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Abstract

Let T be a partial latin square and L be a latin square with T C L. We
say that T is a latin trade if there exists a partial latin square 7" with
T'NT = @ such that (L\T)UT" is a latin square. A k-homogeneous latin
trade is one which intersects each row, each column and each entry either
0 or k times. In this paper, we construct 4-homogeneous latin trades
from rectangular packings of the plane with circles.

1 Introduction

We start with basic definitions which allow us to state and prove our main results.
Let N(n) ={0,1,2,...n =1}, R(n) = {r; | i € N(n)}, C(n) = {c; | i € N(n)} and
E(n)={e;|i € N(n)}.

A partial latin square P of order n is a set of ordered triples of the form (r;, ¢;, e;),
where r; € R(n), ¢; € C(n) and e, € E(n) with the following properties:
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o if (r;,¢j,e;) € P and (ri,¢j,ep) € P then k =F,
o if (r;,¢j,e;) € P and (r;, ¢jr,e) € P then j = j' and
o if (T‘Z‘7Cj76k) € P and (Ti/7Cj,€k) € P then i =1’

We may also represent a partial latin square P as an n X n array with entries chosen
from the set N(n) such that if (r;,c;,e;) € P, the entry e;, occurs in cell (r;,¢;). (In
this sense, r stands for “row”, ¢ for “column” and e for “entry”.)

A partial latin square has the property that each entry occurs at most once in
each row and at most once in each column. If all the cells of the array are filled then
the partial latin square is termed a latin square. That is, a latin square L of order
n is an n X n array with entries chosen from the set E(n) = {eg,e1,€3,...,€,-1} in
such a way that each element of E(n) occurs precisely once in each row and precisely
once in each column of the array.

For a given partial latin square P the set of cells Sp = {(rs,¢;) | (ri,cj,ex) €
P, for some e, € E(n)} is said to determine the shape of P and |Sp| is said to
be the size of the partial latin square. That is, the size of P is the number of
non-empty cells in the array. For each r; € R(n), let R% denote the set of entries
occurring in row 7; of P. Formally, Ry = {e | (r;,¢;,e) € P}. For each ¢; € C(n),
we define C, = {ex | (ri,¢c;,ex) € P}. Finally, for each e, € E(n), we define
Ep = {(ri,c) | (ri,cj ex) € P}

A partial latin square T of order n is said to be a latin trade (or latin interchange)
if T # 0 and there exists a partial latin square T" (called a disjoint mate of T) of
order n, such that

o Sy =S,

o if (r;,¢j,e;) € T and (r4,¢j,ep) €T, then k #£ K/,

e for each r; € R(n), RY = R, (the row r; is balanced) and
e for each ¢; € O(n), C} = CJ, (the column ¢; is balanced).

Observe that if T is a latin trade with a disjoint mate 7", then 7" is also a latin
trade, with a disjoint mate given by T. A latin trade Tj is said to be minimal if
there exists no latin trade Ty with 15 C T7.

Information on latin trades may be found in [11], [12], [13] and in [15]. In [14] it
is shown how to embed a minimal latin trade onto an orientable surface. We thus
may associate a genus with every minimal latin trade.

A latin trade T of order n is said to be k-homogeneous (k > 2) if

e for each r; € R(n), |[R%| =0 or k, and
e for each ¢; € C(n), |C| = 0 or k, and

e for each e, € E(n), [EX| =0 or k.
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Clearly if T is k-homogeneous, its size is equal to km for some integer m. A minimal
2-homogeneous latin trade is uniquely a 2 x 2 latin subsquare. Constructions for
3-homogeneous latin trades of size 3m for each integer m > 3 are given in [10].

As well as being interesting combinatorial objects with frequently intriguing geo-
metrical constructions, k-homogeneous latin trades occur often in the multiplication
tables for groups (see, for example, [9]), and there is some indication that they yield
information about critical sets for such latin squares, often of minimum size.

A critical set in a latin square L of order n is a partial latin square P C L such
that [P NT| # @ for each latin trade T C L, and P is minimal with respect to this
property. Equivalently, a critical set is a minimal defining set for a latin square. If P
is a critical set in L, then for each (r;, ¢j,e)) € P there exists a minimal latin trade
T C L such that TNP = {(r;,¢;,ex)}. Thus the concepts of critical sets and minimal
latin trades are strongly interconnected. (Indeed they occupy the same chapter in
the CRC Handbook of Combinatorial Designs [18]).

Because k-homogeneous latin trades often have the property of being large in
size (with respect to the size of the latin square) yet minimal, they often are related
to critical sets of small size. It is known that using only 2-homogeneous and 3-
homogeneous latin trades, we can determine minimum critical sets in the latin squares
for both ((Z2)?,+) (size 5) and ((Z2)®,+) (size 25) ([17]). (The size of the smallest
critical set in (Zs)*, +) is not known, but is no greater than 121 [5].) We conjecture
that k-homogeneous latin trades with £ > 3 will be helpful to locate minimum critical
sets in ((Z,)", +) for larger values of n.

The best known lower bound for the size of a critical set in an arbitrary latin
square of order n is |[(4n — 8)/3| [16]. This bound can be improved under certain
restrictions; such as if the critical set has an empty row (2n — 4, [7]), the critical set
has a strongly forced completion (|n?/4], [3]), or if the latin square is the addition
table for the integers modulo n (n*/3/2, [8]). It is conjectured in [4] that in fact
[n?/4] is the actual lower bound. This is known to be true for n < 8 ([1], [2], [6])-

2 A doubling construction of latin trades

In this section we give a construction that doubles the size of an arbitrary latin
trade. In the new latin trade the number of rows and the number of columns are
doubled, however the number of different entries used within the latin trade remains
the same. We will show that if the original latin trade is minimal then the resultant
latin trade is also minimal. This construction will be applied in the next section to
obtain minimal 4-homogeneous latin trades.

DEFINITION 1 Let T be a non-empty partial latin square of order m. Assume,
without loss of generality, that (ro,co) is a non-empty cell in T. (Note that rows,
columns and entries may be relabelled to make this assumption hold.) Then let er be
the entry in row ro and column cy of T'. We define T ) T to be the following partial
latin square of order 2m:

{(ro,c1,er), (11, co, ex) YU{(r2s, €25, €x), (T2i41, C2j41, €x) | (ris ¢, ex) € T, (2, 5)#(0,0)}.
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LEMMA 2 Suppose that T is a latin trade of order m with disjoint mate T', and
without loss of generality suppose that (rg,co) is a non-empty cell in T (T'). Then
T w T is a latin trade of order 2m with a disjoint mate T' w T".

Proof: The fact that T and 1" are disjoint and have the same shape implies that
T x T and 7" x T" are disjoint and have the same shape.
Now, we define S and S’ to be the following partial latin squares:

S = {(rai, aj, €x), (T2ir1, C2jer, €x) | (13, ¢5,ex) € T},

and
S" = {(rai, cajy ex), (r2ir1s cajrrsex) | (ri,cj,ex) € T},

Clearly S is a latin trade with disjoint mate S’. In fact S (S’) is just equal to two
copies of T' (T").

Next, observe that for each r; € R(2m), Rb,r = Ry and RY . = R, . But since
S’ is a disjoint mate of S, R = RE,. Thus for each r; € R(2m), Rir = R ypu-

Similarly, for each ¢; € C(2m), R}y = Rhvypr. Thus T x T is a latin trade
with disjoint mate 7" »x T”. O

The next two lemmata will enable us to show that if 7" is a minimal latin trade,
then T x T is also minimal.

LEMMA 3 Let T be a latin trade of order m. Suppose in addition that there exist
Ry, Ry C R(m) and Cy,Cy C C(m) such that all of the following conditions hold.

L [Ry|,|Ral, |Cal, |Ca] > 15

2. RiURy = R(m); Ry N Ry = 0;

3. CLUC, =C(m); CyNCy = 0;

4. (ri,cj) is empty in T if either r; € Ry and ¢; € Cy orr; € Ry and c; € Cy;
5. there exists a non-empty cell (r;,¢;) of T such that r; € Ry and ¢; € Cy; and
6. there exists a non-empty cell (r;,¢;) of T such that r; € Ry and ¢; € Cs.

Then T is the union of two disjoint latin trades.

Proof: Let S; C T be the partial latin square {(r;,cj,ex) | (ri,cj,ex) € T,r; €
R; and ¢; € C1}. Let T' be a fixed disjoint mate of T', and let S] C T” be the partial
latin square {(r;,c;,ex) | (ri,cj,ex) € T',r; € Ry and ¢; € C1}.

Clearly S; and S} have the same shape and are disjoint. Let (r4,c¢;,ex) € Si.
(Such a triple exists because of Condition 5 above.) Then (r;,c;,e;) € T' for some
j # j'. But ¢y € Cy, otherwise Condition 4 is violated. Thus (r;,cj,ex) € Si.
Similarly, (74, cj,e;) € S} for some i’ # 4. Therefore S; is a latin trade with disjoint
mate Si.
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Similarly, let Sy C T be the partial latin square {(r;,c;,e;) | (ri,¢j,ex) € T,r; €
R,y and ¢; € (b}, and let Sy C T be the partial latin square {(r;, ¢;,ex) | (r:, ¢, ex) €
T'.,7; € Ry and ¢; € Cy}. Then by similar reasoning as above, S, is a latin trade
with disjoint mate Sj.

But S; U Sy =T, so T is the union of two disjoint latin trades. |

LEMMA 4 Let T be a partial latin square of order m. Suppose in addition that
there exist Ry, Ry C R(m), C1,Cy C C(m), ex € E(m) such that all of the following
conditions hold.

1. |R1|7|R2|7|Cl|7|02| 217
2. RiUR, :R(m), RiNR,y :0;
3. CLUC, = C(m); CyNCy = 0;

4. there is exactly one non-empty cell (ry,c;) € Sy such that r; € Ry and ¢y € Cy,
and this cell contains the entry ey ;

5. there is no cell (r;,¢;) € Sy with r; € Ry and ¢; € Cy containing the entry ek.

Then T is not a latin trade.

Proof: Suppose, for the sake of contradiction, that T is a latin trade with disjoint
mate T’. Let [ be the number of occurrences of the entry ey in the latin trade T’
within the R; x C} subarray. Then, considering the set of columns C}, the fact that
the columns of T and 7" are balanced and Condition 5, ex occurs at most [ times
in T" in the R; x C, subarray. However, as r; € R;, and the rows of T and T’ are
balanced, then entry ex must occur exactly [+ 1 times in 7" in the subarray R; x Cf,
a contradiction. d

THEOREM 5 If T is a minimal latin trade then T % T is a minimal latin trade.

Proof: Assume that T x T is not a minimal latin trade; that is S C T x T for some
latin trade S. Without loss of generality, there are three possiblities: (rq,c1,er) € S
and (rq,co,er) & S; or (ro, c1,er) € S and (r1,co,e7) € S; or (ro,c1,er), (r1, co, 1) €
S.

In the first case let S = S; U Sy, where S; contains the cells selected from even
rows and even columns, while Sy contains the cells selected from odd rows and odd
columns. Since S is a latin trade, S is non-empty, so one of S; or Sy is non-empty.
If Sy is non-empty, then T' contains an isomorphic copy of Si, contradicting the fact
that T is a minimal latin trade. If S5 is non-empty, we obtain the same contradiction.

The second case is ruled out by Lemma 4. Otherwise, consider the third case, and
let S’ be a disjoint mate of S. If the cells (7, ¢1) and (7, ¢o) contain different entries
in §', then by considering S’ to be a latin trade with disjoint mate S, we again get
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a contradiction from Lemma 4. So we can assume that (7o, c1,ex), (r1, co,ex) € S’
for some entry ex. Next, let S3 be the partial latin square

(S\ {(ro,c1,er), (r1,co,e7)}) U {(ro, co,er), (r1,c1,e7)}.

Then S3 is row and column balanced with S, and is thus a latin trade with disjoint
mate

(S"\ {(ro,c1,€ex), (r1,c0,€x)}) U{(r0, co, €x), (r1,c1,€K)}

But from Lemma 3, S3 is not minimal. So let S3 = S; U S5, where S, is the latin
trade from the even rows and even columns, while Sy is the latin trade from the odd
rows and odd columns. Since S is strictly a subset of T', taking the isomorphic copy
of at least one of Sy, S5 in T implies that 7" is not minimal, a contradiction. a

3 Constructing latin trades from circle packings

In what follows let m be a positive integer greater than or equal to 4 and let E =
{2¢ | e € Z} be the set of even integers.

Let C be the set of unit circles in R x R with centres given by the points (z,y),
where @,y € E. For z,y € E, we will refer to the circle centred at the point (z,y) as
C(z,y). The set C can be partitioned into two subsets C; and C,, where

Ci = {C(z,y) | 2+y =0 (mod4)}, and
C, = {C(z,y) |z +y=2 (mod4)}.

LEMMA 6 For each pair of distinct circles C(x,y),C(r,s) € C such that C(z,y)N
C(r,s) # 0, we have |C(z,y) N C(r,s)] = 1, C(z,y) N C(r,s) C {(z,y +1),(z +
17:1/)7 (Iay - 1)a (SU - 1ay)}} and (T7 8) € {(SU,:(/ + 2)a (SU + 2ay)a (SC,:I/ - 2)7 (I - 2ay)}
and so C(z,y) € Cy if and only if C(r,s) € C,.

DEFINITION 7 For any given circle C(z,y) € C we define the neighbourhood,
N[C(z,y)], of C(z,y) to be a set of eight circles, where C(r, s) € N[C(z,y)] if and
only if

(r,s) € {(z,y+4),(z,y—4),(x+2,y+2),(z+2,y —2),
(x—4,y),(x+4,y),(x —2,y+2),(x — 2,y — 2)}.

LEMMA 8 For each C(z,y) € Cy, if C(r,s) € N[C(z,y)], then C(r,s) € Cy.

DEFINITION 9 For m > 4, let f be an onto labelling such that f : C; — R(m).
We say that f is a proper labelling if, for all C(z,y),C(r,s) € C;, whenever C(r,s) €
N[C(z,y)], then f(C(r,s)) # f(C(z,y)). Further, a proper labelling f is coherent if
whenever C(z,y),C(r,s) € Cy and f(C(z,y)) = f(C(r,s)), then f(C(z+a,y+b)) =
f(C(r+a,s+0)) for all a,b € E with a + b =0 (mod 4).
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DEFINITION 10 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of C;. We define g to be the induced labelling, g : C; — C(m), where g(C(z,y)) = ¢;
if and only if f(C(z,y —2)) = r;. (It is noted that since f is onto R(m), g is onto
C(m).)

LEMMA 11 Let g be as in Definition 10. Then for all C(z,y),C(r,s) € Ca, if
o(Clwy)) = 9(Clr,5)), then g(Cla +a,y +5)) = g(Clr +a,5 4+ b)), for all a,b € E
witha+b=0 (mod 4).

Proof: This follows from the definition of g and the fact that f is a proper, coherent
labelling. ]

LEMMA 12 Let f : Cy — R(m), wherem > 4, be a proper coherent labelling of C;.
For all z,y € E such that v +y = 0(mod 4), g(C(z + a,y + b)) # 9(C(z + ¢,y + d)),
where (a,b), (¢,d) € {(0,2),(2,0),(0,-2),(-2,0)} and (a,d) # (¢,d).

Proof: Assume g(C(z + a,y + b)) = g(C(z + ¢,y + d)), where (a,b), (c,d) are fixed
but distinct elements of {(0,2),(2,0), (0, -2),(—2,0)}. Then f(C(z+a,y—2+D)) =
f(C(z+ ¢,y — 2 +d)). However, C(z + a,y —2+b) € N[C(z + ¢,y — 2+ d)], and
so f(C(z +a,y—2+0b)) = f(C(z+ ¢,y — 2+ d)) contradicts the fact that f is a
proper labelling. The result now follows. ]

LEMMA 13 Let f : C; — R(m), where m > 4, be a proper coherent labelling of C;
and let g be as in Definition 10. For all C(z,y) € Cy, f(C(x +a,y+1b)) # f(C(z+
¢,y +d)), where (a,b), (c,d) € {(0,2),(2,0),(0,-2),(-2,0)} and (a,b) # (c,d).

Proof: The proof of this result follows from Lemma 12 and Definition 10. ]

DEFINITION 14 For all z,y € E, such that 2 +y = 0(mod 4), define a collection
S of line segments H(xz,y), V(z,y) as follows:

!

H(z,y) = {(«,y+1)|2" €[z,2+2]},
Viz,y) = {z+Ly) |y €ly—2}
S = {H(z,y),V(z,y) | v,y € E,x +y = 0(mod 4)}.

LEMMA 15 For each pair of distinct circles C(z,y), C(r, s) € C such that C(z,y)N
C(r,s) # 0, there exists a unique line segment S € S, satisfying C(z,y)NC(r,s)NS #
(0. Further, without loss of generality we may assume that C(z,y) € C; and precisely
one of the following holds:

1. C(r,s) =C(z,y+2), S=H(z,y) and C(z,y) N C(r,s)N S = {(z,y +1)};
2. C(r,s) =C(z,y—2), S = H(z—2,y—2) and C(z,y)NC(r,s)NS = {(z,y—1)};
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Figure 1: Some line segments from S.

3. C(r,s)=C(z+2,y), S=V(z,y) and C(z,y) NC(r,s)NS={(z+1,y)};
4. C(r,s) =C(z—2,y), S =V(z—2,y+2) and C(z,y)NC(r,s)NS = {(z—1,y)}.

Proof: The result follows from observation of Figure 1. d

DEFINITION 16 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of C;. Define h to be the induced labelling h : S — E(2m), where

hs) = e;, if and only if S = H(z,y) and f(C(z,y)) =r;, or
| €itm, if and only if S = V(z,y) and f(C(z,y)) = rs.

LEMMA 17 The labelling h defined in Definition 16 is a well defined function from
S onto E(2m).

Proof: The fact that h is well-defined follows from the fact that f is a coherent
labelling.

To show h is onto we let e; € E(2m). If 0 < i < m — 1, then, since f is onto
R(m), there exists a circle C(zg,y0) € C; such that f(C(zo,y0)) = ;. Further,
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C(zg,y0) N C(zo,y0 +2) N H(zo,y0) = {(z0,yo +1)}. Thus there exists an S € S,
namely S = H(zg,yo) such that h(S) =e;. If m < i < 2m — 1, then, since f is onto
R(m), there exists a circle C(zg,yo) € C; such that f(C(wo,yo)) = ri—m. Further,
C(xg,y0) N C(zo + 2,90) N V(2o,%0) = {(@o + 1,40)}. Thus there exists an S € S,
namely S = V(zg,yo) such that h(S) =e;. O

DEFINITION 18 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of Cy, and let g and h be the induced labellings given in Definitions 10 and 16. Let
o : R(m) x C(m) — E(2m) be a binary operation where for each r; € R(m) and
each ¢; € C(m), r; o c; = ey, if there exists C(z,y),C(r,s) € C,S € S such that
f(C(z,y)) =74,9(C(r,8)) = ¢, M(S) = e;, and C(z,y) N C(r,s) NS # P. Otherwise

7; 0 ¢; is undefined.

LEMMA 19 The binary operation o given in Definition 18 is well defined.
Proof: This follows from Lemma 15 and the fact that f is coherent. g
LEMMA 20 Let f : C; — R(m), where m > 4, be a proper coherent labelling of

Ci. Let C(z,y) € Cy be a circle such that f(C(z,y)) = r;. (Such a circle exists
because f is onto R(m).) Then r; o c; = ey, if and only if one of the following holds:

1. g(C(z,y+2)) =c; and h(H(z,y)) = e;
2. 9(C(z,y —2)) =c¢; and h(H(z — 2,y — 2)) = ex;
3. 9(C(z +2,y)) = ¢; and h(V(z,y)) = ex;
4. 9(C(z —2,y)) =cj and h(V(z — 2,y + 2)) = ;.

Proof: Cases 1 to 4 above follow from Cases 1 to 4 respectively from Lemma 15. [

COROLLARY 21 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of C;. Let C(2',y') € Cy be a circle such that g(C(2',y')) = ¢;. (Such a circle exists
because g is onto C(m).) Then r; o ¢; = ey if and only if one of the following holds:

F(C(y —2)) =ri and h(H(2',y' = 2)) = ex;
FO(@,y +2)) =7 and h(H(z' — 2,y)) = ex:
FC( = 2,)) = r; and h(V(2' — 2,1)) = ex;
F(C(2"+2,y")) = and R(V(2,y' +2)) =

Proof: Let C(a',y') € Cy be a circle such that g(C(a',y')) = ¢j. Then setting « = ¢/,
y =y — 2 in Case 1 of Lemma 20 gives Case 1 above. Similarly, letting z = 2’ and
y =y +2in Case 2 of Lemma 20 gives Case 2 above. Next, let z = 2’ —2 and y = ¢/
in Case 3 of Lemma 20 to obtain Case 3 above. Finally, letting z = 2’ +2 and y = ¢/
in Case 4 of Lemma 20 gives Case 4 above. d
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COROLLARY 22 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of C;. Let H(x,y) € S be a line segment such that h(H(z,y)) = ey, where 0 < k <
m — 1. (Such a line segment exists because h is onto E(2m).) Then r; o ¢; = ¢y, if
and only if one of the following holds:

1. f(C(z,y)) =1 and g(C(z,y + 2)) = ¢;;
2. f(C(x+2,y+2) =7 and g(C(x +2,y)) = ¢;.

Next, let V(z,y) € S be a line segment such that h(V(z,y)) = eg, where m < k <
2m — 1. (Such a line segment exists because h is onto E(2m).) Then r; 0 ¢; = ¢y, if
and only if one of the following holds:

3. f(C(z,y)) =r; and g(C(z +2,y)) = ¢;;

4. f(C(z+2,y—2))=r; and g(C(z,y — 2)) = cj.

Proof: The easiest proof comes by observation of Figure 1. d

LEMMA 23 For each r; € R(m), there exists precisely four distinct entries c;; €
C(m), j =1,2,3,4, for which r;oc;; is defined. Further, rioc;; # riocy, for distinct
J,J € {1,2,3,4}.

Proof: Let C(z,y) € C; be a circle such that f(C(z,y)) = r;. Since f is a proper
labelling and g is an induced labelling, Lemma 12 implies that the labels g(C(z,y +
2)), g(C(z + 2,y)), g(C(z,y — 2)) and g(C(z — 2,y)) are all distinct. Thus from
Lemma 20, and since f is coherent, there exists precisely four distinct ¢; € C(m)
such that r; o ¢; is defined.

Let these elements of C'(m) be ¢;1, ¢;2, ¢i3 and ¢ respectively for Cases 1 through
to 4 of Lemma 20. The fact that f is a proper labelling ensures that f(C(z,y)) #
f(C(xz—2,y—2)), and from the definition of h, we have h(C(z,y)) # h(C(x —2,y —
2)). Thus r; 0 ¢;y # r; 0 ¢jp. Similarly, f(C(z,y)) # f(C(z — 2,y + 2)), implying
7i 0 Cig # 750 ¢y Finally 7, 0¢, ri0cio € {€; | 0 < i < m — 1}, while 7; 0 ¢;3,
riocy € {e; | m < i < 2m — 1}. It follows that r; o ¢;; # 1 0 ¢;j, for distinct
j, 5 € {1,2,3,4}.

d

LEMMA 24 For each c¢j € C(m), there exists precisely four distinct integers rj; €
R(m), 1 € {1,2,3,4}, for which rj; o ¢; is defined. Further, rj; o ¢;j # rjz ocj, for
distinct i7" € {1,2,3,4}.

Proof: Let C(2',y') € Cy be a circle such that g(C(z',y")) = ¢;. Since f is a proper
labelling, from Lemma 13 the labels f(C(2',y' +2)), f(C(z'+2,v")), f(C(z',y —2))
and f(C(z' — 2,y')) are all distinct. Thus, since f is coherent, there exist precisely
four distinct r; € R(m) such that r; o ¢; is defined.
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Let these elements of R(m) be rj1, rjs, 7j3 and rj4 for Cases 1 through to 4 of
Lemma 21, respectively. Lemma 13 tells us that f(C(a',y' —2)) # f(C(«' — 2,y")),
which implies that h(H(a',y' — 2)) # h(H(z' — 2,y)). Also, f(C(z' — 2,v')) #
f(C(&',y +2)), implying h(V (2’ —2,y')) # MV (2, ¥ +2)). It follows that rj;0c; #
r;# o ¢j, for distinct 4,4 € {1,2,3,4}. O

LEMMA 25 For each e, € E(2m) there exists precisely two distinct rows ryy, 7y
€ R(m) such that 1y o ¢y = e, = Tga © Cra, for some ¢y, cpa € C(m), with k1 £ k2.

Proof: Fix ¢, € E(2m).

First, suppose that 0 < a < m — 1. Then since h is onto (from Lemma 17), e, =
h(H(z,y)), for some H(z,y) € S. Since f is proper, f(C(z,y)) # f(C(z+2,y+2)).
Thus, since f is coherent, from Corollary 22, we have exactly two distinct values r;
such that r; o ¢; = e, for some ¢; € C(m). So let 74 0 ¢y = ey = 2 0 cj2, where
re1 and ¢gp; come from Case 1 of Corollary 22 and ryy and ¢ge come from Case 2 of
Corollary 22. From Lemma 12, g(C(z,y + 2)) # g(C(z + 2,y)). Thus k1 # k2.

Otherwise, m < a < 2m — 1. Then e; = h(V(z,y)), for some V(z,y) € S.
Since f is proper, f(C(z,y)) # f(C(z + 2,y — 2)). Thus, since f is coherent,
from Corollary 22, we have exactly two values r; such that 7; o ¢; = e, for some
¢j € C(m). So let 741 0 ¢y = eg = rg2 0 co, where 741 and ¢y come from Case 3 of
Corollary 22 and 42 and c¢ge come from Case 4 of Corollary 22. From Lemma 12,
9(C(z +2,y)) # g(C(z,y — 2)). Thus k1 # k2, as above. O

LEMMA 26 Let e, € E(2m). Let ry1,rie € R(m), cp1,cpe € C(m), be the unique
entries such that Ty 0 cg1 = € = Ty © Cpo and Ty # Tr2, Ck1 7 Cra, as per Lemma
25. Then ry; ocpy and ryy o ¢y are both defined, and moreover 1y 0 Cpa, T2 © Cp1 and
ey, are pairwise distinct.

Proof: There are two cases to consider, namely 0 < k< m—landm < k <2m—1.

Assume 0 < k& < m — 1, then there exist 2/,y" € E such that h(H(2',y')) = e;.
From Corollary 22, f(C(',y')) = ri1, 9(C(2', ¥’ +2)) = cx1, f(C(a'+2,y'4+2)) = 142
and g(C(2' 4+ 2,v")) = co-

So letting z = 2’ and y = ¢/, from Case 3 of Lemma 20, 7 o co is defined
and is equal to h(V(z',y')). Next, we let z = 2’ +2 and y = ¥’ + 2, and from
Case 4 of Lemma 20, 742 0 ¢gy is defined and is equal to h(V(z',y’ + 4)). Since f
is proper, f(C(a',y')) # f(C(a',y" + 4)), which in turn implies that h(V(a',y")) #
h(V(a',y'+4)). Also, since 0 < k <m—1, e, # h(V(2',y)) and e; # h(V (a',y' +4)).

Next let m < k < 2m— 1. Then there exist 2,y € E such that h(V(z',y)) = e;.
From Corollary 22, f(C(2',y')) = ri1, 9(C(z' +2,Y)) = cx1, F(C(2'+2,y'—2)) =142
and g(C(2',y —2)) = cha-

So letting z = 2’ and y = ¢/, from Case 2 of Lemma 20, r; o cpa = f(C(2,y')) o
9(C(z',y'—2)) is defined and is equal to h(H (z'—2,y'—2)). Next, we let z = 2’42 and
y = y'—2, and from Case 1 of Lemma 20, rypocy; = f(C(2'+2,y' —2))og(C(2'+2,y"))
is defined and is equal to h(H (z'+2,y' —2)). Since f is proper, f(C(2' —2,y' —2)) #
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f(C(2'+2,y'—2)), which in turn implies that h(H (2’ -2,y —2)) # h(H(2'+2,y'-2)).
Also, since m < k <2m —1, e, # h(H(2' — 2,y —2)) and e;, # h(H(2' — 2,y' + 2)).
]

DEFINITION 27 Let m be a positive integer greater than 3, and let o be the
binary operation given in Definition 18. Define (N(2m),0) to be a 2m X 2m array,
where cell (r;,¢;) contains symbol ey if, and only if, 7; 0 ¢; = ey.

LEMMA 28 Let m be a positive integer greater than 3. The array (N(2m),o)
constructed in Definition 27 is a partial latin square of order 2m which satisfies the
following properties:

1. Each row contains either zero or four filled cells.
2. Each column contains either zero or four filled cells.
3. Each of the symbols 0,...,2m — 1 occurs in precisely two filled cells.

4. Let e, € E(2m) and let (r;,¢;) and (ry,cji) represent the two cells containing
symbol e,. Then there exists ey, exn € E(2m) such that ey occurs in cell (r;, cjr)
and symbol ey occurs in cell (ry,cj). Further all three symbols ey, ey, exn are
distinct.

Proof: The definition of the binary operation o and Lemmata 23 and 24 imply that
each of the symbols 0,...,2m — 1 occurs at most once in every row and at most
once in each column. Hence (N(2m), o) is clearly a partial latin square of order 2m.
Points 1 and 2 follow from Lemmata 23 and 24. Lemmata 17 and 25 imply that
each symbol occurs in two rows and two columns. Finally, Point 4 can be deduced
directly from Lemma 26. g

DEFINITION 29 Let f : C; — R(m), where m > 4, be a proper coherent labelling
of Cy, and let g and & be the induced labellings given in Definitions 10 and 16. Let
* : R(m) x C(m) — E(2m) be a binary operation where for each r; € R(m) and
each ¢; € C(m), r; % ¢j = ey, if and only if r; o ¢jy = e, = ry o ¢; for some ry € R(m)
and ¢j € C(m), with ¢ # ¢’ and j # j'. Otherwise 7; * ¢; is undefined.

Further, define (N(2m),*) to be a 2m x 2m array, where cell (r;,¢;) contains
symbol ey, if, and only if, r; x ¢; = ey.

LEMMA 30 The binary operation * given in Definition 29 is well defined.

Proof: Assume that this is not the case. That is, there exists r; € R(m) and
¢j € C(m) such that r;*¢; = e, and r;*¢; = eg, where « and (3 are distinct elements
of N(2m). Then there exists ru,r» € R(m), where r;,ry,rm» are all distinct, and
there exists ¢;/, c;» € C(m), where ¢;, ¢j, cj» are all distinct, such that

T; 0 le — € = Ty O C]', and, Tr; O C]'H = 65 = Ty O C]'.
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First assume 0 < a < m — 1 and so e, = h(H(z,y)) for some z,y € E. From
Corollary 22, either:

(4) f(Clz,y)) = i, 9(Clx +2,y)) = ¢j, f(Clx + 2,y +2)) = ry, 9(Clz,y +2)) = cjr;
(B) f(Clx +2,y+2)) =14, 9(Cla,y +2)) = ¢;, [(Cla,y) =re,9(Clz +2,y)) = ¢jr.

First consider Case A. From Lemma 20 there are four possibilities for c;u:
9(C(z,y+2)), g(C(z,y—2)), g(C(xz+2,y)) and g(C(z—2,y)). However the first case
implies j' = j” and the third case implies j” = j. So either eg = h(H(z —2,y—2)) or
eg = h(V(z — 2,y +2)). However from analysis of Corollary 22 it is then impossible
to find ry such that ry oc; = eg.

Next consider Case B. From Lemma 20 there are four possibilities for ¢;»: g(C(z+
2,y+4)), 9(C(z+2,y)), g(C(z+4, y+2)) and g(C(z,y+2)). However the second case
implies j” = j" and the fourth case implies j = j”. So either ey = h(H(z + 2,y + 2))
or eg = M(V(z + 2,y +2)). We want to find r such that r o ¢; = e, where
¢j = 9(C(z,y + 2)). However Corollary 22 rules out the existence of such an entry
Tin.

Next let m < a < 2m — 1 and so e, = h(V(z,y)) for some z,y € E. From
Corollary 22, either

(C) f(C(xv y)) = ri,g(C(x,y - 2)) = ijf(O(x + 27y - 2)) = ri’mg(c(x + 279)) = Cj3
¢, f(Clz,y)) = i, 9(Cla,y — 2)) = ¢5r.

First consider Case C. From Lemma 20 there are four possibilities for c;j:
9(C(z,y+2)), g(C(z,y —2)), g(C(z+2,y)) and g(C(xz —2,y)). However the second
case implies j” = j and the third case implies j” = j'. So either eg = h(H(z,y)) or
eg = h(V(z — 2,y + 2)). However from Corollary 22 it is then impossible to find 7y
such that r;» o ¢; = eg.

Finally consider Case D. From Lemma 20 there are four possibilities for c;u:
9(C(z+2,y)), g(C(z+2,y—4)), 9(C(z+4,y—2)) and g(C(z,y—2)). However the first
case implies j” = j and the fourth case implies j” = j'. So either eg = h(H(z,y —4))
or eg = h(V(z + 2,y — 2)). We want to find r;» such that ry o c; = eg, where
¢; = 9(C(z+2,y)). Once again Corollary 22 rules out the existence of such an entry
Tin. |:|

LEMMA 31 The array (N(2m), *) is a partial latin square of order 2m which sat-
isfies the following properties:

1. (N(2m), ) has the same shape as (N(2m),0);

2. (N(2m),*) and (N(2m),o) are disjoint;

3. (N(2m),*) and (N(2m),o) are row and column balanced.

Proof: First we prove that the arrays defined in Definitions 18 and 29 have the same
shape and are disjoint. Assume that there exists a cell (r;, ¢;) which contains symbol
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e in (N(2m), *). The definition of * implies that there exists ry € R(m)(i’ # 1) and
cjr € C(m)(j" # j) such that r; o ¢y = eq = ry o ¢;. Now Lemma 26 implies that cell
(ri,¢;) of (N(2m),0) contains symbol ey, where k1 # k.

Next assume that there exists a cell (r;,c¢;) which contains symbol ey in
(N(2m),0). Let C(z,y) € C; be a circle such that f(C(z,y)) = r;. Thus from
Lemma 20 there are four cases for c; and ey:

1. g(Clz,y +2)) = ¢; and h(H(z,y)) = ex;
2. 9(Cle,y —2)) = ¢; and h(H(z — 2,y — 2)) = ex;
3. 9(Clz +2,1)) = ¢; and A(V(z,1)) = ex;
4. g(Clz - 2,y)) = ¢; and h(V(z — 2,5 + 2)) = ey

For Case 1, let ry = f(C(x—2,y+2)) and ¢;; = g(C(x —2,y)). Since f is proper
and from Lemma 12, ¢ # i" and j # j'. From Lemma 20, r;oc; = h(V(z—2,y+2)) =
r# o cj. Moreover, h(V(z —2,y+2)) # h(H(z,y)) = ej, by the definition of . Hence
by Definition 29 the cell (r;,¢;) is filled in (N (2m), *).

For Case 2, let ry = f(C(x+2,y —2)) and ¢;s = g(C(xz+2,y)). Since f is proper
and from Lemma 12, ¢ # ¢’ and j # j'. From Lemma 20, r;oc; = h(V(z,y)) = rsoc;.
Moreover h(V(z,y)) # h(H(z — 2,y — 2)) = e;,. Therefore by Definition 29 the cell
(ri,¢;) 1s filled in (N(2m), ).

For Case 3, let ry = f(C(z + 2,y +2)) and ¢ = g(C(z,y + 2)). As in Cases 1
and 2,7 # i and j # j'. From Lemma 20, 7; 0 ¢j = h(H(x,y)) = 7y o ¢;. Moreover
h(H(z,y)) # h(V(z,y)) = ex. So once again the cell (r;,¢;) is filled in (N(2m), *).

Finally for Case 4, let r; = f(C(z—2,y—2)) and ¢;; = g(C(z,y—2)). Asin Cases
1,2 and 3,4 # 4" and j # j'. From Lemma 20, r;0c;s = h(H(z — 2,y —2)) = rp oc;.
Moreover h(H(z — 2,y — 2)) # KV (z — 2,y + 2)) = e;. Therefore the cell (r;, ¢;) is
filled in (N(2m), *).

So we have shown that (N(2m),*) has the same shape as (N(2m), o) and that
(N(2m),*) and (N(2m), o) are disjoint.

Consider the occurrence of symbol e; in the partial latin square (N(2m),o).
Lemma 25 implies that e, occurs in precisely two cells, say (ry,c,) and (ry,c.),
(u# wand v # z) of (N(2m), o). Definition 29 implies that ey occurs in cells (ry, ¢, )
and (ry,¢,) of (N(2m), x). Since (N(2m),*) and (N(2m), o) are the same shape and
disjoint, it follows that the two partial latin squares are row and column balanced,
in turn implying that (N(2m), *) is a partial latin square. O

COROLLARY 32 The partial latin square (N(2m), o) is a latin trade with disjoint
mate (N(2m), *).

REMARK 33 It should be noted that the partial latin square (N(2m),*) may also
be constructed directly from line segments in R x R. To see this, we take the line
segments of S and rotate them through 90° about their midpoint. That is, for all
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z,y € E, such that x +y = 0(mod 4), define a collection S' of line segments H'(z,y)
and V'(z,y) in the plane R x R, as follows:

H(z,y)={(z+Ly) |y €y.y+2]},
Viz.y) ={(2,y - 1) |2’ € [v,2 + 2]},
S ={H'(z,y),V'(z,y) | z,y € E,z +y = 0(mod 4)}.

Let f: Cy — R(m), where m > 4, be a proper coherent labelling of C1. Then define
an induced labelling b' : 8" — E(2m), where
H(S') = ei, if and only if S" = H'(z,y) and f(C(z,y)) =ri, or
| €iom, if and only if S' = V'(z,y) and f(C(z,y)) = ;.
Now let x : R(m) x C(m) — E(2m) be a binary operation where for each r; € R(m)
and each c; € C(m), r;xc; = ey, if there exists C(x,y),C(r,s) € C, 5" € 8" such that
F(C(z,y) =ri,9(C(r,s)) = ¢;, K (S') = ex and C(z,y) NC(r,s)NS # 0. Otherwise

r; 0 ¢ 15 undefined.

4 Primary 4-homogeneous latin trades

In this section we use the latin trades from the previous section to construct minimal
4-homogeneous latin trades.

LEMMA 34 The latin trade (N(2m), o) from Corollary 32 is minimal.

Proof: Suppose that T is a latin trade with T C (N(2m),0). It will be shown that
T = (N(2m), o).

Let r; € R(m) be a non-empty row in 7', and let f(C(z,y)) = r; for some circle
C(z,y) € Cy. (Such a circle exists because f is onto.) Then by Lemma 20, the cell
(i, ¢;) must be filled in T for at least one ¢; such that either:

L g(Clz,y +2)) = ¢;;
2. g(Cla,y —2)) = cj3
3. g(C(z +2,y)) =cj; or
4. 9(C(z = 2,y)) = ¢;.

Suppose the first case is true. Then by Lemma 20, the entry h(H (z,y)) must occur
in T. But if T is a latin trade, h(H(z,y)) must occur at least twice in T, so from
Corollary 22, the cell (f(C(z + 2,y + 2)),9(C(z + 2,y))) is non-empty in T'. Since
the entry h(H(z,y)) occurs exactly twice in T, in a disjoint mate of 1" the cells
(f(C(z+2,y+2)),9(C(z,y+2))) and (f(C(z,y)), 9(C(z+2,y))) must be non-empty.
Thus these cells are also non-empty in 7T'. So the first case implies the third case. In
addition, the first case implies that r; is non-empty, where 7, = f(C(z + 2,y + 2)).
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Let’s jump to the third case. By Lemma 20, the entry h(V(z,y)) must occur in
T. Again, h(V(z,y)) must occur twice in T, so from Corollary 22, the cell (f(C'(z +
2,y—2)),9(C(xz,y—2))) is non-empty in T. Since the entry h(V (z,y)) occurs exactly
twice in T, in a disjoint mate of T the cells (f(C(z + 2,y — 2)),9(C(z + 2,y))) and
(f(C(z,y)),9(C(z,y —2))) must be non-empty. Thus these cells are also non-empty
in T'. So the third case implies both the second case and that r;s is non-empty in T,
where 5 = f(C(z + 2,y — 2)).

Next assume the second case holds. By Lemma 20, the entry h(H(z — 2,y — 2))
must occur in T'. Again, h(H(z — 2,y — 2)) must occur twice in T', so from Corollary
22, the cell (f(C(z — 2,y —2)),9(C(z — 2,y))) is non-empty in T. As above, the
cells (f(C(z — 2,y — 2)),9(C(z,y — 2))) and (f(C(z,y)),9(C(xz — 2,y))) must be
non-empty in 7. So the second case implies both the fourth case and that r;3 is
non-empty in T, where r;3 = f(C(z — 2,y — 2)).

In a similar fashion the fourth case implies both the first case and that r; is
non-empty in T, where ry = f(C(z — 2,y + 2)).

So since at least one of the four cases are true, all of them are true. Moreover,
TOWS 741, T42, 43 and r; are all non-empty in T, where 7y = f(C(z + 2,y + 2)),
rio = f[(Clz + 2,y — 2)), ris = f(Clz — 2,y — 2)) and g = f(C(z — 2,y + 2)).
Therefore, by recursion, we have that for any circle C(z,y) € Ci, r; is non-empty
in T, where f(C(z,y)) = r;. Moreover, for each non-empty row r; in T, (r;,¢;)
is filled in T for four different values of j. Since f is onto R(m), it follows that
T = (N(2m),0). O

It is easy to construct a 4 homogeneous latin trade of size 4m by taking two copies
of (N(2m),o0). However we wish to construct 4-homogeneous latin trades that are
minimal, namely latin trades that contain no smaller latin trades. For this reason
we use the doubling construction from Section 2.

The previous lemma and Theorem 5 imply the following.

COROLLARY 35 Let T = (N(2m),0) be the latin trade constructed from the
previous section. ThenT T (as given in Definition 1) is a minimal, 4-homogeneous
latin trade of size 8m.

Together with Remark 38 in the next section this implies the existence of minimal,
4-homogeneous latin trades of size 8m for each integer m > 4.

5 An example

DEFINITION 36 Let f: C; — R(4) be defined as follows.

ro,if  +y =0 (mod 8) and z =y =0 (mod 4)
ri,if t+y =0 (mod 8) and z =y =2 (mod 4
HCley) = 4™ = ( ) = ( )
ro,if 2 +y =4 (mod 8) and z =y = 2 (mod 4)
r3,if £ +y =4 (mod 8) and z =y =0 (mod 4)
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The following lemma is straightforward to check.

LEMMA 37 The map f : C; — R(4), as given in the previous definition, is onto,
coherent and proper as per Definition 9.

REMARK 38 In fact for each integer m > 4, there exists an onto, coherent, proper
map f :Cy = R(m), given by: f(C(z,y)) = (3z +y)/4 (modulo m).

LEMMA 39 The following partial latin square of order 8 and size 16 is a minimal
latin trade.

{(T0760760)7 (rﬂaclaell)a (T0702765)7 (7‘0,C3,€2)7 (7‘1700765), (Tlaclael)v
(T1702763)7 (T1,03,€4), (T27007e7)7 (T2701760)7 (7‘2702762), (T27C3766)7
(7'3700761)7 (T3acla€6)a (7'3702767), (7'3,C3,€3)}.

Proof: Apply Definition 18, Lemma 20 and Corollary 32 to the function given above
in Definition 36. g

Now we apply the doubling technique from the previous section to the example
from Lemma 39 to obtain, finally, an actual example of a 4-homogeneous latin trade.

LEMMA 40 The following is a minimal, 4-homogeneous latin trade of order 8 and
size 32.

{(ro, c1,€0), (10, C2, €4), (10, Ca, €5), (10, Co5 €2), (71, Co, €0), (71, €3, €4), (11, €5, €5),
(7“1707,62)7(7‘2700765), T2, 02761)7(7‘2704763),(7“2706764)7(7‘3,01,65) (7“3703761),
(rs,cr,eq), 0,€7), (T4, C2,€0), (T4, Cay€2), (T4, Co, €6), (75, C1, €7),
( ( ( ( (
( (

)
7‘5705762), 7766)7 Te 0761)7 T6702766)7 Te,C4,€7), T6706763)7
T77C3766)a 7'7,05,@7)7 7'7707763)}

(7“3, Cs, 63)7
(5,3, €0),
( )

T7,C1,€1),

C C
Ts5, C ,C

(
(74,
(
(

6 An interesting 4-homogeneous latin trade in (Z,)?

Consider the following 4-homogeneous latin trade in the addition table for (Zs)3. It
can be verified that this latin trade is minimal.

+ ] 000|001 | 010 | 011 | 100 | 101 | 110 | 111 |

000 || 000 010 100 111
001 000 010 100 | 111
010 011 | 000 111 101
011 || 011 000 | 111 101
100 || 100 110 001 | 010
101 100 110 | 001 010
110 || 110 101 011 001
111 110 | 101 011 001

Figure 2: A minimal latin trade in (Z1)* of size 32.
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(Note: this latin trade is almost the same as the one given in Lemma 40. We had to
make a few adjustments so that it would embed in (Z,)3.)

The above latin trade has a number of interesting properties. Firstly, it seems
uncommon for a minimal latin trade to take up as much as half the elements of a latin
square. In fact, the latin square for (Z5)® can be partitioned into exactly two disjoint
copies of this latin trade. Remarkably both copies of the latin trade intersect each
of the 112 2 x 2 latin subsquares in the latin square. Furthermore if we replace one
of the latin trades with its unique disjoint mate we obtain a latin square containing
no 2 x 2 subsquares. In fact, R. Bean verified the following by computer:

THEOREM 41 The minimum value of |(Zs)* \ L|, where L is a latin square of
order 8 containing no 2 X 2 subsquares, is 32.

Finally, if we add just one more entry to the latin trade we obtain a critical set in
the latin square for (Z3)? of size 33. (The size of the smallest critical set in (Z3)? is
25 [17]).

Future directions for the research in this paper include:

e finding general ways to embed 4-homogeneous latin trades into (Z,)" and other
groups;

e using such embeddings to find new, small, critical sets in the latin squares for
these groups;

e determining classes of minimal 4-homogeneous latin trades which cannot be
constructed as in this paper (in particular ones of size 4m where m is odd);

e generalizing the results from Section 2 — that is, finding methods to treble,
quadruple, etc. minimal latin trades whilst preserving minimality;

e constructing minimal k-homogeneous latin trades for k£ > 4, if possible using
nice geometrical methods.
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