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Abstract

A broadcast on a graph G is a function f : V — {0,1,2,...}. The
broadcast number of G is the minimum value of )~ i, f(v) among all
broadcasts f for which each vertex of G is within distance f(v) from
some vertex v with f(v) > 1. The broadcast number is bounded above
by the radius and the domination number of G.

We consider a class of trees that contains the caterpillars and char-
acterize the trees in this class that have equal domination and broad-
cast numbers, thus generalizing the results in: [S. M. Seager, Dominating
broadcasts of caterpillars, Ars Combin. 88 (2008), 307-319].

1 Introduction

We place broadcast towers on some of the vertices of a graph and broadcast from
each tower to all vertices within its range. The cost of the broadcast is proportional
to the strength of the broadcast, and our goal is to broadcast to the entire graph
with minimum cost. We need a few definitions to formalize this description.

A broadcast on a graph G is a function f : V(G) — {0,1,2,...}. A broadcast
vertex is a vertex v for which f(v) > 1. The set of all broadcast vertices is denoted
Ver(G)7 or Vf+ when the graph under consideration is clear. A vertex u hears a
broadcast from v € Vf+7 and v broadcasts to u, if the distance between v and v is at
most f(v) (possibly u = v).

A broadcast f is a dominating broadcast if every vertex hears at least one broad-
cast. The cost of a broadcast f is defined as cost(f) = > cy (g f(v), and the
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broadcast number of G is ~,(G) = min{cost(f) : f is a dominating broadcast of
G}. If f is a dominating broadcast such that f(v) = 1 for each v € ij’7 then Vf+
is a dominating set of G, and the minimum cost of such a broadcast is the usual
domination number v(G).

The eccentricity of a vertex v of a graph G is e(v) = max{d(u,v) : u € V(G)}.
The radius and diameter of G are defined as rad G = min{e(v) : v € V(G)} and
diam G = max{e(v) : v € V(G)}, respectively.

Erwin [7, 8] was the first to consider the broadcast domination problem, and to
observe the trivial bound 7,(G) < min{rad G,v(G)} for any graph G. This bound
immediately suggests the following questions:

For which graphs G is v,(G) = rad G? For which graphs is 7,(G) = v(G)?

Graphs for which ~,(G) = rad G are called radial graphs. The problem of charac-
terizing radial trees was first addressed by Dunbar, Erwin, Haynes, Hedetniemi and
Hedetniemi in [5] and also studied in [6, 13]. It was solved by Herke and Mynhardt
[12] (see Theorem 2.1), who also showed that a tree T can be split into radial subtrees
by deleting edges on a diametrical path of T'.

Here we consider the second question for trees. A graph (tree) G such that
7%(G) = v(G) is called a 1-cap graph (tree) — there exists a minimum cost broadcast
where each tower broadcasts with a capacity equal to one. Heggernes and Lokshtanov
[10] showed that minimum broadcast domination is solvable in polynomial time for
any graph, while computing the domination number is NP-hard in general. Both
the domination and broadcast numbers of a tree can be determined in linear time
(see [2] and [4], respectively), but knowing that v(T') = 7,(T) for some tree T' (or for
finitely many given trees) does not adequately reveal the properties of 1-cap trees,
which merits investigation in its own right.

Seager [13] initiated this investigation and characterized 1-cap caterpillars. Cock-
ayne, Herke and Mynhardt [3] showed that a tree is 1-cap if and only if it can be
split into radial subtrees, each of which is 1-cap. However, their result does not show
how such a split can be accomplished. There could be several ways of splitting a
tree into radial subtrees, and while one split may yield 1-cap subtrees, another split
may not. An example of such a 1-cap tree is given in [3, Figure 2]. In addition, the
characterization of even radial 1-cap trees appears to be a difficult problem. We
investigate this problem for a large class H* of trees that contains the caterpillars.

We denote the class of all 1-cap trees 7' by 7 and let T, = {T € T : v(T) =
w(T) = k}. We apply results from [3] and characterize the trees in H* that are in
7, thus generalizing the results in [13].

After giving a few more definitions and earlier results in Section 2, we discuss
the use of a special class of trees, called shadow trees, and isosceles right triangles in
Section 3. Cockayne et al. [3] showed that one only needs to consider shadow trees
when studying the class 7. A shadow tree consists of a longest path P with other
paths, called boughs, attached to distinct vertices of P. In Section 4 we consider the
subclass H of shadow trees where the boughs have length congruent to 1 (mod 3),
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Figure 1: A tree with split-sets {uv} and {zy}

which contains the shadow trees of caterpillars. We state some properties of trees in
HNT as lemmas. We also state and prove our main theorem, the characterization
of the class H N7. Section 5 concerns the application of the characterization to
caterpillars and to general trees in H*. Finally, the proofs of the lemmas in Section
4 are given in Section 6.

2 Definitions and background

For undefined concepts see [1, 9]. A dominating broadcast f of a graph G for which
cost(f) = 1(G) is called a 7,-broadcast, and a dominating set D such that |D| =
~v(G) is called a v-set. The open neighbourhood N(v) of v € V(G) is the set of
vertices adjacent to v and the closed neighbourhood of v is N[v] = N(v) U {v}.
For v € D, the private neighbourhood of v relative to D, denoted by pn(v, D),
is the set N[v] — N[D — {v}]. Define the subset Dy, of a dominating set D by
Dypn ={v € D :pn(v,D) = {v}}.

A diametrical path (abbreviated d-path) of a tree T is a path of length diam 7.
A path is even or odd, corresponding to the parity of its length. A central vertex of
a graph G is a vertex v such that e(v) =rad G. A tree is either central or bicentral,
depending on whether it has one or two (adjacent) central vertices; any d-path of a
tree contains its centre, the set of all central vertices.

A set M of edges of a d-path P is a split-P set if, for each component 7" of T— M,
the path PNT" is a d-path of T” of even positive length. A split-set of T' is a split-P
set for some d-path P of T, and a mazimum split-set of T is a split-set of maximum
cardinality. For example, the sets {uv} and {zy} are maximum split-P sets of the
tree in Fig. 1, where P is the path of black vertices. Radial trees are characterized
as follows.

Theorem 2.1 [11, 12] A tree T is radial if and only if it has no nonempty split-set.
Split-sets are used to determine the broadcast number of a tree.

Theorem 2.2 [11, 12| If M is a split-set of mazimum cardinality m of the tree T,
and Ty, ..., Th11 are the components of T — M, then

diam(7T') — m—‘ w2

W(T) = [ 5 =radT — [%W = Z’Yb(Ti)-
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Theorem 2.1 was used in [3] to prove the following result.

Theorem 2.3 [3] A tree T € T if and only if it has a mazimum split-set M such
that T; € T for each component T; of T — M.

3 Shadow trees and isosceles right triangles

Cockayne et al. [3] showed that one only needs to consider certain types of trees,
called shadow trees, when studying the class 7. They used isosceles right triangles
to describe the positions of the boughs on P and showed that the actual lengths
of the boughs are not important, only their congruence classes modulo 3 and the
number of edges by which two consecutive triangles overlap.

3.1 Shadow trees

Let P = vq,...,v, be a d-path of the tree T. For each i, let A; be the set of all
vertices of T that are connected to v; by a (possibly trivial) path that is internally
disjoint from P. Let B; be a longest path in T[A;] that has initial vertex v;. The
shadow tree of T with respect to P, denoted St p, is the subtree of T' induced by
Uim V(B)).

A tree T with d-path P is depicted in Fig. 2, which illustrates the construction
of the shadow tree Sy p. The path B; is called a bough of Sy p at v;. If T'= Sy p, we
also call T a shadow tree; any shadow tree is the shadow tree of infinitely many trees.
Note that if P and P’ are different d-paths of T', then it is possible that S p 2 St p.
If the d-path P is understood or irrelevant, we abbreviate St p to Sr. Herke and
Mynhardt [12] demonstrated the relevance of shadow trees to the study of broadcast
domination.

Theorem 3.1 [12] For any shadow tree St of T, v(St) = (T).

The following results show that shadow trees are of interest in the study of the
class 7.

Corollary 3.2 [3] (i) IfT € Ty, then v(T') = v(St).
(id) If T € Ty, then St € Ty,.
(ti0) If S € Ty and v(T) =k, then T € 7T;.

The relatively simple structure of shadow trees suggests the following approach
to the study of the sets 7.

Step 1 Find subsets of 7; containing only shadow trees.

Step 2 If T is a shadow tree in 7y, use Corollary 3.2(z4¢) to find all trees in
7. that have T as shadow tree.
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Figure 2: Shadow-tree construction

Necessary and sufficient conditions for a tree T and a subtree 7" to have equal
domination numbers were given in [3]. Let Wi, ..., W, be the nontrivial components
of T — E(T"). For i =1,...,t, let u; be the unique vertex of V(T") NV (W;). We call
u; the hinge of W; and also say that W; is hinged at w;. Let Uy (respectively Us) be
the set of hinges of subtrees W; that are stars hinged at their centres, or at one of
their leaves if W; = K3 (respectively at one of their leaves, where W; # K,). Note
that Uy NU; = @.

Proposition 3.3 [3] Let T be a subtree of the tree T. Then ~(T) = v(T") if and
only if

(i) each subtree W; is either a star hinged at its centre or a star hinged one of its
leaves, and

(2) T" has a y-set D with Uy C€ D and Uy C Dygyy,.

3.2 Isosceles right triangles

Let T be a shadow tree with d-path P = vy,...,v,. Draw T in the positive X — Y
plane with P on the X-axis, v; at the origin, each edge of unit length, and each edge
not on P parallel to the Y-axis. We henceforth assume that all shadow trees are
drawn as described above. We may thus describe a vertex v; as being to the left of
vj, or v; as being to the right of v;, if © < j. Further, v; is the leftmost vertex of a
sequence o of vertices if it is to the left of all other vertices in o; the rightmost vertex
in a sequence is defined similarly.

Let H(t) be the tree obtained from K 3 by subdividing each edge ¢ — 1 times. If
H(t) is a subtree of T, then the leaves of H(t) lie at the (geometric) vertices of an
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Figure 3: The triangles of a shadow tree

isosceles right triangle A whose hypotenuse lies on P and has length 2¢; we say that
A has radius t. We use this observation below to better describe the positions of the
boughs of T

The vertices of the bough B; of length ¢ that begins at the vertex v; are labelled

Vi, Ui, - -, Ui 1f ¢ > 1, we place an isosceles right triangle A of radius ¢ with its
hypotenuse on P, centred at v;, with B; on the median and u;; at the apex of A (see
Fig. 3). We say that the vertices v;_y, ..., Viys, U1, ..., u;y are vertices of A, and

that A is a triangle of T. Thus we consider A to be a subtree of T isomorphic to
H(t).

An edge v;v;41 of P is free if it does not lie on a triangle of T'; in this case
degv;, degv; 11 < 2. Note that all split-edges of T" are free, but not all free edges are
split-edges. Also, v;v;41 is free if and only if vy, ..., v; and vy, ..., v, are d-paths of
the two subtrees of T' — v;v;41.

3.3 Properties of shadow trees

We now consider a shadow tree T with d-path P = vq,...,v,. A triangle A of T is
a nested triangle if it is contained in another triangle of T. Suppose A is a nested
triangle of T of radius r and let 7" be the tree obtained by deleting the vertices on
the bough of A. An edge is a split-edge of T if and only if it is a split-edge of T,
hence v,(T") = v (T") by Theorem 2.2. However, v(7") = v(T) if and only if T and 7"
satisfy Proposition 3.3. Thus we assume henceforth that 7" does not contain nested
triangles and deal with them later, when considering general trees (Section 5).

Let ve,, ..., v, be the branch vertices on P, let B; be the branch of length (say)
x; of T at v,, and let A; be the triangle of T with centre v., and radius z; associated
with B;. The sequence x = x1, ...,z is called the branch length sequence of T. Let
ve, (v, respectively) be the vertex on P at distance x; to the left (right) of v.,; that is,
vy, is the first and v,, is the last vertex of A; on P. Further, let 1 (141, respectively)
be the number of edges on P preceding A; (succeeding Ay, respectively), and define
hi = =1, hgy1 = —gy1. Then hy = —(¢1 — 1) and hgy1 = —(n — 7). Also define
h; = ri_y — £; for i = 2,...,k; in this instance h; is called the overlap of A;_; and
A;. See Fig. 4.

Note that hq, iy <0, but for i =2, ..., k, h; may be positive, zero or negative.
Thus A;_; and A; may have a negative overlap, which indicates that there are free



TREES WITH EQUAL BROADCAST AND DOMINATION NUMBERS 9

hy=-1 hy=0 <—h,=3—> hy=-2
B
A= H(1) <——AN,=H@) ———> A= H(D)
<~ A= H@ ———> hs =0

Figure 4: A tree with overlap sequence h = —1,0,3,—2,0

edges on the v,, , — vy, path in T (edges of neither A;_; nor A;). Similarly, if by <0
(or hyi1 < 0), then A; is preceded by free edges (or Ay, is succeeded by free edges).
The sequence h = hy, ..., hgr1 is called the overlap sequence of T. Note that T is
uniquely determined by its branch length sequence x and overlap sequence h, and
we also write T = T'(z, h).

Cockayne et al. [3] showed that whether T € 7 does not depend on the size of
the radii of the triangles of T', but only on their least residues modulo 3 and on the
number of common edges of two consecutive triangles.

Theorem 3.4 [3] If T'(z,h) € T, then any shadow tree T'(z', h), where ' =z, ...,
@), such that z; = x; (mod 3) for each i =1,...,k, is also in T.

By Theorem 3.4 we may assume that, for each i > 1, {;,1 > ¢;, for otherwise we
may replace A; by a triangle A} with radius x;43t for some suitable integer ¢ > 1, thus
replacing T by the tree 77 with branch length sequence 2’ = x1,...,2; + 3t,..., 2
and the same overlap sequence as T', where now £ ; > c,. The exact procedure is
described fully in [3]. We may similarly assume that r; < ¢;4.

4 Branches of length congruent to 1 (mod 3)

Assume henceforth that the length of each branch is congruent to 1 (mod 3). Let H
be the class of shadow trees with this property and without nested triangles. Let o =
A;,...,Aj, 7 > 1, be a sequence of consecutive triangles of T', with branch vertices
Vgyy - - -5 Ueyr SUch that hyyq,... hy > 0. We call o a nonnegative overlap sequence. A
nonnegative overlap sequence o is a mazimal nonnegative overlap sequence (MNOS)
if it is not contained in a larger nonnegative overlap sequence. Let T, be the subtree
of T induced by o. We call T, the subtree of T associated with o. Since T, has
no free edges, it is radial. We now state a number of properties of trees in H N7,
deferring their proofs to Section 6.

Lemma 4.1 Ifo is an MNOS of T € T, then T, € T.
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Lemma 4.2 If o is an MNOS, then T, € T if and only if o contains only overlaps
of cardinality 0, 1, 2, 3 or 5, and at most one overlap has odd cardinality.

If o is an MNOS containing only overlaps of size 0 or 2, then ¢ has even diameter
and is called an even MNOS, otherwise, by Lemma 4.2, ¢ has odd diameter and is
called an odd MNOS.

Now let oy,...,0,, j > i, be a sequence of consecutive MNOS’s of T, with A/,

s=1i+1,...,7, the length of the negative overlap joining o,_; and o, and assume
that Al = —1 for each s. Such a sequence o;,...,0; is called a tight sequence. Let
S;; be the subtree of 1" associated with o;,...,0;. For each s =1,...,j we simplify

the notation to denote the subtree T, of T associated with o4 by 7.

Lemma 4.3 Ifo;,...,0; is a tight sequence of T and Ty € T for each s =1,..., ],
then Sl"j eT.

The next lemma is clear from the proof of Lemma 4.3 (see Section 6).

Lemma 4.4 If S is the subtree of T associated with the tight sequence o4, ..., 0y,
then S is radial if and only if at most one of the sequences o1, ...,0; is even.

A tight sequence is a mazimal tight sequence (MTS) if it is not contained in a
larger tight sequence. Let Si,...,S,. be the MTS’s of T. For simplicity we also
consider the S; to be subtrees of T, i.e., S; is the subtree of T' associated with the
MTS S;. (Hence S; = Sy ; for some ¢/, j.) We also call S; even or odd depending on
the parity of its diameter.

Let Q1 (@11, respectively) be the subpath of P induced by the free edges pre-
ceding S; (following S,., respectively), and for ¢ = 1,...,r, let @; be the subpath of
P induced by the free edges that join S;_; to S;. Say @Q; contains g; vertices that do
not lie on S;_1 or S;. By the maximality of the S;, each Q;, i = 2,...,7, has at least
two edges and thus ¢; > 1, while @; and @,,1; may have any nonnegative number of
edges, and so ¢, ¢-4+1 > 0.

Lemma 4.5 Let Sy,...,S, be the MTS’s of the shadow tree T'. Then T € T if and
only if S1,..., S, € T and the following conditions hold.

(@) If Sy is odd and radial, then ¢ #Z 1 (mod 3) and qgy1 Z 1 (mod 3).
(#4) If Sy is even and radial, then qx Z1 (mod 3) or gry1 Z 1 (mod 3).

(173) Suppose j > 1 and Sy, ..., Sk+; are radial. If Syi, is even for each integer s
such that 0 < s < 7, and

(a) Sy and Syi; are odd, or

(b) (without loss of generality) Sy is odd, Sy ; is even and g4 j41 = 1 (mod 3),
or

(c) Sk and Siy; are even and gy = qrrjp1 = 1 (mod 3),
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then qrrs =0 (mod 3) for at least one s € {1,...,5}.

We are now ready to state and prove the characterization of trees in HN7 . Note
that each condition in the characterization concerns only the size of the overlaps of
the triangles.

Theorem 4.6 LetT be a shadow tree in H with MTS’s Sy, ..., S, and define qq, ...,
Gr+1 as above. For each k € {1,...,r}, let op1,. .., 0k, be the MNOS’s of Si. Then
T € T if and only if the following conditions hold.
1. Each oy; contains only overlaps of size 0,1,2,3,5, and at most one odd overlap.
2. Ifoga,... 054, are all odd, then ¢, Z 1 (mod 3) and ¢r+1 Z 1 (mod 3).

3. If exactly one of op1,...,0k1, is even, then q, # 1 (mod 3) or qui1 #

1 (mod 3).
4. Suppose k' >k + 1 and consider the MTS’s Sy, Sgi1, ..., Sw. If exactly one of
Oit,-.-, 00 1S even for each © such that k <i < k', and
(a) Oty Okt Ok 1y - - Ok, Gre all odd, or
(b) (without loss of generality) oya,. .., 0k, are all odd, exactly one of ow 1,
oy Oy, 15 even and g =1 (mod 3), or
(c) exactly one of oy, ...,0ky, and exactly one of op 1, ..., 0y, are even,

and g = qvy1 = 1 (mod 3),

then ¢; = 0 (mod 3) for at least one i such that k < i < k'.

Proof. Suppose T' € 7. By Lemma 4.1, each T;; € 7 and (1) holds by Lemma 4.2.
The other conditions hold by Lemmas 4.4 and 4.5.

Conversely, suppose (1) — (4) hold. By Lemma 4.2, each T}; € 7, and so each
Sk € T by Lemma 4.3. Now Lemmas 4.4 and 4.5 imply that T € 7. [ |

5 Conclusions

We first apply Theorem 4.6 to caterpillars. Let C be any caterpillar, i.e. C' consists
of a d-path P = wvy,...,v, together with any positive number of leaves attached
to the branch vertices v,,,..., v, of P, where 1 < ¢; < -+ < ¢ < n. Since the
number of leaves attached to each v,, is unimportant, we may assume without loss
of generality that C is a shadow tree, and we thus continue to use the notation of
Section 4. The only possible positive overlap is 1 and C' contains no nested triangles.
The MNOS’s of C' are maximal sequences of triangles just touching or overlapping
in a single edge. If two triangles overlap in an edge, then the corresponding branch
vertices are adjacent; we call these two vertices a branching pair. A pairfree MNOS
is one without a branching pair. The following result is an immediate corollary of
Theorem 4.6.
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split-edged
c
! ! !
F 5, f ¥ 5,
c
MLM—&M—«
¥ 5 | ¥ 5 i

Figure 5: Caterpillars C' and C" with~,(C') = 9 <v(C) = 11 andy(C") =(C") =10

Corollary 5.1 Let C be a caterpillar with MTS’s Sy, ..., S, and define qi,...,q+1
as before. For each k € {1,...,r}, let op1,...,081, be the MNOS’s of S,. Then
Y(C) =w(C) if and only if the following conditions hold.

1. Each oy; contains at most one branching pair.

2. If each o1, ..,0ks, has a branching pair, then g, # 1 (mod 3) and g1 #

1 (mod 3).
3. If exactly one of op1,...,0k, is pairfree, then qx Z 1 (mod 3) or g1 #
1 (mod 3).
4. Suppose k' > k+ 1 and consider the MTS’s Sy, Spi1, ..., Sw. If exactly one of
Oit,-..,0iy; 18 pairfree for each i such that k <i < k', and
(a) each ok, ...,Okty, Ok 1,y - - - , Ok g, Ccontains a branching pair, or
(b) (without loss of generality) each oy, ... 0k, contains a branching pair,
exactly one of o 1,..., 0y, is pairfree and g1 =1 (mod 3), or
(¢) exactly one of on1,. .., 0y, and exactly one of op 1, ..., 0y, is pairfree,

and qx = Q1 = 1 (mod 3),
then ¢; =0 (mod 3) for at least one i such that k < i < k'.

Fig. 5 shows two caterpillars C' and C" with C' ¢ 7 and C’ € 7. The MTS S of
C has exactly one pairfree MNOS, yet ¢1 = g2 = 1 (mod 3), thus violating Corollary
5.1(3). For 57, ¢1 = 0 (mod 3), hence Corollary 5.1(3) is satisfied. None of the
conditions (2) — (4) of Corollary 5.1 applies to Sy or S5.

Now let T be an arbitrary tree with shadow tree S7., and let Sy be the shadow
tree obtained by deleting all nested triangles of S7.. Then V(1) = 7 (S%) = 7(St).
Let Wy, ..., W; be the nontrivial components of ' — E(S7). If W; is not a star for
some ¢, then by Theorem 3.1 and Proposition 3.3(7), v(T') > v(St) > 1(St) = W(T)
and thus 7' ¢ 7. Assume that each W; is a star, where (for some r) Wi, i =1,...,r,
is hinged at its centre u; or at a leaf if W; = Ky, and fori =r+1,...,t, W; # K,
is hinged at a leaf [;. If Sy has no v-set D such that {u; : 1 < i <r} C D and
{li : 74+1 < i <t} C Dgpy, then by Theorem 3.1 and Proposition 3.3(ii), T ¢ 7. On
the other hand, if St does have a v-set that satisfies Proposition 3.3(i7), then T' € T
if and only if Sr € 7, as determined by Theorem 4.6.
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6 Proofs of Lemmas

Assume the bough B; = v, %;1,. .., Uiq of T has length z; =3m; +1,i=1,... k.
If D is a y-set of T, we may assume without loss of generality that D contains
the vertex w;sm, of B;, and then precisely every third vertex along the bough; thus
v, € D. We may also assume that if 0 = A;,...,A; is an MNOS of T', then D
contains every third vertex to the left of v.,, so that D contains vy, and every
third vertex to the right of v.;, so that D contains v,, 1. A 7-set with this property
is called a natural y-set of T.

Before proceeding with the proofs of the lemmas stated in Section 4, we determine
an expression for y(7), T € H.

Lemma 6.1 If D is a natural y-set of T € 'H, then
k k
h; +1 hq Pt
D|=3 i+k— — =] - )
pr=symee 3] - 5] |

Proof. Define P, = v1,...,vs, Pit1 = Vepy--- 0, and Py = v, ,..., 0, for i =
2,...,k. By the choice of D, v.,, € D and |D N V(B;)| = m; + 1. Note that
d(Ve;_y5e;) = € — ¢i—1 = xi_1 + x; — hy, and the number of vertices on the v, , — v,
path P, is z;_1+x;—h;+1. Of these vertices, v.,_, and its successor v,,_,+1, and v., and
its predecessor v,,_y, are dominated by {v., ,,v,} € D. Let D* = D — i, V(B,).
Thus x;_1 + x; — h; — 3 vertices on P; are dominated by D*, i =2,... k.

o If d(ve,_,,v.,) > 3, then x;_1 +x; — h; — 3 > 0. Hence at least
[(zi1 +2; — hy — 3)/3]
vertices in D* are needed to dominate these remaining vertices on P;. By the
minimality of D,
D" AV(P)| = [(@i1 + i — hs — 3)/3]. (1)
o If1 <d(ve ,,v;) <2, thenx;_1+x;—h;—3 = —2or z;_1+x;—h;—3 = —1 and
[(xi—1+x; —h; —3)/3] = [—1/3] = 0. Obviously in this case no vertices on
P, need to be dominated by D*, and by the minimality of D, |[D*NV(F;)| = 0.

Thus (1) holds for each i = 2, ..., k. Since d(vy, v, ) = 21 —hq, a similar argument
shows that [D*NV(P)| = [(z1 — hy — 1)/3] and, correspondingly, |D*NV (Pyy1)| =
[(zx — hgs1 — 1)/3]. Hence

k
i i —h; — 3 —h;—1 — hpy1 — 1
|D*:Z{$ 1+$3 -‘+ "ih 31 -‘+ F?k §+1 -‘

=2

k ’73<m11 + mz) - (hl + 1)-‘ ’737’)@1 — hl-‘ "3mk — }Lk+1-‘
= + +
- 3 3 3

e S [8]- [t
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so that
k
ID| = [D*|+)_|DNV(B)
=1
l ol h 1 h h
- 9 - i 2 k+1 ; L
N N i e APV
b Ml hi 1 h h
— 3 k- i | e
Someen- 3B -3 - |
as required. [ |

Proof of Lemma 4.1. Assume that 7' € 7 and that D is a natural y-set of T'. Let
o=2A7;...,A;and D, = DNV(T,) — {vg;, v, }. By the choice of D, D, dominates
T, but no vertlces of T —T,. Since D is a vy-set of T, D, is a 7-set of T,,. By Lemma

6.1,
: . L bt 1
“/(Ta)_Dg|_3st+‘y—z+1—Z{ - J 2)

s=1i s=i+1

Since T, contains no nested triangles,

radT—sz {Zh—SJ:Si:ms+ji+1Ezj:hsJ. (3)

s=i s=t s=i+1

! )

and note that o > 8 because h;y1,...,h; > 0. Suppose a > . Then rad T,, < |D,]|.
Let v be a central vertex of 7, and note that v lies on the path vy, ..., v,,. Define
the broadcast f on T by

Let

o= \é zj: hsJ and (= z]: Vls;_

s=i+1 s=i+1

1 ifueD—D,
flu)=<¢ radT, fu=v
0 otherwise.

Clearly, v broadcasts to all of T,,, while D — D, dominates T — T, hence f is a
dominating broadcast of T. But cost(f) = |D| — |Dy| + rad T, < |D| = ~(T),
contradicting 7' € 7. Therefore a = 3, i.e. rad T, = v(T,), and since T, is radial it
follows that ~,(7,) = v(1,), i.e., T, € T. ]

Proof of Lemma 4.2. Assume that T, € 7 and suppose hy = 4 for some 7' €
{i+1,...,k}. With o and ( as defined in (4), this implies that

{; > MgHg > hSJH

s=i+1, s#i’ s=i+1, s#i’
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and

J J
he+1 5 hs+1
_ ol = 1<a.
= BBl 2 [ e
s=i+1, s#i’ s=i+1, s#i
By (2) and (3), v(T,) > rad T, = v(T,), contradicting T, € 7. Therefore h; # 4
for all i’ € { +1,...,k}. Similarly, hy ¢ {6,7,8,...} forall ¢/ € {i +1,...,k}.
Suppose next that o contains two odd overlaps; say h,, h. € {1,3,5} for some
z,2', while h; € {0,2} otherwise. Assume there are r values of ¢ such that h;, = 2,
and that h, =2w+1, hyy =2w' +1. Then o =r+w+w' + 1. But w,w’ € {0,1,2},
and for these values, {%J = w, so that f = w+r+w < a. Now (2) and (3)
imply that v,(7,) < v(T5), which is a contradiction as above.
Conversely, if o contains only the stated overlaps, then it is easy to verify that
a = (3 and the result follows from (2) and (3). [ |

Proof of Lemma 4.3. Abbreviate the notation D,, (defined as in the proof of
Lemma 4.1) to Dy; as before Dy is a y-set of Ts. Since b, = —1for each s = i+1,. .., 4,
Lemma 6.1 applied to S; ; shows that

Z\D| ZV“J ST, (5)

s=i+1 s=1i

Further, since each Ty € 7 and each T is radial, rad Ty = 7,(Ts) = v(T}) for each
$=1,...,j. Substitution in (5) gives

i) :Zrade. (6)

Let ¥ = 0y,...,0; and say 0 of the sequences in ¥ are even and j + 1 — i — ¢ are
odd. Then
J
diam S; ; = Z diam T + Z diam T, — Z I
o5 even os odd s=i+1
=2 > radT,+2 Y radT,— (j+1—i—0)+j—i
os even os odd

J
:221radeJr(5fl7

s=1

so that ]
: 5—1
rad S;; = E:‘ rad T + {T-‘ . (1)

For each s = 4,...,5 — 1, let e; be the edge joining o5 to gs11. Let m be the
number of edges in a maximum split-set of 5; ;. Note that any split-set is contained
in {e;,...,e;_1}. We prove that either m =0 and § € {0,1}, or m =46 — 1.
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If o, ..., o are consecutive odd sequences for some k, k" € {i,...,j}, then Sy
has odd diameter, because each A} is odd. Now, if M # @ is a split-set of S, ;, then
each component of S;; — M has even diameter and thus contains an even oj,. Let
04, - .-, 0¢ be the even sequences in X. If 6 > 2, then {ey,, ..., e, , } is a maximum
split-set and thus m = § — 1. If § € {0,1}, then S;; has no split-edges and thus

m = 0. By (7), _
rad S;; = zj: rad T, + [%—‘ .

By Theorem 2.2, 7,(S;;) = rad S;; — [2], from which it follows that 7,(S;;) =
J_,rad T,. Thus by (6), 75(Si;) = 7(S;), as required. [ |
Proof of Lemma 4.5. Suppose T' € 7 and let D be a natural v-set of 7. Let «;
and w; be the first and last vertices, respectively, of S; on P, and let «o; and o
(w; and w;") be the vertices to the left and right of «; (w;, respectively). Then D
contains «f and w; . Let X; = (DN S;) — {ay,w;}. Then X; dominates S; but no
vertices of T'— S; and is a y-set of S;. Therefore |X;| = v(S;). By Lemmas 4.1 and
4.3, S1,...,5, € T, hence | X;| = v(S;) = w(S;) and thus (similar to Lemma 6.1)

m-éxmgj% Z% +2Pﬂ (8)

We prove that (), (i¢) and (éi7) hold. In each case we broadcast to T with a cost of
one from each vertex in D, except where otherwise stated.

(i) Let Sk be odd and radial and suppose g, = 1 (mod 3); say gx = 3a+ 1. By (8),
D contains {3‘1;1] a + 1 vertices of Q. Since Sy is odd, it is bicentral. Let ¢ be
the leftmost central vertex of Sy, and broadcast from ¢ with a cost of rad Sy, = | Xj|.
Then the internal vertex o, of @y hears this broadcast, and the remaining internal
vertices of @y can be reached by broadcasting from [3—“] = a vertices on )y, with a

3
cost of 1 in each case. Hence
r+1

<Z% +2Pﬂ[]—kwnwm

in contradiction to T' € 7. Hence ¢x Z 1 (mod 3). By symmetry, ¢xy1 Z 1 (mod 3).

(74) Let Sk be even and radial and suppose ¢z = 3a + 1 and ¢qz; = 3b+ 1. As
above D contains a + 1 vertices of @ and b + 1 vertices of Qy1. Let ¢ be the
central vertex of Si, and broadcast from ¢ with a cost of rad Sy +1 = |X;|+ 1. Then
the internal vertices aj; of Q) and w; of Qx4 hear this broadcast. The remaining
internal vertices of @y and Q1 can be reached by broadcasting from a vertices on
@ and b vertices on Qg 1, in each case with a cost of 1. Again,

) <3 (S M)HHTi%M(@_lp((%_lym

175 ik k1
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by (8), a contradiction.

(#4i) Assume j > 1, S, ..., Sky; are radial and Sy, is even for each s € {1,...,j —
1}.

(a) Suppose Sy, and Sy ; are odd, but ggys # 0 (mod 3) for each s € {1,...,5}. Let
cx, be the rightmost central vertex of Si, ciy; be the leftmost central vertex of Sy, ;,
and for each s with 0 < s < j, let ¢, be the central vertex of Sy, . Broadcast from
¢, and cy; with a cost of rad Sy, and rad Sj4;, respectively, and from c¢;; s with a cost
of rad Sprs+ 1,0 < s < j. If qgos = 1, then the unique internal vertex of Qs hears
a broadcast from ¢, ,_1 and from ¢y, otherwise, at least two vertices on Qs hear
broadcasts from cgys_1 Or Cgys. Since grys = 1 or 2 (mod 3), the remainder of the
vertices of Qr.s can be reached by a broadcast from at most {%W — 1 vertices on
Qkts, each with a cost of one. Hence

r+1

- . di .
WT) <D W) +i—1+ Y [5] -7 <IDl by ®),
i=1 i=1
a contradiction as before.
(b) Suppose S is odd, Si4; is even and gxi;+1 = 1 (mod 3), while gzys = 1 or
2 (mod 3) for each s € {1,...,7}. We proceed as in (a), except that we also
broadcast from the unique central vertex of Sy, with a cost of rad Sy, +1. Thus we

increase the strength of the broadcast vertex of each of the j subtrees Sii1, ..., Skt
by one, and decrease the number of broadcast vertices on each of the j + 1 paths
Qkt1, - - - Qrtj+1 by one, resulting in a contradiction as above.

(¢) Similar to (a) and (b).

Before proving the converse of Lemma 4.5, we formulate and prove two more
lemmas.

Lemma 6.2 Let T be a radial shadow tree, R the subtree of T' obtained by deleting all
leading and trailing free edges on the d-path P = vy, ..., v, of T, and p the cardinality
of a mazimum split-set of R. Then p < 2.

Proof. Let Mg be a maximum split-set of R and suppose |Mg| > 3; say {v;vi41,
VjVj41, VgUk+1} © Mp. Let Pr = vy, ..., v, be the d-path of R that is a subpath of the

d-path P =vq,...,v, of T. Then vy, ..., v Vit1, ..., Vj; Ujs1, - .., Uk and Ugy1, ..., U
are even. If vy,..., vy is even, then {v;v;41} or {vvir1,v5v;41} (depending on the
parity of the diameter of T') is a split-set of 7", which is not the case, so vy, ..., vy is
odd. Thus vy,...,v; is even. Now either {v;v;41} or {v;vj11, vsvg41} is a split-set of
T, depending on whether v;41,...,v, is even or odd, contradicting the radiality of
T [ |

Lemma 6.3 If T is radial, S,...,S, € T and (i), (ii) and (i3i) hold, then T € T.
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Proof. Define R, Mg, Pg and p as in the proof of Lemma 6.2; then p € {0, 1,2}.
Since T is radial, 1(T) = radT. Since Si,...,S, € T, v(T) = Yi_, w(S:) +
Z:;rll [%ﬂ by (8). We consider three cases, depending on the value of p, to prove
that

r+1

radT = Zﬁ:%(si) n Z Pﬂ . 9)

Case 1 p = 2. By Theorem 2.2, y(R) = rad R — 1, and Py is even. Say My =
{vjvj41,v5v501}. Then vy, ..., v5; vjqq,...,v7 and vjyq,..., v, are even. Since
neither edge is a split-edge of T', vy,...,v; and vj4q,...,v, are odd, so ¢; and ¢,
are odd, and P is even. If ¢; > 3, then {vsvy,v;v;41} is a split-set of T, which is
impossible, hence ¢; = 1; similarly, ¢, 1 = 1. Hence radT =rad R + 1.

If {er, ers1} and {ey, e,11} are two sets of consecutive free edges of R separated by
at least one S;, then one of {ex, e/}, {€x, err1}, {€rs1,ec}, {€rs1, €01} is a split-set of
T, which is not the case, so T contains at most one set Y of two or more consecutive
free edges. A similar argument shows that |Y'| < 4. In particular, R consists of at
most two MTS’s.

Case 1.1 R consists of one MTS S;. Since R =51 € T, v(51) = %(S1) = w(R) =
rad R — 1. Since ¢ = qo = 1, %(T) = 1(S1) + Y0, [£] =rad R+ 1 =rad T, hence
(9) holds.

Case 1.2 R has two MTS’s S} and S;. Since 2 < |V <4, 1< ¢, < 3.

o If g5 = 1, then (i), (¢) and the fact that ¢; = g3 = 1 imply that neither S;
nor Sy is radial. Since p = 2, each S; therefore has a maximum split-set of
cardinality 1, and so has odd diameter. Thus rad R = (rad S; + rad Sp — 1) +
rad Q2 = rad Sy +rad Sy. By Theorem 2.2, v,(S;) =rad S; — 1, ¢ = 1,2. Hence
S w(S)+ 30, [£] =rad S; — 1+rad Sy — 1+ 3 =rad R+ 1 =radT, as
required in (9).

o If ¢o = 2, then (¢) implies that if S; is radial, then it is even. If S; and
Sy are both radial, then (ii7)(c) applies (with £ = j = 1) and we obtain a
contradiction because ¢o # 0 (mod 3). Hence at most one of S; and S5 is
radial. If neither S; nor S, is radial, then each S; has a maximum split-set
of cardinality 1 (since p = 2), and so has odd diameter. But @ is odd,
hence Pgr is odd, a contradiction. Hence assume without loss of generality
that S; is radial and Sy is not. Then S; is even. Since ()5 is odd and Pg
is even, Sy is odd and has a maximum split-set of cardinality one. Hence
rad R = rad Sy +rad Sa+1 and, by Theorem 2.2, 4;,(S2) = rad So— 1. Therefore
S22 w(S)+ 30, [£] =rad S; +rad S; — 1+ 3 =rad R+ 1 =rad T, hence
(9) holds.

e Say ¢ = 3. Since Pgr and )y are even, Sy and Sy are either both even or both
odd. Say Q2 = uy,ug, u3, u4, us, where uy € V(S;) and us € V(Ss).

If S; and Sy are both even, then {wjug, usus} is a maximum split-set of R,
hence S; and S, are radial (for otherwise R has a larger split-set). In this case
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Zle (S;) + Z?zl {%W =rad S; +rad So + 3 =rad R+ 1 =rad T, hence (9)
holds.

Assume S; and S are both odd. Then rad R = (rad S1+rad So—1)+rad Q2 =
rad 51 + rad S; + 1. If both S; and Sy are nonradial, let v;v;41 be a split-
edge of S and vjvj4q1 a split-edge of S;. Then wvjiq,...,u; is even, as is
Us, ..., 0. But then {vjv 41, uguse, ugus, vyvy4q} is a split-set of R, which is
not the case. If both S; and S, are radial, then R has no nonempty split-
set, which is also not the case. Hence S; (say) is radial and S is nonradial.
Therefore Z?:l ’yb(Si)JrZ?:l {%W =rad S;+rad So—1+3 =rad R+1 =rad T,
as required.

This completes the proof of Case 1.

Case 2 p = 1. By Theorem 2.2, y(R) = rad R — 1, and Pg is odd. Say Mg =
{vjvj;1}. If ¢ and g, 41 are both even, then My is a split-set of 7', which is not
the case, so assume without loss of generality that ¢; is odd. If ¢; > 3, then either
{vsvs} (if @11 is odd) or {vsvy, vjvj41} (if gr41 is even) is a split-set of T', which is
impossible, hence ¢; = 1. Similarly, if ¢,,4 is odd, then ¢,4; = 1.

Case 2.1 ¢,y is odd. Then P is odd and ¢, = 1. If e, ex1 are two consecutive
free edges of R, then one of e;, and ey is a split-edge of T'; hence R has no consecutive
free edges and consists of one MTS S;, which is nonradial. Therefore ~,(S1) +
7 [4] =rad R —1+42=radT and (9) holds.

Case 2.2 ¢,,q is even. Then P is even and radT = rad R + %qrﬂ. Since p = 1,
R contains at most one set Y of two or more consecutive free edges; if there exists
such a Y, then |Y] < 4. Thus R consists of at most two MTS’s. If ¢.,1 > 6, then
{Vn_6Vn_5, Vn_3Vn_o} is a split-set of T', so g.41 € {0,2,4}.

If R consists of one MTS Sy, then ~,(S1) + Y7, [£] = (radR—1)+ 1+ [£] =
rad T, as required. Hence assume R consists of two MTS’s S; and Ss, together
with Q2 (where F(Q3) = Y), and 1 < g < 3. Now if g3 = 4 and ey, ex11 € Y,
then {ex, vy_3vn_2} or {€ky1,Vn_3v,_o} is a split-set of T', a contradiction. Assume
therefore that g5 € {0,2}. We only consider the case ¢35 = 2; the case g3 = 0 is
similar.

e Say go = 1. Then @) and exactly one of S; and Sy are even. If S is even and
Sy is odd, then by (i) and (z7), neither S} nor S is radial. Since (s is even,
the union of a split-set of S; and a split-set of Sy is a split-set of R containing
more than one edge, a contradiction. Hence S; is odd and S is even. By (i),
S is nonradial, and thus, following the same reasoning as above, S is radial.
Since Pg is odd, rad R = rad S; 4+ rad S5 + rad Q2 = rad S; +rad S, + 1. Now
S w(S)+Y [%] = rad Sy —1+rad Sp+3 = radS; +rad Sy+2 = rad R+1,
as required.

e Say go = 2. Then Q)5 is odd, so S; and S, are both odd or both even. Assume
firstly that both are odd. Then by (i#i) with j = 1, one of them is nonradial. If
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Sy is nonradial, let v;v;41 be a split-edge of S, and let u uy be the first edge of
Q2 (ie., ug € V(S1)). Then {ujug, vjvj41} is a split-set of T, a contradiction.
Hence S; is nonradial while S, is radial, so that Yo % (S:) + Yo, [£] =
rad.S; —1+4+rad Sy + 3 =rad T as above.

Now assume that S; and Sy are even. Then both are radial, for otherwise we
obtain a split-set of T'. Then rad R = rad S; +rad S, + 2, so that Zle (Si) +
P [%4] =rad S +rad S, + 3 =rad T, and again (9) is satisfied.

e Say go = 3 and let Q3 = uy, ug, u3, uy, us, where u; € V(S;) and us € V(Sz).
Since Q)7 is even, exactly one of S; and Sy is even. If S} is odd, then {ujus, ugus}
is a split-set of T, contradicting the radiality of 7. Thus S; is even and S5 is
odd. If e is a split-edge of Sy, then {ugus, e} is a split-set of T', which is not the
case, hence Sy is radial. Similarly, S, is radial. Hence Y7 %(S:)+Y 0, [Z] =
rad Sy +rad S +3=rad R+ 1 =radT.

The proof of Case 2 is now complete.
Case 3 p=0, i.e., R isradial. Now Pr may be even or odd.

Case 3.1 Pg is odd. Then R consists of a single MTS Sy, for if e; and ey are
consecutive free edges, then one of them is a split-edge of R. Necessarily, S; is
radial. By (7), ¢1,¢2 Z 1 (mod 3). By symmetry we may assume without loss of
generality that ¢; < ¢o. If min{q,q2} > 3, then {vzvy} or {vsvy, v, 30,2} is a
split-set of T, so we may assume that ¢; < 2 and hence that ¢; € {0,2}. Similarly,
q2 < 5. Now if ¢ =0 and

2 2 . rad S; +1
g2 =14 3, then (S)+ Z {%—‘ =< radS; +1 =radT.
5 i=1 rad S; + 2

A similar argument works if ¢; = 2.

Case 3.2 Pgis even. As in Case 1, R contains at most one set Y of two or more
consecutive free edges, where |Y| < 4, and R consists of at most two MTS’s. As
above we may assume that ¢; < ¢,41 < 5 and ¢; < 2. Moreover, if ¢; is even and
Gry1 > 3 is odd, then P is odd and v, _3v,_» is a split-edge of T, a contradiction.
Thus if ¢; is even, then ¢,.,1 € {0,1,2,4}.
e Suppose firstly that R consists of a single MTS S;. Since R is radial, S is
radial. By (ii), ¢1 Z 1 (mod 3) or go # 1 (mod 3). Using this and various
parity arguments for the radii of R and T, we see that, for a € {0,1} and

be{0,1,2},
1 2 rad Sy + 2
1 3 2 _ rad Sy + 2
ifgg=< 1 and g =< 5, then *yb(S1)+Z {%—‘ =< radS;+3 =radT.
0 1 i=1 rad S; + 1
2a 2b radS; +a-+b
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e Now suppose that R consists of two MTS’s S; and S,, and the path Q5. Let
e1 and es be adjacent edges of Qq. If g3 > 4, then {v,_3v, 2}, {€1,Vn_30,_2}
or {eg, Vp_3v,_2} is a split-set of T'; which is impossible. Thus ¢3 < 3.

* Say qa = 1. Since Pr and @) are even, S and S, are both even or both
odd. If both are odd, then by (i) neither is radial. But then the union of
split-sets of S; and S5 is a split-set of R, which is impossible. Hence S;
and Sy are even. A split-set of either S; or S is also a split-set of R. But
R is radial, hence S; and S, are radial. By (i), ¢1,¢3 Z 1 (mod 3). Thus
q1 = 2a, a € {0,1}, and by the above analysis, g3 = 2b, b € {0,1}. Now
S w(S)+Yr, [%] =rad S1+rad Sy+a+1+b = rad R+a+b =rad T.

* Say g2 = 2. Then exactly one of S; and Sy is even, hence rad R =
rad 51 + rad Sy + 1. If S; is odd, then a split-edge e of S; together with
a suitably chosen edge of Q)7 is a split-set of R. If S; is even, then any
split-set of .S; is a split-set of R, a contradiction. Thus both S and Sy are
radial. Now if S is odd, then by (i), ¢; = 2a, a € {0,1}, and as shown
above, ¢z € {0,1,2}. However, if g3 = 1, then the middle edge of Qs is
a split-edge of T', a contradiction. Hence g3 = 2b, b € {0,1}. Therefore
Z?:l (S;) + Z?:l [%W =radR+a+b=radT.
On the other hand, if S; is odd, then by (i), g3 € {0,2,3}. It is routine
to verify that (9) holds for all possible choices of (g1, g3).

* Finally, say g2 = 3 and let Q2 = g, ug, us, ug, us, where u; € V(5;) and
us € V(Sz). Then S; and S, have the same parity. But if S} and Sy are
even, then {ujuz, ugus} is a split-set of R, which is not the case. Hence S;
and Ss are odd, and both are radial, otherwise R has a nonempty split-set.
Therefore rad R = (rad S; + rad Se — 1) + rad Q2 = rad S; + rad S + 1.
By (i), ¢1,q3 Z 1 (mod 3), and by the above restrictions on ¢; and g3 we
thus have ¢q, g3 € {0,2}. In all cases (9) is satisfied.

This completes the proof of Case 3 and also the proof of the lemma. |

Proof of the converse of Lemma 4.5. Assume that Si,...,S, € 7 and that
(), (i1) and (i73) hold. Let M be a maximum split-set of 7" with |M| = m. Let
Ti,..., Tt be the (radial) components of T — M. By Theorem 2.2, v(T) =
S 4(T;). By Lemma 6.3, T; € T for each i. Obviously, 7(T) < Z:"tly( i)
and since T; € T for each 4, it follows that 4(T) < 327" 4,(T;) = %(T). The result
follows from the trivial bound v, (T) < (7). ®
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