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Abstract

We exhibit 2-rotational k-cycle systems of K, for all v, k satisfying the
two necessary conditions 3k/2 < v, 2k[v(v — 1), and the two further
conditions v < 3k, GCD((v — 1)/2, k) = 2. For our purposes we extend
the notions of partial difference and type to the 2-rotational case. The
required terminology, as well as the basic properties and techniques, still
survive if the two last conditions are dropped. Therefore, the present
method is expected to yield 2-rotational k-cycle systems of K, for other
pairs (v, k) in the near future.

1 Introduction

A k-cycle system of a graph G = (V, E), also known as a (G, Cy)-design, is a set of k-
cycles whose edges partition E. Several authors have been so far engaged in studying
particular types of cycle systems, such as the ones which partition complete graphs.
Remarkably, the existence question for k-cycle systems of K, was settled by Alspach
and Gavlas [1] in the case of k odd (see also [7]) and by Sajna [24] in the even
case. Many challenging existence problems arise by further requiring that cycles be
preserved by certain automorphisms of the vertices. For example, regarding V' as Z,
for some fixed n naturally leads to consider the translation group, that is Z,, itself;
any cycle system preserved by such automorphism group is usually termed cyclic.
Exhaustive results on cyclic cycle systems have been recently achieved in the case
v =1 (mod 2k) [3, 4, 9, 10] and v = k (mod 2k) [8, 25], whereas some pioneering
works in this field are [15, 17, 21, 22, 23] and a very recent paper is [11].

Some authors have also analysed cycle systems preserved by more sophisticated
automorphism groups, such as the 1-rotational and 2-rotational systems. In the
former case, the vertex set of K, is regarded as Z,_; U {0} equipped with the
automorphism group Z,_;, fixing co and acting as the translation group on the
complement. In the latter case, the vertex set of K, is instead regarded as (Zy—1)/2 X
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Zy) U {oo} while the related group is Z,—1/2, fixing co and acting as the translation
group on each of the two copies isomorphic to Z,_1)/2, namely Z,_1)» x {0} and
Z(y—1);2 x {1}. In this case, all cycles decomposing K, must be transformed into
cycles under the above action of Z,_1y/2-

The main object of study in this paper is a particular class of 2-rotational
(K,,Cy)-designs with k even. In details, we prove the existence of such systems
for all v, k satisfying 3k/2 < v, 2k|v(v — 1) (these conditions being necessary for
the 2-rotational designs under examination — see in particular the lines preceding
Property 2.5) and with the further property that v < 3k and GCD((v—1)/2,k) = 2.
This work is hoped to be the first step towards the construction of a larger class of
2-rotational (K, Cy)-designs with & even.

We recall that the study of 1-rotational (K,,C})-designs traces back to the 25-
year-old paper [18] by Phelps and Rosa. These authors completely settled the ex-
istence problem for & = 3. Instead, the solution of Kirkman’s schoolgirl problem
(dated 1844, published in 1971 [19]) provided the first example of a 2-rotational 3-
cycle system. In both cases, cycles were regarded as block designs of size 3. Recent
papers such as [6, 7] have focused on the 1-rotational case with & > 4.

2 Partial differences in the 2-rotational case

In the sequel we assume that v,k are integers such that v > k£ > 3 and v is odd,
the last hypothesis obviously being a necessary condition for the existence of a cycle
system of a complete graph. The method of partial differences can be suited with
few difficulties to the 2-rotational context. In this section we provide some basic
definitions and related properties.

Notation 2.1. The generic vertex set of a 2-rotational (K,,C})-design is denoted
by (Zw—1)/2 X Zy) U {oc0}. From now on vertices will be assumed to belong to the
above set. Every element of the form (z,0) [resp. (z,1)] will be shortly denoted by
z [resp. (z)]. For any a, (b) we extend the standard £ operation by introducing the
symbol 1 and defining a — (b) as 1 (a — b). Further, we introduce the symbol | and
postulate that — 1+ 2 =] —2 for all z € Z,_y1))».

Notice that the above notation allows to deduce that

La-b)=4(=(b-a) =1 (b—a) =—(b— (@) = (a) = b.

For this reason, the equality | (a — b) = (a) — b could alternatively be postulated in
place of the equality — 1 z =] —z, which would then be turned from an axiom into
an easy consequence of the two postulates. We now proceed to adapt a well-known
notion to the present context.

Definition 2.2. The type of a cycle B = (bo, by, ...,br—1) is the cardinality of the
stabiliser of B with respect to the action ¢ of Z,_1)/2 over K,, defined by zow = z+w,
zo{w) = (z 4+ w), z 000 = 00) for every z € Zp_1/».
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We recall that a straightforward necessary condition for the existence of a( K, C)-
design with k even is that 2k|v(v — 1). In particular, 4|v — 1.

Lemma 2.3. Let D be a 2-rotational (K, Cy)-design with k even, and let B € D be
the unique cycle containing the edge {a,a + (v — 1)/4} for some fized a € Zy—1y/2.
Then B has type 2 and, by regarding this cycle as a regular polygon, (v — 1)/4 acts
on B as the reflection whose axis passes through the above edge. Furthermore, the
edge opposing {a,a+ (v —1)/4} is of the form {(b), (b+ (v —1)/4)}.

Proof. Because the action of (v—1)/4 on {a, a+(v—1)/4} leaves that edge unchanged,
the stabiliser of B must contain (v—1)/4, and (v—1)/4 acts precisely as the claimed
reflection. It easily follows that no other adjacent vertices of B, except for the two
opposing the above edge, can be of the form {w, (v — 1)/4 o w} with w # oo. For
that reason, any further (nontrivial) element of the stabiliser should interchange the
above edge and its opposed. Anyway, this is not possible, for the unique candidate w
for such an action should yield the identity if applied twice. That is, w = (v — 1)/4,
a contradiction. Finally, if the edge opposing {a,a+ (v —1)/4} was again defined in
Z(y—1)/2, then it would be equal to y o {a,a + (v — 1)/4} for some y € Z(y_1)/2, with
y # (v — 1)/4, whence the stabiliser size would be greater than 2. O

Cycles satisfying the hypothesis of Lemma 2.3 will be termed involution cycles.
Now we extend the concept of partial difference to the 2-rotational environment. To
this end we essentially utilise the already existing definition, with the prescription
that any difference involving oo be left as it formally appears, thus without using
the absorption rule co + a = a.

Definition 2.4. If B = (bg,by,...,bx—1) is a non-involution k-cycle of type d, the
list of partial differences from B is the multiset 0B = {£(bi41 — b;):0 < i < k/d},
where by = b. If B is an involution cycle with by — b_; = (v — 1)/4 (equivalently,
with byja — bija—1 = {(v — 1)/4)) then 0B = {£(bip1 — 0;):0 < i < k/2 -2} U {(v—
1)/4, {((v—1)/4)}. More generally, if F = {S1,S55,...,S5,} is a set of k-cycles, the list
of partial differences from F is the (multi)set OF = U; S;.

Similarly to what happens with cyclic or 1-rotational cycle systems, a sufficient
condition for obtaining a 2-rotational (K,,Cy)-design is the existence of a set of k-
cycles F such that OF = {£a, (z):1 <z < (v=5)/4}U{(v—-1)/4, ((v-1)/4) }U{£ 1
2zl <z < (v=5)/4}u{x 10,1 (v-1)/4}U{x(z—00), £({y) —o0) Az, y}
without repetitions (we leave to the reader the easy proof of the claim). In simple
terms, OF must not be a multiset (cycles satisfying even only this condition are
termed starter cycles) and the cycles altogether must generate all possible partial
differences. Whenever such a set of starter cycles is available, we call it a 2-rotational
difference system and denote respectively by Su,Sr the cycle passing through oo
(of type 1 and necessarily unique) and the cycle generating the differences (v —
1)/4,((v — 1)/4). Notice that the remaining starter cycles must generate as many
partial differences as (4- (v —5)/4+2+4-(v—5)/4+4+4) -2k —k =2v - 3k.
Since S, and Sy do occur in any case, by the above calculation we instantly deduce
the following.
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Property 2.5. In every 2-rotational (K, Cy)-design, v > 3k/2.

It could be shown with little difficulty that any 2-rotational starter cycle S =
(80, 81, ---, Sk—1) of type d > 2 is characterised by the following properties.

1) 9S is not a multiset.

2) si £ s; (mod (v—1)/(2d)) if 0 < i< j < k/d Instead, spq = (j(v —
1)/2d) ¢ so for some j coprime to d.

3) sy = (qj(v —1)/2d) o s, for every t, where t = (k/d)q + r according to the
Euclidean division.

Any such starter cycle can be shortened to [sg, s1, ..., Sk/al¢ With no loss of in-
formation. The case d = 2 requires some more care because there are two ways of
realising a cycle of type 2, namely using either a rotation of 180 degrees or a re-
flection. The former case leads to the same properties as above, whereas the latter
(namely, an involution cycle) has the following characterisation (cf. Definition 2.4).

S can be written as (g, ...,05-1) in such a way that

1I’) {x(0441 — 043):0 < i < k/2 — 2} is not a multiset.

2’)o; #£o0; (mod (v—1)/4) if 0<i<j<k/2—1.

3)or=(v=1)/400p—1—1 if k/2<t<k-1.

Any involution cycle will be shortly denoted by [0¢,01, ..., 0kj2—1]]. Although in
the present paper we will utilise either type 1 or involution cycles only, it is worth
remarking that the two characterisations hold for every 2-rotational k-cycle system
with k even.

3 The recipe

Devising a 2-rotational (K, Cy)-design with k even is greatly facilitated by the as-
sumption GCD((v —1)/2,k) = 2. Anyway, the ad hoc construction we present relies
on a general property, still true when the GCD constraint is removed.

Property 3.1. For every 2-rotational (K,,Cy)-design with k even, 2v — 3k is a
multiple of 2k/GCD((v — 1)/2, k).

Proof. Denoting such GCD by m, let us write k and (v —1)/2 as me and mf respec-
tively. Since kjumf and GCD(e, f) = 1, we obtain that e|v and, in particular, that
e is odd. Consequently 2e|k, and the conclusion follows. O

We have now all the ingredients for establishing the main result.

Theorem 3.2. Let k be an even integer greater than 2. There exists a 2-rotational
(Ky, Cy)-design for all pairs (v, k) satisfying 3k/2 < v, 2k|v(v — 1), and such that
v < 3k and GCD((v — 1)/2,k) = 2.

Proof. Due to the GCD constraint, Property 3.1 yields either v = 3k/2 or v = 5k/2.
In the former case we have that v = 1 (mod 4), whence k/2 = 3 (mod 4) and
eventually £ = 8¢+ 6,v = 12¢ + 9 for some non-negative integer ¢q. As 2v — 3k =0,
the related difference system consists of the only cycles Sy, Soo. If ¢ > 0 we define
them as follows (the reader should pay more careful attention to bold numbers).
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Sri[3¢+2,1,3¢+1,2, ...,2¢+2,q+1,{g+1),(29 + 3),(q), (2¢+4), ..., (2), (3¢ +
2),(1) i

If ¢ is even,

Seo t (00,0,1,-1,2,-2, ... ,q/2,—q/2,(5q/2 + 2),—q/2 — 1,(Bq/2 + 3),—q/2 —
2, . (4q+2) —2q—1,{4q+4),—-2q—2,(4q+5),—2q-3, ... ,{11q/2+3),—Tq/2 -
1, (11/2 +4), (/2 + 1), (11g/2+ 5), (0/2), -~ , (62 +3). (2), 0), (1) ).

If ¢ is odd,

Seo + (100,0,1,=1,2,-2, .. ,(—q +1)/2,(q + 1)/2,{(7q + 5)/2), (¢ + 3)/2,((7Tq +
3)/2),(g+5)/2, ...,2¢+1,{2¢+2),2q+ 3,(2¢+1),29+4,(2q), ... ,(7g+5)/2,{(¢+
3)/2),((=a+1)/2),{(¢ +1)/2),{(=q + 3)/2), -..,(2),(0),(1) ).

In both cases, 0S7 U 050 = ({£2, £(z):¢+2 <2 <3¢+ 1} U{x(¢+1),3¢+
2,3¢+2), 10} U({te,£(e):1 <z < ggU{x Tz, a1l <2 <3¢+1}U
{£(0 — 00), £((1) — 00),E{g + 1),£ 1 (3¢ + 2)}). Thus, the above cycles make up
a difference system for every choice of ¢ > 0. Finally, it can be easily checked that
(2,1, (1)]? and (00,0, (1), —1,(2), (3)) are suitable starter cycles when k = 6,v = 9.

Now we handle the case v = 5k/2. Ask/2 =1 (mod 4), there exists some positive
integer ¢ such that £ = 8¢+ 2 and v = 20q + 5. Noting that 2v — 3k = 2k, it suffices
to construct one starter cycle of type 1 besides Sy and Sy. By defining the required
cycle as
S:(0,(1),—-1,(2), ..., —2¢,(2¢+1),6q + 1,(2¢+2), 6q, (2¢+3),6¢g—1, ..., (4q), 4q+
2,49+1),
the related set of partial differencesis S = {£ 1z, £ | ©:2 < z < 4q}U{=£1, £(4dq+
1),£11,£] (4g+1)}. We proceed to construct the remaining two cycles.

Ifqis even7

27q 1 4q+]— qa( >7<4q+1>v<q_1>7<4q+2>7 7<1>7<5q>7<0> ]?7
Soo (ooa0a2a_]-a3a ---a_3q/2+1a3q/2+1a<13q/2+2>73Q/2+27(13Q/2+1>a3q/2+

3, ..., (6¢g+3),2¢+1,(—2q),2q+2,{—2¢g—1),2¢+3, ... ,5q/2,(=5q/2+1),5q/2+
17(501/2) (=a/2),(5q/2 = 1),(=q/2+1), ... .{¢—1),{a) ).

If ¢ is odd,
Sr:[5¢+1,1,5q¢,2, ... ,(¢—3)/2,(9¢+5)/2,(¢d—1)/2,(9¢ +3)/2,(a+3)/2,(9g +
§/2 (q+5)/2, ... ,4¢+3,9,4¢+2,9+ 1,{q+1), (4q+2),{q), (4q+3), ..., (2), (bg+

W17

)
S0 1 (00,0,2,-1,3, ..., (3¢+1)/2,-(3¢ = 1)/2,((T¢ +3)/2), =(3¢ + 1)/2,((7q/2 +
5)/2), — (3q+3)/2 ,(dg+1),-2¢,(2q + 2),—2¢—1,(2¢+3),—2¢— 2, ..., {(bg+
1)/2), ~(5q-1)/2, (~(5q + 1)/2), (~(11g+1)/2), {~(50+3)/2), (~(11g=1)/2), ...,
(—4q),(—4q - 1)).

In both cases we have that 9S; = {£z,£(z):3¢+ 1 < z < bg} \ {x(4¢+ 1)} U
{5q + 1,{(bg + 1),£ 1 0}, whereas 05 = {xz,£(z):2 < z < 3¢}U{£ t z,£ |
2:4g+2 < 0 < 5qhU{E(0— 00), £((2) —oc), £(1), £ 11, £ 1 (4g+1), £ 1 (54 1)},
with z = (¢ + 1) if ¢ is even, z = (—4q — 1) otherwise. Therefore, we have again
obtained a difference system. O
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