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Abstract

The induced path number p(G) of a graph G is defined as the minimum
number of subsets into which the vertex set V(G) of G can be partitioned
such that each subset induces a path. In this paper we investigate the
induced path number of the complement of graphs. We also look at
Nordhaus-Gaddum type results for trees, bipartite graphs and graphs in
general.

1 Introduction

We generally use the notation and terminology of [6]. Let S C V(G). The subgraph
of G induced by S, denoted (S), is the graph having vertex set S and edge set those
edges of G having both endpoints in S. For a graph G, the induced path number p(G)
is defined by Chartrand et al. in [5] as the minimum number of subsets into which the
vertex set V(G) of G can be partitioned such that each subset induces a path. They
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Figure 1: Rows and columns of G

investigated the induced path number for bipartite graphs and presented formulas
for the induced path number of complete bipartite graphs and complete binary trees.
They also determined bounds on the induced path number of trees and considered
the induced path numbers of meshes, hypercubes and butterflies. Broere, Jonck and
Voigt in [4] and Broere and Jonck in [2] further studied the induced path number of
graphs.

In [1] an encompassing theory of partitions of the vertex set V(G) of a graph G
is discussed. The contents of this paper does not fit into the framework given in [1]
since the property “to be an induced path” is not hereditary. Nevertheless, the topic
studied in this paper has given rise to interesting results on notions that are typical
in [1], viz. uniquely partitionable graphs and critical graphs.

The following results for paths, cycles, empty graphs and complete graphs are
immediate and take little or no explanation.

Observation 1 For the path on n vertices, p(P,) = 1.
Observation 2 For the cycle on n vertices, p(Cy) = 2.

Observation 3 For the complete graph on n vertices, p(K,) = [%] . In other words,
for any positive integer k, p(Ko) =k and p(Kypqr) = b+ 1.

The cartesian product of two graphs G; and G, denoted G x G, has vertex set
V(G1 x G2) = V(G1) x V(G2) and edge set E(G1 x Ga) = {(u1, ua)(v1,02) |us = vy
and usvy € E(G9) or ug = v and ujv; € E(Gy)}. In Figure 1 we indicate, with an
example, what we mean by the rows and columns of a graph of the form G = G; x Gs.
Here, G = K3 x K3 and in this case there is a complete graph K3 in every row and
a complete graph K in every column.

The following results are known for the cartesian product of paths, complete
graphs and cycles.

Theorem 1 (Chartrand et al. in [5]) Form > 2, n > 2, p(P,, x P,) = 2.
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Figure 2: K3 x K,

Theorem 2 (Broere et al. in [3]) Suppose n > m. Then

3 if n even andn >m
p(Km x Kp) =4 5+ %-| if nis even andn =m
L4 (2] if nois odd.

Theorem 3 (Broere et al. in [3]) Suppose m and n are positive integers. Then
p(Cp x Cy) < 3.
Furthermore, if m and n are both odd, then p(Cp, x Cp) = 3.

A special case of the above theorem is the following.

Theorem 4 (Broere et al. in [3]) Suppose a,k are positive integers, n = 4a and
m = 2a(2k — 1)+ 1. Then
p(Cn x Cy) = 2.

2 The induced path number of the complement of certain
classes of graphs

An example of a graph of the form K, x K, is shown in Figure 2. This complement
can also be described, as a product of graphs, by the following:

For the graphs K,, and K, the graph K, x K, has vertex set V(K,,) x V(K,)
and the vertices (a,b) and (c,d) are adjacent if and only if

a is adjacent to ¢ in K,
and

b is adjacent to d in K, ,

that is, a # ¢ and b # d.
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Lemma 1 If G = K, x K,,, then G does not have a path of order siz as induced
subgraph.

Proof: Suppose G has an induced path of order six. Let this path be vyv,v5040506.
Since the three vertices vy, v3 and vy are mutually independent, they must all three
be in the same row or in the same column. Without loss of generality we may assume
they are in the same row. Since vg is nonadjacent to v; as well as to vz, it must then
also be in the same row as v; and v3. But then vg is in the same row as vs, which is
not possible, since vs is adjacent to vg. |

Theorem 5 If m = 3%-2° and n = 2% - 3* where a,b are nonnegative integers and

G =K, x K,, then
mn

W@ =[5
Proof:

(i) Since by Lemma 1, no six or more vertices of G induce a path, we have that
— mn
W@ 2[5 ]

(ii) By using induction on a + b, we now prove that
— mn
W@ <[]
Ifa=0b=0, then K,, x K, = K; x K; = K, and

- [f- (2]

Now suppose that

— mn
p(G) < ’V?-I
for all values a + b S_k. Let m = 3%-2% and n = 2¢ E)b witha+b=F+ 1.
Consider the graph G and partition the vertices of G in § x 3 = ¢ (or
T x & = 1) blocks of 2 by 3 vertices (or 3 by 2 vertices) each.

In every block of six vertices, form an induced path of order five in such a
manner that the vertices not used form a graph G; where G; = K% X Kg (or
G1 = K% X K%)

This is always possible since m = 3%+ 2% and n = 2% - 3°. Then we have
p(G) < p(Gr)+

mn

6

w3

<

|
- [
[
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Figure 3: K3 x K,,, n odd

We conclude that p(G) = [Z2]. ]
Note that p(Ky x Ky) =2 = [22] 4 1.
Conjecture 1 p(K,, x K,) = [2%] except when

1. m=3andn e {3,5,8,10,11,13,14,15,...}

2. m and n odd, m,n > 5 and mn = 0 (mod 5).

In cases (1) and (2) we conjecture that

P < ) = [ + 1

It is easy to check that p(K,, x K,) = [%%] for the values of (3,n) excluded by
(1): (3,2),(3,4),(3,6),(3,7),(3,9) and (3,12). For all other values of (3,n) we can
support this conjecture by showing that p(K,, x K,) < [3?"] + 1

Clearly p(K3 x K3) =3 =[2] + L.

A partition of the 3n vertices of K3 x K,, , n odd, in [3?”] + 1 induced paths
where a = | %] paths are of order five, one path is of order four, b = |2=30=2] jf
n>11 (b= T@J if n < 11) paths are of order three and at most one path is of

order one or two (if 3n — 5a — 4(1) — 3b = 1 or 2) is shown in Figure 3.

A partition of the 3n vertices of K3 x K,, n even, in [3?”] + 1 induced paths
where a = % paths are of order five, b = | 2232 | paths are of order three and at most
one path is of order one or two (if 3n — 5a — 3b =1 or 2) is shown in Figure 4.

Thus p(K3 x K,) < [3?"] + 1.

We can further support this conjecture by showing that p(K,, x K,) < [%1 +1
for the pairs (m,n) of case (2) too. For this we let mn = 5a. A partition of the ban
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Figure 4: K3 x K,,, n even

vertices of Ky, x K, a = 1,3,5,..., in [5“?”] 4+ 1 = an + 1 induced paths can be
found as follows:

First partition the vertices in two classes V; and V4 such that (V1) = K5, X Kp—3
and (V3) = Kj, X K3. A partition of the 5a(n — 3) vertices of (V;)into a(n — 3)
induced paths of order five is shown in Figure 5—mnote that this partition is based
on the fact that n — 3 is even.

In case (2) we showed that

_ 1
p(K5a X Kg) < ’V%-‘ +1=3a+1.

Thus we have

p(K5a X Kn)

IA

a(n—3)+3a+1
= an+1

I
—
[
E
S
—_—
_|_
=~

For use in some of our following results, we prove the following.
Theorem 6 p(P,) = [%4] if n > 4.

Proof: The result is clear if n = 4.
Suppose there are five vertices in P,, n > 5, that induce a path. Then P, contains
a C3, which is impossible. Thus we have

n

P2 7] n 2.

A partition of the n vertices of P, in H] induced paths is now described:

Suppose the vertices of P, are {v1,vs, ..., v,} with each v; adjacent to v;y1, 7 < n.
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Then there are integers p and r such that n =4p+r and 0 <r < 4. If r =0, the p

sets of vertices of the form {va; 11, Vair2, Vairs, Vaiza},? =0,1,...,p — 1 suffice.

If r > 0, the p sets {Vair2, Vaits, Vaiza, Vaigs} (2 = 0,1,...,p — 1) and the set
{v1, Vapsa, ..., Vapyr} (of 1,2 or 3 vertices, depending on the value of 7) each induces
a path.

Thus p(P,) < [%1, n > b. |

Next we find the induced path number of the complement of a cycle.

Theorem 7 If n # 3,4,7, then p(C,) = [%]. Furthermore, p(C3) = 3, p(Cy) = 2
and p(C7) = 3.

Proof: It is straightforward to verify that p(C3) = p(K3) = 3, and p(Cy) = p(2K>5) =
2.

Let the vertices of C, be vy,vs,v3,...,0, iith Vi1 € E(Cy) for 1 < i < n
and_vnvl € E(C,). Since C, is triangle-free, C,, cannot contain an induced Ps, so
p(Cr) > [§]. We consider five cases:

Case 1: n = 4k where k > 2. In C,, the k sets {vVgit1, Vaiy2, Vairs, Vaira}, for 0 < i <
k — 1, each induce a P;. Thus p(C,) = k = [2].

Case 2: n = 4k + 1 where k > 1. In C,, the k sets {viy1, Vaire, Vaivs, Vaira}, for
0 <i < k—1, each induce a P, and the set {v,} induces a P,. Thus p(C,) = k+1 =
[31.

Case 3: n = 4k + 2 where k > 1. If k = 1, then in Cj the two sets {v;,v3,v4} and
{v2,v5,v6} each induce a P; so that p(C) =2 = [%]. For k > 2, in (C,), the
kE — 1 sets {vaiy1,Vair2, Vaiy3, Vaira}, for 0 < 4 < k — 2, each induce a P;. The two
sets {v4k,3,v4k,2,v4k+1} and {v4k,1,v4k,v4k+2} each induce a P3. Thus p(C_n) =
(k—1)+2: f%]

Case 4: n = 4k + 3 where k > 2 In C,,, the k — 1 sets {vai}1, Vair2, Vairs, Vaira}, fOr
0 < i< k-2, each induce a Py. The set {vag_2,Vag_1, Vag, Vaps1} induces a Py and
the set {var_3, Vapi2, Vapys} induces a Py. Thus p(C,) = (k—1)+2 = [

Case 5: n = 7. Clearly, p(C7) > 2. Suppose p(C7) = 2. Then one induced path in
C contains four vertices that induce a Py, and furthermore, these vertices must be
consecutive in C7. But then the three remaining vertices do not induce a Ps in C.
Thus, p(C7) > 3. The three sets {v,}, {vs, v3,v6}, {vs, vs,v7} form a path partition
of C7. Thus p(C7) = 3. |

We complete this section by considering the induced path number of the com-
plement of products of paths and cycles. Note that C3 x C3 = K3 x K3, so that
p(CQ, X Cg) =3.

Theorem 8 Let m,n # 3,4. Then p (Cp, x Cy) = {%] .

Proof: Let G = C, x C,, where m,n # 3,4.

Note that there is no induced Ps in G, since otherwise G contains a triangle.
Therefore,
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0 (CnxTr) 2 7]

Now we prove that p (C, x Cp) < [22] :
Case 1: m =0 (mod 4) or n = 0 (mod 4)

Suppose that n = 0 (mod 4) Note that C, is an induced subgraph of G. To find
an induced path partition for G, partition each of the m rows into p (C ) partition

sets. Then
p@re) <mf3]=[5]

If n # 0 (mod 4), then m = 0 (mod 4) and the result follows similarly.

Case 2: m =1 (mod 4) and n =1 (mod 4)

Note that mn is also 1(mod 4) and that [2%] = 2243 We first form the following
m (251) sets in the rows {vi, -y viads o {Vin—1)s - -, Viga—1y }, 1 <4 < m. Then we
form the following 21 +1 sets in column n: {vin, ... ,1)4”}, o Uty - - V1) }s
{vmn}. Each of these %53 sets induces a path.

Case 3: m =1 (mod 4) and n = 2 (mod 4)
Note that mn is also 2 (mod 4) and that [Z2] = 2242 We first form the follow-

ing m (%52) sets in the rows: {v;1,...,vu}, {vig, ... vzg} , {Vitn—1y, - - -, Vi(n— 1)}
1 < 4 < m. Then we form the following 2 sets in column 5 {v1s, - - v45}
{ven-05:-- -, vm-1)5}. We also form the 2L sets in column n: {van, ..., vsn} -
{Vm=3)n:- -, Unmn}. Lastly, we form the set {Ums,v1n}. Each of these mni2 sets

induces a path.
Case 4: m =1 (mod 4) and n = 3 (mod 4)

Note that mn is 3 (mod 4) and that [22] = 22 We first form the following

(m—2) ( ) sets in the rows: {vi1,..., v}, {vis,-- s vis}s -- - {Vin—s6), - - - s Vitn—3) },
1 <i < m—2. Then we form the following 3 (m4_1) sets in column i, J € {n 2,n—
Ln}: {vi, .. v}, oo {vme-a)j - - > Um-1)j}- Next we form the following 2 (237)
sets in row ¢, ¢ € {m — 1,m}: {vi,..., v}, ..., {Vin=10),-- -, Vin—7)}. Lastly we

form three sets: {Um(n=a); V(m=1)(n=6): Vm(n=6) }» {V(m=1)(n=5)> V(m=1)(n=4a)s V(m=1)(n=3)
Um(n—5)} a0d {Un(n=3), Um(n=2), Um(n-1); Umn }, Each of these %*1 sets induces a path.
Case 5: m = 2 (mod 4) and n =2 (mod 4)

Note that mn is 0 (mod 4) and that [Z2] = 2% We first form the following

m (%52) sets in the rows: {vi1,...,via}, ..., {Vin-5), - - - Vin-2)}, 1 < i < m. Then we
form the following 2 ( ) sets in column n—1 and column n: {vin— 1) <3 Va(n—1) }5
{U (m=5)(n—=1)s+ -+ V(m=2)(n-1) } {U2n7 .. U5n} {U (m— 4)717 sy Uim— l)n} LaStly

we form the set {v(m D(n-1)s Vm(n—1), V1n, Umn} Each of these 22 sets mduces a path.

Case 6: m = 2 (mod 4) and n = 3 (mod 4)

Note that mn is 2 (mod 4) and that [Z%] = 2242 We first form the following
m(”T_?’) sets in the rows: {vs1,...,vu}, ..., {Vig— 6),.. ,Vitn—3)}, 1 <@ < m. Then

we form the following 3 (22) sets in column j, j € {n —2,n — 1,n}: {vyj, ..., v4;},

4
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ooy {Vm=5)js - -, VU(m=2);}. Lastly, we form the two sets {vum—1)(n-2), Um(n-1)> Vmn}
and {Umm—2), Vm-1)(n—1), Ym—1)n }- Bach of these %“ sets induces a path.

Case 7: m = 3 (mod 4) and n = 3 (mod 4)

Note that mn is 1 (mod 4) and that [22] = 2243 We first form the following
m (”T_?’) sets in the rows: {vir,..., v}, ..., {Vitn=6)s- - > Vitn=3)}, 1 <4 < m. Then
we form the following 3 (mT’?’) sets in column j, j € {n —2,n —1,n}: {vy,...,vs},
ooy {Vm=6)j, - - - V(m=3);}. Lastly, we form the two sets {vin—2), V(i=1)(n=1); V(i=1)n},
i € {m — 1,m} and the set {Vm-2)(n=2), Um(n—1), Umn}. Each of these %*3 sets
induces a path. |

The following observation and lemma will be useful in proving some later results.
Observation 4 If H is an induced subgraph of G, then

1. G — H is an induced subgraph of G,
2. H is an induced subgraph of G and
3. G — H =G — H is an induced subgraph of G.
Lemma 2 If H is any induced subgraph of a graph G, then
§(G) < p(H) + pl(G — H).

Proof: Suppose H is an induced subgraph of G, Vi,...,V} is an induced path
partition of H where k = p(H) and Uy, ..., U, is an induced path partition of G — H
where j = p(G — H). Clearly, Vi,...,V;,Uy,...,U; is a partition of V(G). Also,
each of the sets Vi,...,V,,Up,...,U; induce a path in G since H and G — H are
induced subgraphs of G. Hence we have an induced path partition of G using k+j =
p(H) + p(G — H) sets. Therefore, p(G) < p(H) + p(G — H). [ |

For any 1 < j < m, we have C} X P; is an induced subgraph of Cj x C,, so we
have p(Cy, x Cp) < p(Ck % Pj) 4+ p(Cy X Pr—j).

The graph C3 x P, can be thought of as a graph where the vertices are arranged
into 3 rows and m columns. Each column induces a C3 and each row induces a P,,.
We use a;; to denote the vertex in row 4, column j.

Lemma 3 If G = O3 X Py, or G = C5 x Cy,, m > 4, then G does not have a path
of order sixz as an induced subgraph.

Proof: Suppose G has an induced path of order six. Let this path be vy v9v304056.
Then in G the vertices vy, v3, v4, Vg irlduced two cycles of length 3 which share an
edge. But this cannot happen. Thus G does not contain any induced paths of order
Six. |

Thus, each induced path in C3 x P,, and C3 x C,, has at most 5 vertices.

Lemma 4 If G = C3 x Py or G = C3 x Cp, m > 4, then any induced path partition
of G' contains at most | 3| induced paths of order five.
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Proof: Let v;v,v;304v5 be an induced path of order five in G. In G, the vertices
vy, v3,vs induce a C3. Therefore, these three vertices come from the same Cj in
G. We have vv4, vavs, VoV € E(G) SO g, v4 are in the same C3 in G. Thus, each
induced P; in G uses two Cs’s in G. Therefore, any induced path partition of G
contains at most | %] induced paths of order five. |

We now give a lower bound on the induced path partition number of C3 x C),
and C3 x P, for m > 4.

Theorem 9 For m >4, if G = C3 X Py, or G = C3 x Cp, then p(G) > [32].

Proof: Let [; be the number of induced paths of order 7 in a minimum induced
path partition of G. Counting the number of vertices, 3m = 5l5+4l,+3l3+21,+11; <
5ls+4(ls+ 13+ +11) < 5ls+4(p(G) — I5). Rearranging, p( G) > ¥ By Lemma
2, I; < [2] and therefore p(G) > [22]. [ |

Next, we give an upper bound on p(C; x Py,) and p(C3 x C,) for m > 4.

Theorem 10 For m > 4, if G = C3 x Py, or G = C3 x Cy, then p(G) < f2m] for
m > 4.

Proof: Let m > 4. For m = 4, p(G) < 3 since the three sets {vyy, Va1, v31, Vag,
v3a}, {v13, Va3, U3, Vaa, U3a}, {V12,v14} each induce a path in G.

For m =5, p(G) < 4 since the four sets {Ull,U2£U317U227U32}, {v23, V33, V14, Vo4,
v3a}, {v12,v15}, {v13, U25,v35} each induce a path in G.

For m = 6, p(G) < 4 since the four sets {vu,v21,v31,vgg,v32_}, {va3, v33, V14, Vo4,
v3a}, {v12, V13, V15 }, {V25, Va5, V16, V26, Vs3e } €ach induce a path in G.

For m =7, p(G) < 5 since the five sets {v11,va1, Uz1, V22,032 }, {’1}237’[}33,1)14_,1)247
v34}, {via,v13, U1}, {v2s, U35, V16 }, {Va6, V36, V17, V27, U37} €ach induce a path in G.

For m = 8, p(G) < 6 since the six sets {vi1,va1,V31, V22, V32}, {Va3, Uz, V14, V2a,
34}, {1111, vir}, {v13,v16}, {015, Va5, Uss, V26, Va6 }, {27, Var, V1s, Uas, Uas} each induce a
path in G.

For m = 9, p(G) < 6 since the six sets {vi1,va1, V31, V22, V32}, {Va3, Uz, V14, V2a,
vz}, {v1a, V13, Va7}, {1157”257”35,”1&”36}7 {26, V17, Va7, V18 }, {Vas, U3s, V19, Vag, Uzo }
each induce a path in G.

We proceed by induction on m. The result holds for 4 < m < 9. So suppose
m > 10 and for all integers k& with 4 < k& < m we have p(C3 x P;) < [%1 and
p(Cs x C) < f%] Then

p(Cs x Cp) < p(Cs X Ppy_g) + p(C3 x Ps)

<Oy 2

and similarly, p(C3 x P,,) < f%”] [ |
We summarize with the following:
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Theorem 11 For m > 4, [32] < p(Cs X Py,) < [22] and [*2] < p(Cs x Cp) <

[

We finish this section by considering the complements of products of paths and
cycles with Cy.

Theorem 12 Form > 2, p(Cy X P,) = m.

Proof: The graph Cy x P, contains no induced paths of order five, since Cy X Py,
does not contain an induced C;. Thus p(Cy X Py,) > 4Tm =m.

Now p(04 X Pz) = 2 since the two sets {UH,U2171}127’U42}, {1}2271}31,1)32,1)41} each
induce a P4 in 04 X Pz. Next, p(C4 X Pg) = 3 since the three sets {’1}117 1}21,1)12,1)13}7
{Uzz,Ugl,Ugg,Ugg}, {1}41,1}42,1}437 U33} each induce a P4 n C4 X Pm.

Suppose m > 4 and for all integers & with 3 < k < m we have p(Cy x Py,) < k.
Then m < p(Cy X Pp,) < p(Cy X Pp_g) + p(Cs X Py) < (m—2) +2 =m. [ |

Theorem 13 For m >4, p(Cy x Cp,) = m.

Proof: Suppose m > 4. The graph C4 x C,, contains no induced paths of order
five, since Cy x Cy, does not contain an induced C3. Thus p(Cy x Cp,) > 4Tm =m.
Then m < p(Cy X Cp,) < p(Cy X Pp_s) + p(Ca X Py) = (m —2) + 2 =m. [ |

3 Nordhaus-Gaddum type results

It is interesting what relationships hold with a given parameter and its complement.
One of the most famous results is due to Nordhaus and Gaddum [7] who in 1956 gave
bounds on the chromatic number of a graph and its complement. Here the chromatic
number of a graph G, denoted x(G), is the minimum number of subsets into which
the vertex set of G can be partitioned such that each induced subset contains no
edges.

Theorem 14 (Nordhaus and Gaddum [7]) For any graph G with n vertices,

1. 2v/n < x(G)+x(G) <n+1 and

In this section we investigate bounds on the sum of the induced path number of
a graph and its complement.

Theorem 15 For any graph G of order n,

Vi< l6)+0) < | 5.
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Proof: The proof of the upper bound is done by induction on n, the number of
vertices in G.

Suppose n = 1. Then G = G = K}, p(G) = p(G) = 1 and the result holds.

Suppose n = 2. Then {G,G} = {Ky, Ky}, p(G) + p(G) = 1+ 2 = 3 and the
result holds.

Suppose n = 3. Then {G,G} C {K3, K3, P5, P3}. If {G,G} = {K;3, K3}, p(G) +

p(G) = 3+2 =5 and the result holds. If {G,G} = {Ps, B3}, p(G)+p(G) =1+2=3

and the result holds.

Now, suppose that any graph H with m vertices where 1 < m < n satisfies

p(H) + p( ) < [22] and suppose G is any graph with n > 4 vertices. Let Py be a

longest induced path in G.

Case 1: k = n. Then p(G) = p(P,) = [2] and p(G) + p(G) = 1+ [2] < [22].

Case 2: k <n. Let H=G — P;. Now H has 1 < n — k < n vertices, and by the
inductive hypothesis, p(H) + p(H) < [3(” M.

Case 2.1: k = 1. Then G = K,, and G = K,. Hence, p(G) + p(G) = n+ [2] =
(3.

Case 2.2: k= 2. Then G — H = P, and p(G — H) = 2. By Lemma 2, p(G) <
p(H) +1 and p(G) < p(H) + 2. Hence, p(G) + p(G) < [2=2 2 1 +3= [2].

Case 2.3: k =3. Then G — H = Py and p(G - H) = 2. By Lemma 2, p(G)
p(H) + 1 and p(G) < p(H) + 2. Hence, p(G) + p(G) < |—3("2—_3)-| +3 < [2].

Case 2.4: k > 4. Then G — H = P, where k > 4 and by Theorem 6, p(G — H
[4]. By Lemma 2, p(G) < p(H) + 1 and p(G) < p(H) + [£]. Hence, p(G) + p(G
|—3n 01 4 TE] 41 < Sn=BREL 4 ks 4] o nGheBbhet _ GnoSh0 o Gn < [,

IN

Therefore, in every case, p(G) + p( G) < [27.

Note that the only time it is possible for p(G) + p(G) = [22] is when the order
of the longest path is 1 or 2.

Now for the lower bound. Let z = p(G). Then by the pigeonhole principle,

G contains a partition class with an induced path of length at least [2]. Thus, ¢
(2]

contains a complete graph of order [ = -‘ And G will require at least [ -‘ partition

2
classes. Hence, p(G) > [@—I > £ So, p(G) + p(G) =z +p(G) >z + L.

Now, f(z) =  + {+ has a minimum when f'(z) = 1 — % = 0 since f "(z) =
52 > 0. This happens when = = 4 Hence, f(z) > f(¥ 5 ) 4 + 4; = /n.
Therefore, p(G) + p(G) > /n. [

The upper bound in this theorem is achieved by the complete graph K.
The lower bound is achieved by the following in general described graph G :

Recall that in a complete p-partite graph H, it is possible to partition V (H)
into p subsets V4,...,V, such that E(H) = {uv /u € V;,v €V}, 1 <i # j < p}.
Note that each V; is an independent set. Now, by replacing each independent set V;
in H by a path Py, the complete p-path-partite graph Kp,,,...,p,, is formed. Let
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Vi1, Vg, - - -, Vi(4p) be the vertices of the ith Py, where p=2,3,...and ¢t =1,2,...,p.
Let G be Kp,,,...,p, except for the edges {visvs2, V17027, V1(10)V2(10), V1(15)V2(15),
V1(18)V2(18)5 - - -5 V1(4p—1)V2(4p—1), V23V33, VU26U36, U2(11)V3(11), V2(14)U3(14), VU2(19)V3(19)5 - - 5
V2(4p—2)U3(4p—2)5 - - }

U{v(p—1)2Vp2, V(p—1)70p7; V(p—1)100Up(10) V(p—1)15Vp(15) » V(p—1)18Vp(18) 5 - - - 5
V(p—1)(4p—1)Up(4p—1) } When p is even or
U{U(P—1)3UP37 V(p—1)6Up6, U(p—1)11Up(11), U(p—1)14Up(14), V(p—1)19Vp(19) - - - »
V(p—1)(4p—2)Up(ap—2) } When p is odd.
See Figure 6 for the case p = 2 and i = 2.

Note that G has 4p* vertices. In G, the p Py,’s form p induced paths so that
p(G) < p.In G, there are the following p induced paths: {vi3,v11, V14, V12, Vag, Voa, Va1,
Va3, U33, - - - , Upg When p is even or v, when p is odd} on the first four vertices of each
Tow,

{v16, V18, V15, V17, Va7, V25, Vag, Vag, Uss, - - - , Ups When p is even or v,; when p is odd}
on the next four vertices of each row, ...,

{v10ap-2), Viap), Viap-3)5 Vi(ap—1), Va(ap-1), V2(ap—3)> V2(p)> V2(4p—2) U3(ap=2) - - - »
Up(ap—2) When p is even or vpup—1) when p is odd} on the last four vertices of each
row. Again see Figure 6 for the case p = 2 and i = 2.

Hence p(@) < p and therefore p(G) + p(@) < 2p. By the above theorem,
p(G)+p(G) > 2p. Therefore p(G) + p (G) = 2p = \/4p*.

Theorem 16 For any bipartite graph G of order n

14 [2] < 0(0) + (D) < F’ﬂ .

Proof: Let G be a bipartite graph with partite sets of order a and b where a < b.
The upper bound follows from Theorem 15.

Now G is spanned by the two disjoint complete graphs K, and K. A set in the
vertex partition of G contains at most two vertices from the K, and at most two
vertices from the K. Thus G contains no induced P;. Thus, p(G) > [2]. Since
p(G) > 1, the result holds. |

The bounds given by this theorem are sharp: The graph K,, the complement of
the complete graph, is bipartite and achieves the upper bound. For the lower bound,
we have by Theorem 6 that

n

p(Py) + p(Py) = 1+ [ﬂ , n> 4.

4 Nordhaus-Gaddum Results for Trees

In this section, we give a lower and upper bound on the sum of the path partition
number of a tree and its complement. Furthermore, we give a construction of all the
trees which achieve this lower bound.
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Theorem 17 Let T' be a tree and let L be the set of all leaves of T'. Then o(T) +
p(T) > |L|.

Proof: Each set in any induced path partition of 7' contains at most 2 leaves of T,
so that p(T') > |L]/2. In T, the vertices of L form a clique. Each set in any induced
path partition of T contains at most 2 vertices of L. Thus, p(T) > |L|/2. [ ]

Let 7 be the family of trees 7' such that p(7)+p(T) = |L|. Consider the following
two operations on any tree 7'
Type 1: Attach a P to T by adding an edge between a non-leaf of the P3 and any
non-leaf of T'.
Type 2: Attach a P, to T by adding an edge between a non-leaf of the P, and any
non-leaf of T'.

We define two classes of trees:

Cs = {T' | T is a tree that can be obtained from a P; by a finite non-empty
sequence of at least one operation of Type 1 and Type 2}

Cy = {T | T is a tree that can be obtained from a P; by a finite sequence of
operations of Type 1 and Type 2}.

We will show that 7 = C3UC,.

Theorem 18 C3UC, C 7.

Proof: Let T € C3 UCy. Then T is constructed using £ P’s and m P,’s, so that
n = 3k + 4m and |L| = 2k + 2m. By the definition of C3 U Cy, if m = 0 then £ > 2.
Now p(T) = |L|/2 because we can form an induced path partition of T by taking
each of the k P3’s and m P,’s.

Now consider T. Let each P; in T have vertices x;,y;, z;, where x;,2 € L and
0 <17 < k. Let each P, in T have vertices a;, b;, ¢j,d; where a;,d; € Land 0 < 7 < m.
If k=0or k> 2, in T we form an induced path partition as follows: first form the
m sets {aj,bj,cj,d;}. If k = 0, this forms an induced path partition of 7 with |L|/2
sets. If & > 2, take also the k — 1 sets {z;,ys, zi41} for 1 <4 < k — 1 and the set
{xna Yns Zl}-

If £ =1, let am, bm, Cm,dm be a Py in T such that b,y; € E(T). We form an
induced path partition with |L|/2 sets as follows: take the m — 1 sets {a;,b;,c;,d;}
for 1 < j < m —1 and the two sets {1, Y1, @m,bm}, {71, Cm, dm}

Thus T € T. [ |

Now we prove that 7 C C3 UCy.
Lemma 5 If T € T then every vertex in T is either a leaf or adjacent to a leaf.

Proof: Suppose that T is a tree where p(T) + p(T) = |L| and = € V is not a
lel+1

o,

leaf or adjacent to a leaf. Then L U {z} forms a clique in 7. So, p(T) >
o(T) > % Hence, p(T) + p(T') > |L|, a contradiction.

an
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Theorem 19 7 C C3 UCy.

Proof: Let T € T. That means p(T) + p(T) = |L|, and p(T) = p(T) = |L|/2. Let
V1, Va, ..., Vyr) be an induced path partition for T. We know that each V; contains
exactly two leaves of T'.

Claim: |V;| = k < 4. Suppose V; = {1, xs, 23, ..., x4} where k > 5 and zjz;, €
E(T) for 1 < j < k—1. Then by Lemma 5, z3 is adjacent to a leaf in T, say z, and
z € V; where i # t. But then V; cannot contain two leaves. Thus, |V;| < 4.

Claim: |V;| > 3. Suppose |V;| = 2. Then V; consists of just two leaves, which cannot
induce a path in T, unless T = P,. But if T = P,, then T ¢ 7. Thus |V;| > 3.

Thus, each V; induces a P; or P, in T, each contains two leaves, so that T is
constructed by joining up with edges the non-leaves of the P3’s and P,’s. Thus,
T e C3UCy. |

We conclude with an upper bound on the sum of the path partition number of a
tree and its complement.

Theorem 20 For any tree T of order n > 3,

o) 4T < |22
Proof:

Suppose n = 3. Then {T, T} = {P;, Ps} and p(T) + p(T) = 142 = 3 and the
result holds.

Now suppose n > 3. Si_nce T is connected, T' must contain an induced P;. Then
(1) + p(T) < p(Ps) + p(Ps) + p(T — P3) + p(T — Ps).
Note that T'— P; may not be connected. By Theorem 15, p(T'— Ps)+p(T — P;) <

[3(”2—_3)-‘, and clearly p(Ps) + p(Ps) = 3.
Case 1: n is odd. Then p(T)+ p(T) < 1+2+ 3(n2—3) — 3(n—;1).

Case 2: n is even. Note that F’("Z—_U-I = % Then p(T)+p(T) < 142+ [M-‘ —

2
3(n—3)+1 _ 3p—2
3+ T = .

This bound is sharp. If T = Ky,_1, then T = Ky U K, and p(T) + p(T) =
(n=2)+ (14 [5]) =n— 14 [55] = [22].
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