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Abstract

We generalize the definition of higher weights for codes over Z; and
define weight enumerators corresponding to these weights. We provide
MacWilliams relations for the weight enumerators. We define generalized
Lee weights for a linear code over Z, and give bounds for these weights.
Moreover, we determine these weights for some codes over Zj.

1 Introduction

For a linear code over a finite field, Helleseth, Klgve and Mykkeltveit ([14])
introduced generalized Hamming weights while studying the weight distribution of
irreducible cyclic codes and later Wei ([26]) rediscovered the idea of generalized
Hamming weights. Following these, numerous papers dealing with these weights
have been published (cf. [12, 25], etc.). Recently, generalized Hamming weights for
codes over Z, have been defined and studied (see [1, 4, 15, 27, 28], for example). In
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this work, we generalize the definition of higher weight enumerators for a linear code
over Zj and prove MacWilliams relations for this weight enumerator.

The Lee weight of a codeword plays an important role in studying a code over
Z4. The Lee weight of a codeword over Z, corresponds to the Hamming weight of
its binary Gray map image (cf. [11]). Additionally, we give an alternate definition
for the higher weight of a linear code over Z, to the one that has been given in
[1, 4, 15, 27, 28]. In [18], Hove studied the concept of generalized Lee weights for
codes over Z, with respect to the order of a code. Our definition of generalized Lee
weights is another natural extension of generalized Hamming weights.

2 Definitions and Notation

2.1 Generalized Hamming Weights

Let Zi be the ring of integers modulo k. A code of length n over Z is a subset
of the free module Z;; and the code is linear if it is a Z;-submodule of Z}.
For v, & € Z, we define the inner product by

[’U7 :E} = Z Vi

For a linear code C of length n over Z, we define the rank of C, denoted by
rank(C), to be the minimum number of generators of C' and define the free rank of
C, denoted by f-rank(C'), to be the maximum of the ranks of Z;-free submodules of
C (cf. [9, 23]). We shall say that a linear code is free if the free rank is equal to the
rank, that is, a code is a free Zj-submodule.

Define the following norm for a vector v € Zj:

||v]| = [supp(v)|
where
supp(v) = {i : v; # 0}.

We extend this norm to subcodes, specifically let C' be a linear code of length n and
let D be any subset of C. Define

||D|| = [supp(D)],
where

supp(D) = {i: there exists v € D with v; # 0}

= |J supp(v).

veD

For a linear code C over a ring Z; and any g, 1 < g < rank(C), we define the
g-th generalized Hamming weight with respect to rank (GHWR) as follows:

d(C) = min{||D|| : D is a Z;-submodule of C' with rank(D) = r}.
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We note that the minimum Hamming weight of a linear code C is d¥(C). In [17],
they introduced the GHWR of a linear code C' over a finite chain ring and studied
some properties of the GHWR.

For any g, 1 < g < rank(C'), we define the higher weight spectrum as

A =|{D: D is a Zy-submodule of C with rank(D) = g and ||D|| = i}
which naturally gives higher weight enumerators
We(z,y) =3 Ala""y".
These definitions are of course, the natural extensions of the definitions used for
codes over finite fields. The next two extensions are a broader generalization of these
ideas.

Let a1, ag, . .., a, be the divisors of k, with a; < a;. This forces a; = 1. Any linear
code over Zj, has a generator matrix which can be put in the following form (cf. [2]):

ay Iy, A1,2 A1,3 A1,4 et Al,s+1
0 G2Ik2 G2A2,3 G2A2,4 T T G2A2,s+1
0 0 G3Ik3 G3A3,4 Tttt a3A3,s+1
0 . . . )
0 0 0 .- 0 asly, asAssi1

where A;; are binary matrices for ¢ > 1. A linear code of this form is said to be of
type {k1, ka, ks, ..., ks} and has [, aik elements.
Moreover, define
Ok, (C) =
min {||D|| : D is a Zg-submodule of C' with type(D) = {ky,...,ks}}.

We extend the definition of the higher weight spectrum as

Albkaks _
{D: D is a Zj-submodule of C' with type(D) = {ki,...,k;} and ||D|| = i}|
which naturally extends higher weight enumerators as follows:
Wélk(a:,y) _ ZAfl’""ksm"’iyi.

Hence for each type we have a weight enumerator.

If C is a linear code over Fy + uF, or Z, then the image under the corresponding
Gray map of a linear subcode D has support 2||D||, since any non-zero coordinate
is mapped to two non-zero coordinates. Of course, it is necessary for the subcode to
be linear for this to be true. If the ring is Fy + ulFs then the image is linear, but in
neither case would it account for all binary subcodes. For example, the image of the
ambient space of length 1 over Fy + ulF, is F3, but the subcode {00, 10} is a binary
subcode but corresponds to a non-linear subcode of Fy + ulFs.
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2.2 Generalized Lee Weights

It is known that a linear code C' of length n over Z, is permutation-equivalent
to a linear code with generator matrix of the form

I, X Y
g (% 27).
where X and Z are binary matrices and Y is a matrix over Z,. In this case, it gives
that |C| = 4k12% and rank(C) = k; + ks. We shall define a code with a generator

matrix of the form given in matrix (1) as being of type {k;, ks} and then say C' is
an [n; ki, k2] code. Sometimes we also write (1) as

— Gl
o)

where G, and G4 are k; x n and k» X n matrices over Z4. Let C denote the subcode
[r; 0, k1] of C generated by the matrix [2G1] and let C' denote the subcode [r; 0, ky+ks]

. . 2
of C' with generator matrix 221 } (see [1]).
2
A vector v is a 2-linear combination of the vectors vy, vs, ..., v, if v = A\jv; +

oot Ao with \; € Zy for 1 < ¢ < k. A subset S = {wvy, va,...,v;} of C is called a 2-
basis for C'if for each i = 1,2, ...,k — 1, 2v; is a 2—linear combination of v;,1, ..., vy,
2v, = 0, C is the 2-linear span of S and S is 2-linearly independent ([4]). The
number of elements in a 2-basis for C is called the 2-dimension of C' and is denoted
by 2-dim(C). It is easy to verify that the rows of the matrix

L, X Y
(2) 2L, 2X 2V
0 2L, 27

form a 2-basis for the code C' generated by matrix (1). Thus the 2-dimension of C'
is 2k1 + k.

For a vector @ € Zj, we denote the Hamming weight and Lee weight by wt(x)
and L-wt(x), respectively.

Let C be a linear code of length n over Zs. Let A(C) be the |C| x n array of
all codewords in C. It is well-known that each column of A(C') corresponds to the
following three cases: (i) the column contains only 0 (ii) the column contains 0 and
2 equally often (iii) the column contains all elements of Z4 equally often (cf. [28]).
For the three columns (i), (ii) and (iii), we define the Lee support weights of these
columns by 0, 2 and 1 respectively. Thus we define the Lee support weight wtr(C)
of C' by the sum of the Lee support weights of all columns of A(C'). For example, if

C ={(0,0,0),(1,0,1),(2,0,2),(3,0,3),(0,2,2),(1,2,3),(2,2,0),(3,2,1)},

then wt,(C) = 1+2+1 = 4. We remark that if C' is generated by only one vector x,
then the Lee support weight wtz(C') corresponds to the original Lee weight L-wt(x)
of . Then we have the following theorem.
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Theorem 2.1 Let C be an [n; ky, k2] code over Zy. Then we have

Wi(C) = g S (Lwi(e) ~wi(a)

1 .

Proof. In the array A(C), let ny be the number of columns in which 0 and 2 are
balanced and let n; be the number of columns in which 0,1,2 and 3 occurs equally
often. So we have 2ng + n; = wt,(C). Hence we have

E:C(L-Wt(w)—wt(ﬂc)) = (no(IC1/2-2) + ma(|C]/4-1+[C[/4-2+|C]/4- 1))
—(no(|C1/2-1) + m(|C]/4-1+[C]/4-1+]C|/4- 1))
C]/4 - wtL,(C).

O

Now, for 1 < r < rank(C'), we define the r-th generalized Lee weight with respect
to rank (GLWR) d%(C) of C as follows:

d5(C) = min{wtz(D) : D is a Zs-submodule of C with rank(D) = r}.

We note that d¥(C) corresponds to the minimum Lee weight of C. As a connection
between the GHWR and the GLWR for a linear code C' over Z,, we remark that

(3) dE(C) < 2d5(0).

Additionally, we define the (ki, ky)-generalized Lee weight with respect to type as
follows:

d,\L‘l,kz = min{wt, (D) : D is a Zs-submodule of C with type {ki, ka2} }.

Also, for 1 < r < 2k + ko, we define the r-th generalized Lee weight with respect
to 2-dimension (GLWT) of C as follows:

2-dX(C) = min{wtr(D) : D is a Zs-submodule of C' with 2-dim(D) = r}.

Note that with respect to 2-dimension 2-d¥(C) does not always corresponds to the
minimum Lee weight of C'. In each case, the set {d}(C)} or {df, ,,(C)} or {2-d%(C)}
is called the Lee weight hierarchy of C.

In this paper, we shall derive several basic properties of these weights.
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3 MacWilliams Relations

We define the following weight enumerator which is a natural generalization of
the joint weight enumerator for codes over Z;. Let C1,Cy,..,C,y be codes such that
C; is a code over Zj. The complete joint weight enumerator of genus g for codes
Ci,...,C4 of length n is defined as

. 9\ na(cl,CQ,...,C)
Jer,0n,0,(Xa with @ € Z3) = > Il Xa ’
(€C1,Cz,...,C4)€C1 X C2X...x Cy ani

where nq(ci, ¢, ...,¢5) = |{j : ((e1)j,(€2)j,.-.,(cg);) = a}], and ¢; = ((¢)1,-- -,
(e

We shall describe the matrix we need to produce the MacWilliams relations for
codes over Zy,.

We want the orthogonality given by the character group associated to the additive
group G of the ring Z; to match the given inner product, where the orthogonality
given by the character group is:

x(C)={v: xy(w) = 1,YVw e C}

where x, € @, the character group.
Let ¢ be a character in G associated with the element 1. For a,b € Z; set
xs(a) = o(ab). We see that y, is a character associated with the element b.

This gives
1 Xw: (vi) = [[ o(viw;) = o> viw;).
If (3 vw;) =0 then o(3 viw;) = 1.
It is shown in [6] that the matrix produced by these characters gives the MacWill-
iams relation for the complete weight enumerator, where the complete weight enu-
merator for a code C' is

a a Ar—1
We(zo,y ...y @rm1) = Z Avgoan 1202t 2T
ceC

where the number of coordinates in the vector ¢ with an 7 in them is a;.
To produce the MacWilliams relations we define the matrix 7" by

(4) Tai,aj = Xoy (al)

Let n be a complex k-th root of unity. Noting that o(«) = n®, then indexing the
matrix T with the elements of Z; we have that T} ; = n%.

Then the MacWilliams relations for the complete weight enumerator are given
by:

1
WCJ_(xo,...,.Z‘k_l) = | Wc(T(.Z‘g,...,xk_l)).

1]
For a complete description, see [6].

The MacWilliams relations for the joint weight enumerator over Z;, were corrected
in [5]. They can be generalized to the following lemma.
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Lemma 3.1 Let Cy,Cs,...,Cy be linear codes in Zj, and let C denote either C or
C*. Then

1 )
(5) 361,0'2,...,0'9(Xa) = W : (®g=1T60)3C1,---5C9(Xa)7

where ~
o 0 fC=C,
711 ifC=ct

Note that the matrix ®?_, 7% is an k9 by k9 matrix and that 36,.6,,..¢,(Xa) is
a polynomial in k9 variables. The proof of this lemma is given in the preprint [6].
Denote by 3(07 g)(Xa) = 301,02,___,09(Xa) with 01 =(C fori = ]., ...y g.

Let 2, = {j such that a subcode of type j can be generated from a type h
code using g (not necessarily independent) vectors}, where h = {hy, hs, ..., hs} and

j = {j17j27 e 7js}'
Lemma 3.2 Let C be a linear code over Zy; then

(6) 3(C9)(Xa)= 3 (g, h)WL(Xy =2,Xa =y, (a#0))
jeQ[g,h

where U(g, h,j) denotes the number of ways a subcode of type j can be generated from
a subspace of type h using g vectors.

Proof. Given a set of g vectors represented by Xgq, then the number of Xq that
are not 0 is equal to the support of the space generated by the vectors. Moreover,
each subspace is generated ¥(g, h,j) different times. O

Note that a similar thing cannot be done by simply considering ranks because
from knowing only the rank of a code it is not possible to determine how many
subcodes of a given rank exist. For example, a rank 1 code over Zg may have a
subcode of rank 1 or it may not, depending on whether the code is Zg or {0, 3}.

This lemma allows us to generate MacWilliams relations for the higher weight
enumerators.

Theorem 3.3 Let C be a linear code over Zy; then

i 1 i
(7)Y (g, h)Wii(z,y) = e > (g, h )Wii(z+ (K — 1)y, z —y).
jEQ[g,h jteg,h

Proof. Specializing the variables collapses the matrix ®7_, T, the first row of which
is all 1 and hence collapses to k9 — 1.

Every other row has a 1 in the first column and then noticing that YueZ,s Xb(a) =
0, so summing all but the first row gives —1. Hence the matrix becomes
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® (35

A similar technique was used for codes over fields in [7].

Example: Let C be the linear code of length 2 over Z4 generated by (1,0) and (0, 2).
The code has type {1,1}. We have

3(C.2) (@Y, y) = WOz,y) + 12WH0(z,y)
+ WOz, y) + 6W(z,y) + 24W (2, y),

where W(z,y) = 2?, W(z,y) = zy +y*, WO (z,y) = 2zy + y*, W (z,y) = y?,
Whi(z,y) = y?. Then
1

64(W0’0(a: + 15y, 2 —y) + 12W°%z+ 15y,2 —y) + 3W(z + 15y, — y)
+

6W™(z + 15y, @ — y) + 24" (2 + 15y, — y)
= 2° + 3zy.

Now, C+ = {(0,0),(0,2)} and is of type {0, 1}, with W% (z,y) = 22, WO (z,y) = zy
and 3(C,2)(z,y,...,y) = W*(z,y) + 3W*(z,y).
Notice also that

Wel(z,y) = 3(C, 1) (z,y) = 2°+ day + 3y
= W%z, y) + 2W 0 (z,y) + W (z,y)
2%+ 2(zy + 92 + (2zy + y2).

4 Bounds

4.1 A Singleton Bound

A chain ring R is a finite ring with Jacobson radical J(R) # 0 whose principal
left ideals form a chain (see [21]). It follows easily that Z,= is a kind of chain ring,
where p is a prime. In [17], Horimoto and Shiromoto proved the following Singleton
type bound for GHWR of linear codes over finite chain rings:

Proposition 4.1 Let C be a linear code of length n over a finite chain ring R. For
any r, 1 <r <rank(C), we have

d?(C) < n —rank(C) + 7.

In this subsection we shall find the corresponding Singleton bound for the higher
weights over a kind of non-chain rings Zj.
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The Chinese Remainder Theorem was used in [9] to form MDR codes over Zj.
Here we recall the basic definitions and a few facts. Let &£ and ¢ be integers with ¢
dividing k, and define the map

U, : (Z/KZ)" = (Z/qZ)"

by
U, (a1, a9, ,0,) = (aq  (mod q),as (modgq), -, a, (modq))

where v = (a1, a0, , o).
If k is a positive integer with k = [[5_; ¢; and gcd(g;, ¢j) = 1 then define the map

U (Z/R2)" = (Z)@Z)" < (Z]@:Z)" % --- x (Z/gsZ)"

by

V() = (g, (v), ¥y (v), -+, ¥y, (0)).
If ) C@)... W) are codes of length n, with C'@) a code over Zg;, define the
Chinese product by

CRT(O(QI)’ cla ... ,C(qs)) = {0 vy, vy,--,0,) | v; € O(Qi)}7

where ¥~ (vy, vy, ...,v,) is the unique vector in (Z/Z;)" that is congruent compo-
nent wise to v; (mod g¢;).

The generalized Chinese Remainder Theorem implies that CRT is the inverse
image of the map W.

We have the following fact. Let 9 02 ... ) be codes over Z,,, Zg,," -+, Zy
respectively. Then

s

rank(CRT(C®), C(@) ... (W) = Max{rank(C®))}.

Additionally, we can see that if C = (CRT(C@),C@ ... (CW@))) and D is a
subcode of rank h of C' then

D= CRT(D(‘“)7 D(‘IZ’)7 .. 7D(qs))
where D@) C C@) and Max{rank(D@))} is h.
Lemma 4.2 Let C = (CRT(C@),C@) ... CW))); then d,(C) = Min{df((](qi))},

Proof. This follows from the fact that D = CRT(0,...,D%) ... 0,...)is an R-
submodule of C of rank g for all i if D%) has rank g. a

Theorem 4.3 Let C be a linear code of length n over Zy, of rank r. Then
dy(C) <n—7+y,

forany h, 1 <g<r.
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Proof. Follows directly from Proposition 4.1 and Lemma 4.2. a

We shall call codes meeting this bound g-th Maximum Hamming Distance Sepa-
rable with respect to Rank (g-th MHDR) codes.
The following theorem and proof is similar to that for MDR codes given in [9].

Theorem 4.4 Let C*) Ck2) ... Ce) pe codes over Liy s Liy, . .., Ly, respectively.
If C%) 4s an g-th MHDR code for all i (not necessary the same rank), then
CRT(C*1) %) ... )Y 4s a g-th MHDR code.

Proof. Let C' = CRT(C*) Ck2) ... Ck)) We have rank(C') = Max{rank(C*))}.
So
a1 () min{d? (C*))} = min{n — rank(C*)) + g}

n — Max{rank(C*))} 4 g = n — rank(C) + g.

4.2 Bounds for GLWR

In this section, we give some bounds for GLWR of linear codes over Z,.

Lemma 4.5 If C is a linear code of length n over Zs with rank(C) = 2, then there
ezists a codeword 0 # v € C such that L-wt(v) < wt(C).

Proof. We assume that C is generated by « = (z1,...,2,) and ¥y = (Y1, ..., Yn),
where both z; and y; are not 0 for any i. If either x; or y; is 1 or 3 and the other
is 0 or 2, then the Lee weight of ax; 4+ By; are at most 1 for any units «, 3 in Z,.
If 2z; = 2y; = 0, then the Lee weights of ax; + By; are at most 2 for any units «, 3
in Zyg. Soif {i :a;=y;=1or3} < |{i: {wivi}={1,3} or {3,1}}] (Resp., |{i :
xi=y; = 1or 3} > |{i: {w;,u:} = {1,3} or {3,1}}] ), then L-wt(x + y) < wtr(C)
(Resp., L-wt(x + 3y) < wt;(C)). The lemma follows. O

Theorem 4.6 Let C be a linear code of length n over Zy with rank(C) > 2. Then
we have 1 < df(C) < d%(C).

Proof. Let D be a submodule of C' with wt;(D) = d(C) and rank(D) = 2. From
Lemma 4.5, there exists a codeword 0 # v € D such that L-wt(v) < wtr(D). Since
d¥(C) < L-wt(v), the theorem follows. |

The following monotonicity is well-known for a linear code C of rank k over a
chain ring ([17, 26]):

1<dff(C) < dd(C) < - < di(C) < n.
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Based on the above inequality, with respect to the GLWR, we had conjectured as
follows for a linear code C of length n over Z4 with rank(C) =k > 0:
1<dr(0) <dz(0) < -+ < dg(C) < 2.
However, Hashimoto ([13]) recently found a counter-example to the conjecture.
Example 4.7 ([13]) Let C be a linear code of length 21 over Z4 having a generator

matrix

1
G=10
0

O = O

01
0 2
10

N = O

21
00
1 2

S = N

01011
2110 3
10110

w = O

3211311
01 21131
1112113
Then it follows that d¥(C') = 22 and d%(C) = 21. Therefore it shows that the con-
jecture is false and this is a counter-example of a code whose lengths are a minimum.
Now, we give a Singleton type bound on the GLWR.

Theorem 4.8 For a linear code C' of length n over Zy and any r, 1 < r < rank(C),

{df(O) —2r+1

- J < n — rank(C).

Proof. We set dX = d%(C) and k = rank(C). Now, we assume that

dk—2r+1
(9) {TH"J >n—Fk
2
Note that
dl—2r+1| | (dt-2r)/2 dL : even
2 (@ —2r+1)/2 db:odd.

If d¥ is even, then the bound (9) is d¥ > 2n — 2k + 2r. On the other hand, from
(3) and Proposition 4.1, we have

(10) dl < 2n —2k + 2r.

A contradiction.

If d* is odd, then the bound (9) is d¥ > 2n — 2k + 2r — 1. Thus we have
df = 2n — 2k +2r from (10). This contradicts that d% is odd. Therefore the theorem
follows. =

Remark 4.9 In [8, 23], it is shown that for a linear code C of length n over Z, with
minimum Lee weight d,

{dL; 1J < 1 — rank(C).

Since dy, = d¥(C'), the bound in Theorem 4.8 is a generalization of the above bound.
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If a linear code C of length n over Z, meets the bound in Theorem 4.8 for r,
that is, {(df(C) —2r + 1)/2? = n — rank(C), then we shall call the code C' a r-th
Mazimum Lee Distance Separable with respect to Rank (r-th MLDR) code. Now we
shall give a connection between r-th MLDR codes and r-th MHDR codes.

Lemma 4.10 If C is an 7-th MLDR code, then d£(C) = 2d2(C) — 1 or 2d%(C).

Proof. Since C is an r-th MLDR code, we have

(11)

{df((]) —2r+1
2

J = n — rank(C).

We assume that dZ(C) < 2d#(C) — 1. If d£(C) is odd, then we have the following
equation from (11):
dE(C) = 2n — 2rank(C) + 2r — 1.

Since dX(C) < 2d¥(C) — 1, we have
2n — 2rank(C) + 2r — 1 < 2d2(C) — 1 <= n — rank(C) +r < dZ(C).

A contradiction from the bound in Proposition 4.1. In the case that d%(C) is even,
the proof follows. a

Theorem 4.11 Let C be a linear code C' of lengthn over Zy. If C is an r-th MLDR
code, then C' is an r-th MHDR code.

Proof. From the above lemma, we have d%(C) = 2d#(C) — 1 or 2d7(C). In both
case,

=di(C)—r.

n — rank(C) = {MJ

Theorem 4.12 Let C be an r-th MHDR code of length n over Zy. C s an r-th
MLDR code if and only if d*(C) = 2d¥(C) — 1 or 2d7(C).

Proof. Since C is an r-th MLDR code if and only if

{df(c) —2r+1
2

J_df(c)—r.

If d“(C) is odd, then

d2(C) -,

{df(C) —2r + 1J dEC)—2r+1
— 5 = gt

2
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and if d%(C) is even, then

{df(C) - 2 + 1J _dC) -2

The theorem follows. O

It is known that if C is a linear code of length n over Z, with minimum Hamming
weight dy and minimum Lee weight dy, then

(12) dy > m

(cf. [22]). In [24], they proved the following Griesmer type bound for linear codes
over finite quasi-Frobenius rings.

Lemma 4.13 Let C be a linear code of length n over Zy with rank(C) = k and
manimum Hamming weight dg. Then

k-1 dH
=2
Using (12) and Lemma 4.13, we have the following Griesmer type bound for

minimum Lee weights of linear codes over Z,.

Proposition 4.14 Let C be a linear code of length n over Zs with rank(C) = k and

minimum Lee weight dj,. Then
< [lde/2]
255
Now we have a generalized Griesmer type bound for GLWR.

Theorem 4.15 For a linear code C of length n over Zy and anyr, 1 < r < rank(C),

we have
|aF(C) /2]

r—1

L
>
dr (C) - 21

™

Il
S}

k2

Proof. For a Zs-submodule D of C with wtz(D) = d5(C) and rank(D) = r, let
D’ be the code having a generator matrix obtained from a generator matrix of D by
deleting the zero columns. Since the length of D' is less than or equal to wty(D)
and the minimum Lee weight of D' is greater than or equal to d¥(C), the theorem
follows from Proposition 4.14. a

Let C be a linear code C' of length n over Z4. From the definitions of GLWR and
GHWR, we have

(13) @ > [dﬂ



244 DOUGHERTY, GUPTA AND SHIROMOTO

for any r. It is known that if C' is a linear code C' of length n over Z4 with rank(C) = k
and minimum Hamming weight dg, then Soc(C') is isomorphic to a binary [n, k, d]
code (cf. [17]).
Lemma 4.16 ([17]) For any r, 1 < r < rank(C'), we have

a#(C) = 4% (Soc(C).

Using the above lemma and Theorem 3.19 (p. 35 in [12]), the lemma follows:

Lemma 4.17 Let C be a linear code C of length n over Z, with rank(C) = k. Then

0> di(C +’€ZT[ dH(C))"

22 21 —
for anyr, 1 <r <k.
Now we have a generalized Griesmer type bound for GLWR.

Theorem 4.18 Let C be a linear code C of length n over Zy with rank(C) = k.

Then
J [0, k[ lare)r]
> [P+ 2 |7 |

2i(20 — 1)

foranyr, 1 <r <k.
Proof. The theorem follows from the above lemma and inequality (13). |

Let C be a free linear code of length n over Z; with rank(C) = r and minimum
Lee weight d, then the following Griesmer type bound is known [1].

Lemma 4.19

— 321671 /2
>3 |3 1 dp|.
ITZH(20+17 + 1)

=0

Thus we have the following bound for the free codes. This is better than the bound
given by the Theorem 4.15 for free codes. Its proof is similar.

Theorem 4.20

- i(i—1)
Z ’74 H?: 1221_._1 /JQ+ )dL“ .
i=0
It is known that the octacode meets the bound of the Lemma 4.19. It will be
interesting to construct codes over Z, that meets the above bound of Theorem 4.20.
However, except for » = 1 the octacode meets the above bound for GLWR (see
Theorem 5.7).
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5 Determination of Generalized Weight
In this section we look at the Generalized weights for some well known classes
of codes. Let C be a linear code over Z, of length n and 2-dimension k. For @ € C'

let wo(x) = |{i : x; = 2}|. The following remark follows from Theorem 2.1.

Remark 5.1 For1 <r <k,

dH(C) =

min{ S wyl@) | D : [, 7] subcode ofC}.

r—2
2 xreD

It is clear from remark 5.1 that it is difficult to find the generalized Lee weight since
wy(x) is not a metric. Now we find the generalized Lee weight for the several known
classes of codes.

The following lemma follows from definition.

Lemma 5.2 Let C be a linear code over Z4 with generator matriz G = [2g1,2ga, - . .,
2gx]; then for 1 < r < k we have

d; (C) = 2d;'(C)

where d(C) is the Hamming weight hierarchy of C.

5.1 First-Order Reed Muller Code

The first order Reed Muller code RY™ over Z4 is a code of length n = 2™°1
rank m, 2-dimension m + 1 with minimum Hamming weight 2™ 2 and minimum Lee
weight 2m~1,

Theorem 5.3 The Lee weight hierarchy of R™ with respect to 2-dimension is given
by 2-dL = 277" (2" = 1),1 <7 <m— 1, 2-d& = 2™ and 2-d%,, = 2"

Proof. This follows from Lemma 5.2 (see [10]).

Remark 5.4 Note that the monotonicity fails for GLWT as in Theorem 5.3, 2-dZ >
2-dL

m+1°

5.2 Simplex Codes

The Hamming weight hierarchy of quaternary simplex codes of type a and 3 with
respect to 2-dimension were studied in [4]. The next theorem finds the Hamming
weight hierarchy with respect to rank. Note that the rank of both the simplex codes
is k.
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Theorem 5.5 The Hamming weight hierarchy of S and S,’f with respect to rank is
given by
df (Sg) =24 (S7) =272 —1),1 <r <.

Proof. We will prove it only for S,f, since the other case is similar. By Lemma
4.16 and Lemma 5 of [4] the result follows.
O

5.3 Quaternary Golay Code

The quaternary lifted Golay code has length 24, rank 12, 2-dimension 24, mini-
mum Hamming weight 8 and minimum Lee weight 12.

Theorem 5.6 The quaternary Golay code QR has Lee weight hierarchy (with re-
spect to rank) {12, 14,16,16,17, 18,19, 20, 21,22, 23,24}.

Proof. It is a straightforward computation.

5.4 OQOctacode

The octacode QRg is a code over Z4 of length 8, 2-dimension 8, minimum Ham-
ming weight 4 and minimum Lee weight 6.

Theorem 5.7 The quaternary octacode QRs has Lee weight hierarchy (with respect
to rank) {6,6,7,8}.

Proof. Straightforward.
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