposed as in Lemmas 2.4, 2.5 or 2.6. Further adjoin an extra point, say
00, and on each inflated group of points of the group divisible design together with
the point oo, place a copy of the DS4CS(25) or DS4CS(33) or DS4CS(41) given in
Section 3. 0O

6 Proof of the main result

Finally, we are able to prove Theorem 1.1.

Proof. We have constructed DS4CS(8s+1) for all s : 3 < s < 46. So suppose
that s > 47. Express s in the form s = 4n + m where n > 11 and m € {3,4,5,6}.
Then there exist a set of three mutually orthogonal Latin squares of order n and a
DS4CS(8m+1). So by Theorem 4.2, the existence of a DS4CS(8n+1) implies that
of a DS4CS(8s+1). If n < 46 the result follows. Otherwise replace s by n and apply
the above argument recursively. 0O
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