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Università ‘Federico II’ di Napoli

Italy
mbrunett@unina.it

Matteo Cavaleri Alfredo Donno
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Abstract

A signed graph is a pair Γ = (G,σ), where G = (V (G),E(G)) is a graph
and σ ∶ E(G) → {+1,−1} is the sign function on the edges of G. The
notion of composition (also known as lexicographic product) of two signed
graphs Γ and Λ = (H,τ) already exists in literature, yet it fails to map
balanced graphs onto balanced graphs. We improve the existing definition
showing that our ‘new’ signature on the lexicographic product of G and
H behaves well with respect to switching equivalence. Signed regularities
and some spectral properties are also discussed.

1 Introduction and Preliminaries

A signed graph Γ is a pair (G,σ), where G = (V (G),E(G)) is a simple graph (i.e.
loops and multi-edges are not admitted) and σ ∶ E(G) → {+1,−1} is a sign function
(or signature) on the edges of G. The (unsigned) graph G of Γ = (G,σ) is called the
underlying graph. Let C be a cycle in Γ; the sign of C is given by σ(C) =∏e∈C σ(e).
A cycle whose sign is 1 (respectively, −1) is called positive (respectively, negative);
alternatively, we can say that a cycle is positive if it contains an even number of
negative edges. A signed graph is balanced if all cycles are positive; otherwise it
is unbalanced [10]. If all edges in Γ are positive (negative), then Γ is denoted by
(G,+) (respectively, (G,−)); in this case we refer to such signature as the all-positive
(respectively, all-negative) one. Signed graphs might be seen as weighted graphs
with edge weights equal to ±1; however, the theory of signed graphs and that one of
weighted graphs do not completely overlap in view of the cycle sign. In particular,
signed graphs can be regarded as special kind of gain graphs and biased graphs [13].
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Most of the concepts defined for (unsigned) graphs are directly extended to signed
graphs. For example, the degree dΓ(v) of a vertex v in Γ is just the number dG(v)
of all edges in G incident to v. The order of Γ is the order of G and it is denoted by
∣Γ∣. Furthermore, if some subgraph of the underlying graph is under consideration,
then the sign function for the subgraph is the restriction of the original one.

For Γ = (G,σ) and U ⊂ V (G), let ΓU be the signed graph obtained from Γ by
reversing the signature of the edges in the cut [U,V (G)∖U], namely σΓU (e) = −σΓ(e)
for any edge e between U and V (G) ∖U , and σΓU (e) = σΓ(e) otherwise. The signed
graph ΓU is said to be switching equivalent to Γ. Given two signed graphs Γ = (G,σ)
and Γ′ = (G,σ′) having the same underlying graph, Γ ∼ Γ′ and σ ∼ σ′ both mean
that Γ and Γ′ are switching equivalent. Observe that switchings do not change cycle
signs; therefore, switching equivalent graphs share the same set of positive cycles. As
a consequence of the Harary’s Balance Theorem (see [10]), a signed graph Γ = (G,σ)
is balanced if and only if Γ ∼ (G,+).

Matrices and eigenvalues can be naturally extended from (unsigned) graphs to
signed graphs. The adjacency matrix A(Γ) of a signed graph Γ = (G,σ) is obtained
from the adjacency matrix of the underlying graph G by replacing 1 by −1 whenever
the corresponding edge is negative. In other words A(Γ) = (aij), where aij = σ(vivj) if
vertices vi and vj are adjacent and 0 otherwise. Similarly, the Laplacian matrix L(Γ)
is defined to be D(G)−A(Γ), where D(G) is the diagonal matrix diag(d1, d2, . . . , d∣G∣)
of vertex degrees in G.

At this stage, it is worth mentioning that switching equivalent signed graphs
have similar adjacency and Laplacian matrices. In fact, any switching arising from
a vertex subset U can be described by a diagonal matrix SU = diag(s1, s2, . . . , s∣Γ∣)
with si = +1 for each i ∈ U , and si = −1 otherwise. The matrix SU is sometimes called
the state matrix, and satisfies

A(Γ) = SUA(ΓU)SU and L(Γ) = SUL(ΓU)SU . (1.1)

In [11] Harary introduced the notion of composition of (unsigned) graphs later
known also as lexicographic product. The definition will be recalled in Section 2. Such
operation attracted many scholars’ attention along the years, and it is nowadays
considered one of the four standard graph products (see [9, ch. 4]). Many ‘signed’
versions of classical graph products have been introduced and studied in [6], and
a signed lexicographic product has been defined in [7]. Contrary to the several
Cvectović-products investigated in [6], the Hameed–Germina signed lexicographic
product does not necessarily map balanced graphs onto balanced graphs (see [6,
Theorem 3.3] and [7, Theorem 14]). That is why, given two signed graphs Γ = (G,σ)
and Λ = (H,τ), we propose an alternative signature on the lexicographic product
G ∗H, and study some combinatorial and spectral properties of the corresponding
signed graph.

The material is organized as follows. In Section 2 we recall the existing definitions
of some signed products, and introduce our alternative definition of lexicographic
product Γ ∗ Λ, proving in particular that it preserves switching equivalence classes.
In Section 3 we study some spectral properties concerning the adjacency and the
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Laplacian spectrum, comparing our results with the corresponding properties de-
tected in [7] for the Hameed–Germina lexicographic products.

Recently, several generalized lexicographic products have been introduced (see,
for instance, [1] and [4]). In a subsequent paper we intend to suitably extend the
signature σ ∗ τ in (2.1) to such new objects in order to get generalized signed prod-
ucts and get similar predicting spectral results under suitable assumption of ‘signed’
regularities of their factors.

2 Composition of signed graphs and signed regularities

Let G and H be two (unsigned) graphs. The composition or lexicographic product
G∗H (also denoted by G[H]) is a graph whose set of vertices is V (G)×V (H), with
(u, v) ∼ (u′, v′) whenever u ∼ u′ or u = u′ and v ∼ v′.

Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs. In [7], Hameed and Germina
defined the lexicographic product Γ∗Λ as the signed graph (G ∗H,σ∗τ) where

σ∗τ((u, v)(u′, v′)) =
⎧⎪⎪⎨⎪⎪⎩

σ(u,u′) if u ∼ u′,
τ(v, v′) if u = u′ and v ∼ v′.

Unfortunately, it can happen that Γ and Λ are balanced, but Γ∗Λ is not (see [7,
Theorem 14]). For instance, once we set P +

2 = (P2,+) and P −
2 = (P2,−) which are

both balanced, the graph P +
2 ∗P −

2 contains two unbalanced triangles. As a matter of
fact, P +

2 ∗P −
2 is switching equivalent to (K4,−). To see this, once you label vertices

of P +
2 ∗P −

2 as in Fig. 1., it turns out that

(P +
2 ∗P −

2 )U = (K4,−),

where U = {(u0, v0), (u0, v1)}.

This is not fully satisfactory: when we deal with balanced graphs, at least from
the spectral point of view we expect to retrieve the theory of the underlying unsigned
graphs. For that reson we suggest an alternative signature on G∗H. More precisely,
we set Γ ∗Λ = (G ∗H,σ ∗ τ), where

σ ∗ τ((u, v)(u′, v′)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ(u,u′) if u ∼ u′ and v /∼ v′,
σ(u,u′)τ(v, v′) if u ∼ u′ and v ∼ v′,
τ(v, v′) if u = u′ and v ∼ v′.

(2.1)

We explicitly note that (2.1) defines signs also for edges of type (u, v)(u′, v) with
u ∼ u′ in G, since surely v /∼ v, H being simple. Contrarily to P +

2 ∗P −
2 , the graph

P +
2 ∗ P −

2 is balanced (see Fig. 1). This is just an instance of a general phenomenon
(see Corollary 2.4 below).

The proof of the following proposition is immediate.

Proposition 2.1. Let Γ = (G,σ) be a non-empty signed graph. The two graphs
Γ ∗ (H,τ) and Γ∗ (H,τ) are equal if and only if τ = +.
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P +
2 ∗P −

2

(u0,v0)

(u0,v1)

(u1,v0)

(u1,v1)

u0 u1

P +
2

v0

v1

P −
2 P +

2 ∗ P −
2

Fig. 1: Graphs P +
2 ∗P −

2 and P +
2 ∗ P −

2 in comparison. Dashed lines represent
negative edges.

Fig. 1 makes reasonable the following definition.

Definition 2.2. An edge e in G ∗H is said to be

• horizontal if it joins vertices of type (u, v) and (u′, v) with u and u′ adjacent
in G;

• vertical if it joins vertices of type (u, v) and (u, v′) with v and v′ adjacent in
H;

• sloping if it joins vertices of type (u, v) and (u′, v′) with u and u′ adjacent in
G and v /= v′.

According to Definition 2.2, we are partitioning E(G∗H) into the subsets Eh(G∗
H), Ev(G∗H) and Es(G∗H) of horizontal, vertical and sloping edges respectively.
This partition is also useful to easily compute the size of G ∗H.

By the definitions it immediately follows that maps σ ∗ τ and σ∗τ only differ on
Es(G ∗H).

Theorem 2.3. Let Γ = (G,σ) and Λ = (H,τ) two signed graphs. For any U ⊂ V (G)
and Y ⊂ V (H), the two signed graphs Γ ∗Λ and ΓU ∗ΛY are switching equivalent.

Proof. The proof is split into two parts. We first show that

Γ ∗Λ ∼ ΓU ∗Λ. (2.2)

Thereafter, we show that
ΓU ∗Λ ∼ ΓU ∗ΛY . (2.3)

We claim that ΓU ∗Λ is actually equal to (Γ ∗Λ)U×V (H). Note first that ΓU ∗Λ and
(Γ ∗Λ)U×V (H) both have G ∗H as underlying graph. The equality

[U × V (H), V (G ∗H) ∖ (U × V (H))] = [U × V (H), (V (G) ∖U) × V (H)]

shows that horizontal edges of G∗H are equally signed in ΓU ∗Λ and in (Γ∗Λ)U×V (H).
The same is true for vertical edges since, given any edge vv′ ∈ E(H) and any fixed
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vertex u ∈ V (G), the sign of the edge (u, v)(u, v′) is equal to τ(v, v′) in both ΓU ∗Λ
and (Γ ∗Λ)U×V (H).

Finally, a quick look at (2.1) is what we need to prove that also sloping edges of
G ∗H are equally signed in ΓU ∗Λ and in (Γ ∗Λ)U×V (H).

The argument to prove (2.3) is analogous. We claim that ΓU ∗ ΛY is equal to
(ΓU ∗ Λ)V (G)×Y . Fixed any v ∈ V (H); each edge uu′ ∈ E(ΓU) gives rise to the
horizontal edge (u, v)(u′, v) in G ∗H whose sign is σΓU (u,u′) in both ΓU ∗ ΛY and
(ΓU ∗Λ)V (G)×Y. The equality

[V (G) × Y,V (G ∗H) ∖ (V (G) × Y )] = [V (G) × Y,V (G) × (V (H) ∖ Y )]

shows that vertical edges in G∗H are equally signed in ΓU∗ΛY and in (ΓU∗Λ)V (G)×Y .
The sloping edges of G ∗H are now equally signed by (2.1).

For the sake of completeness, we explicitly point out that Theorem 2.3 admits a
purely matrix-theoretical proof using (1.1) and Theorem 3.3 below. The next result
is an immediate consequence of Theorem 2.3.

Corollary 2.4. If Γ and Λ are balanced signed graphs, then Γ∗Λ is balanced as well.

From now on we assume that Γ = (G,σ) and Λ = (H,τ) have order n and m
respectively. Moreover, we set V (G) = {u1, . . . , un} and V (H) = {v1, . . . , vm}. In
order to deal with signed regularities, we denote by d+Γ(vi) (respectively, d−Γ(vi)) the
number of positive (respectively, negative) edges incident to a vertex vi of Γ = (G,σ).
We simply write d+(vi) and d−(vi) when it is clear which graph we are referring to.

The difference d±(vi) = d+(vi) − d−(vi) computes the net degree of vi. The signed
graph Γ is said to be net regular of net degree d±Γ = k if d±Γ(vi) = k for all i = 1, . . . , n.

There are other sorts of significant signed regularities. We say that Γ is positively
(respectively, negatively) regular of degree h, if d+Γ(vi) (respectively, d−Γ(vi)) is equal
to h for all i = 1, . . . , n. If this is the case, we shall write h = d+Γ (respectively, h = d−Γ).

Following [8], we say that a signed graph Γ = (G,σ) is co-regular with co-regularity
pair (r, k) if the underlying graphG is r-regular and Γ is net regular with net degree k.
Obviously r ∈ N0 and k ∈ Z.

The next proposition—which is essentially Proposition 2.1 in [2]—relates several
types of signed regularities.

Proposition 2.5. A signed graph is co-regular if and only if it is both positively and
negatively regular.

Equation (2.4) in Proposition 2.6 below has also been proved in [7, Lemma 16].
Here we provide a more direct proof.

Proposition 2.6. Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs of order n and
m respectively, and let w = (u, v) be a fixed vertex of Γ ∗Λ. We have

dG∗H(w) =mdG(u) + dH(v), (2.4)

and
d±Γ∗Λ(w) = (m − 2d−Λ(v))d±Γ(u) + d±Λ(v). (2.5)



M. BRUNETTI ET AL. /AUSTRALAS. J. COMBIN. 74 (2) (2019), 332–343 337

Proof. Note that w is adjacent to dG(u) horizontal edges, dH(v) vertical edges and
(m − 1)dG(u) sloping edges. This proves (2.4).

To compute d±Γ∗Λ(w), we count positive and negative edges in each of the following
three pairwise disjoint subsets of E(Γ ⋆Λ):

S1 = {w(u′, v′) ∣u′ ∼ u, v′ /∼ v}, S2 = {w(u′, v′) ∣u′ ∼ u, v′ ∼ v}

and
S3 = {w(u, v′) ∣ v′ ∼ v}.

Results are summarized in Table 1.

Table 1

number number

of positive edges of negative edges

S1 (m − dΛ(v))d+Γ(u) (m − dΛ(v))d−Γ(u)
S2 d+Γ(u)d+Λ(v) + d−Γ(u)d−Λ(v) d+Γ(u)d−Λ(v) + d−Γ(u)d+Λ(v)
S3 d+Λ(v) d−Λ(v)

The number d+Γ∗Λ(w) (respectively, d−Γ∗Λ(w)) is given by the sum of the numbers
on the second (respectively, third) column of Table 1. Hence

d±Γ∗Λ(w) = (m − dΛ(v))d±Γ(u) + d±Γ(u) ⋅ d±Λ(v) + d±Λ(v). (2.6)

Equation (2.5) now follows from the elementary identity dΛ(v) = d±Λ(v)+2d−Λ(v).

Proposition 2.5, Proposition 2.6 and Equation (2.6) directly imply the following
corollary.

Corollary 2.7. Let Γ and Λ be two signed graphs of order n and m respectively.
The following hold:

(i) if Γ is r-regular and Λ is s-regular, then Γ ∗Λ if (mr + s)-regular;

(ii) if Γ is net regular of net degree d±Γ, and Λ is co-regular with co-regularity pair
(s, d±Λ), then Γ ∗Λ is net regular of net degree

(m − s)d±Γ + d±Λ + d±Γ d±Λ;

(iii) if Γ and Λ are both co-regular with co-regularity pair (r, d±Γ) and (s, d±Λ) respec-
tively, then Γ ∗Λ is co-regular with co-regularity pair

(mr + s, (m − s)d±Γ + d±Λ + d±Γ d±Λ).
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Suppose that Γ and Λ are both net regular. If Λ is not regular and d±Γ(u) /= 0,
Proposition 2.5 and Equation (2.5) show that Γ ∗ Λ is not net regular, contrary to
what happens for Γ∗Λ (see [7, Corollary 17]).

We end this section by recalling two other known products between Γ = (G,σ)
and Λ = (H,τ), both defined in [6]. The Cartesian product Γ × Λ has G × H as
underlying graph and signature

σ × τ ((u, v)(u′, v′)) =
⎧⎪⎪⎨⎪⎪⎩

σ(u,u′) if v = v′

τ(v, v′) if u = u′.

The strong product Γ ⊠ Λ is defined as (G ⊠H,σ ⊠ τ), where G ⊠H denotes the
strong product between the underlying graphs, and

σ ⊠ τ ((u, v)(u′, v′)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ(u,u′) if v = v′ and u ∼ u′ in G;

τ(v, v′) if u = u′ and v ∼ v′ in H;

σ(u,u′)τ(v, v′) if u ∼ u′ in G and v ∼ v′ in H.

3 Spectral properties of Γ ∗Λ

We first focus on the adjacency matrix of Γ∗Λ and its spectrum, and start by recalling
that the Kronecker product A ⊗ B between the (m × n)-matrix A = (aij) and the
(p×q)-matrix B = (bij)p,q is the (mp×nq)-matrix obtained from A by replacing every
element aij with the block aijB. It is possible to show that

(A⊗B)(C ⊗D) = AC ⊗BD (3.1)

whenever the products AC and BD exist (see, for instance [12, p. 8]).

Given any square matrix A, we shall denote its spectrum by Spec(A). Through-
out the rest of the paper, {λ1, . . . , λn} and {µ1, . . . , µm} will denote Spec(A(Γ)) and
Spec(A(Λ)) respectively. To sort vertices in Γ×Λ, Γ⊠Λ, Γ∗Λ and Γ∗Λ, we choose
once and for all the lexicographic order in V (G) × V (H).

The adjacency matrix of the composition G∗H is A(G)⊗Jm+In⊗A(H), where Jm
is the all-ones (m ×m)-matrix (see, for instance [5, p. 71]). Moreover the adjacency
matrix of Γ∗Λ assumes a similar form. In fact

A(Γ∗Λ) = A(Γ)⊗ Jm + In ⊗A(Λ) (see [7, Theorem 8]).

We also state two lemmas proved in [6] concerning the adjacency spectra of the
Cartesian and the strong product of two signed graphs.

Lemma 3.1. Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs of order n and
m respectively. The adjacency matrix A(Γ × Λ) of the Cartesian product Γ × Λ is
A(Γ)⊗ Im + In ⊗A(Λ). Hence

Spec(A(Γ ×Λ)) = {λi + µj ∣1 ≤ i ≤ n, 1 ≤ j ≤m}.
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Lemma 3.2. Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs of order n and
m respectively. The adjacency matrix of the strong product Γ ⊠ Λ is the Kronecker
product A(Γ)⊗A(Λ), and

Spec(A(Γ ⊠Λ)) = {λiµj ∣1 ≤ i ≤ n, 1 ≤ j ≤m}.

In order to write down the adjacency matrix for Γ∗Λ, we associate to each signed
graph Λ = (H,τ) of order m an m×m symmetric matrix J(Λ) whose general element
is

jhk(Λ) =
⎧⎪⎪⎨⎪⎪⎩

−1 if vhvk is a negative edge in Λ;

1 otherwise.

Denoting by Λ− the unsigned graph obtained from Λ by deleting the positive edges,
it follows by definition that

J(Λ) = Jm − 2A(Λ−).

Obviously J(Λ) = Jm if and only if τ is all-positive.

Theorem 3.3. Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs of order n and
m respectively. The adjacency matrix of Γ ∗Λ is given by A(Γ)⊗ J(Λ) + In ⊗A(Λ).

Proof. By definition, the matrix A(Γ)⊗J(Λ)+In⊗A(Λ) can be described as follows
in terms of m ×m blocks:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(Λ) σ(u1u2)J(Λ) . . . σ(u1un)J(Λ)
σ(u2u1)J(Λ) A(Λ) . . . σ(u2un)J(Λ)

⋮ ⋮ ⋱ ⋮
σ(unu1)J(Λ) σ(unu2)J(Λ) . . . A(Λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

where σ(uiuk) is understood to be 0 if ui and uk are not adjacent in Γ. If we examine
the entry ((i − 1)m + j, (k − 1)m + l) in the matrix (3.2), we get σ∗τ((ui, vj)(uk, vl))
defined in (2.1) if (ui, vj) and (uk, vl) are adjacent in G ∗H, and 0 otherwise. In
other words, the matrix (3.2) is precisely A(Γ ∗Λ).

For any fixed signed graph Λ = (H,τ) of order m, we define (Km, τ̄) to be the
signed complete graph obtained from Λ by adding positive edges to the non-edge
positions. That is to say, for each pair of different vertices vi and vj in V (H),

τ̄(vi, vj) =
⎧⎪⎪⎨⎪⎪⎩

−1 if vivj is a negative edge in Λ;

1 otherwise.

Corollary 3.4. The adjacency matrix of Γ ∗Λ can be also expressed as

A(Γ ∗Λ) = A(Γ ×Λ) +A (Γ ⊠ (Km, τ̄)) .

Proof. Since J(Λ) = Im+A (Km, τ̄), the statement follows by Lemma 3.1, Lemma 3.2
and Theorem 3.3.
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It is quite natural to ask whether the adjacency spectrum of Γ∗Λ can be captured
from the eigenvalues of Γ and Λ. In an unsigned context, the adjacency spectrum of
G ∗H can be entirely retrieved from the eigenvalues of G and H only under some
assumptions on the graphs involved (for instance, when H is r-regular, i.e. each
vertex of H has exactly r neighbors and G is whatsoever [5, p. 72]).

In the same vein of [7], we shall state some results relating the adjacency spectra
of Γ, Λ and Γ ∗Λ when the graph Λ enjoys suitable signed regularities.

Because of its significance in our context, we also include here one of the most
intriguing results proved in [7] concerning the adjacency spectrum of the Hameed–
Germina lexicographic product Γ∗Λ.

Theorem 3.5. Let Λ = (H,τ) be a net regular graph of net degree d±Λ, and let
{µ1 = d±Λ, µ2, . . . , µm} be its adjacency spectrum. The adjacency eigenvalues of Γ∗Λ
are

mλ1 + d±Λ, mλ2 + d±Λ, . . . , mλn + d±Λ (each of multiplicity 1)

and µ2, µ3, . . . , µm (each of multiplicity n = ∣Γ∣).

Corollary 3.6. Let {µ1, µ2, . . . , µm} be the adjacency spectrum Spec(A(Λ)) of a
signed graph Λ = (H,τ), where Λ is balanced and H is r-regular. If we define µ1 = r,
then the eigenvalues of Γ ∗Λ are

mλ1 + r, mλ2 + r, . . . , mλn + r (each of multiplicity 1)

and µ2, µ3, . . . , µm (each of multiplicity n = ∣Γ∣).

Proof. The number r is the net degree of (H,+). Thus, the adjacency spectrum of
Γ∗ (H,+) can be computed through Theorem 3.5. The adjacency spectra of Γ ∗ Λ
and Γ∗ (H,+) are equal by Theorem 2.3, and the latter graph is precisely Γ∗ (H,+)
by Proposition 2.1.

Corollary 3.6 embraces the classical result relating the adjacency spectra of the
unsigned graphs G, H, and G∗H when H is regular. In fact, when Γ is balanced as
well, Corollary 2.4 guarantees that the mutual interrelationship between Spec(A(Γ)),
Spec(A(Λ)) and Spec(A(Γ∗Λ)) holds on the nose for Spec(A(G)), Spec(A(H)) and
Spec(A(G ∗H)).

Our next result allows predicting part of the spectrum of Γ ∗ Λ when Λ is co-
regular.

Theorem 3.7. Let Λ = (H,τ) be a co-regular graph with co-regularity pair (r, d±Λ).
The adjacency spectrum of Γ ∗Λ contains

ζi = λi(m − 2d−Λ) + d±Λ, for all i = 1, . . . , n. (3.3)

Proof. Let Xi be an eigenvector corresponding to the eigenvalue λi of A(Γ) and j be
the all-ones vector with m components. It is straightforward to verify that

A(Λ) j = d±Λ j and J(Λ) j = (m − 2d−Λ) j.
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Then,

A(Γ ∗Λ)(Xi ⊗ j) = (A(Γ)⊗ J(Λ) + In ⊗A(Λ)) (Xi ⊗ j) (by Theorem 3.3)

= λiXi ⊗ (m − 2d−Λ) j +Xi ⊗ d±Λ j (by (3.1))

= (λi(m − 2d−Λ) + d±Λ) (Xi ⊗ j).

Example 3.8. Let Cn be the cycle with n vertices. Up to switching equivalence,
there exists only one unbalanced signature on Cn. The adjacency and the Laplacian
spectra of both balanced and unbalanced cycles are listed in [3, Lemma 4.4]. We
set Γ to be any unbalanced square, i.e. Γ = (C4, σ) with σ /∼ +, and Λ = (C3,−).
The latter is a co-regular graph with co-regularity pair (2,−2), and d−Λ = 2. A direct
computation shows that the adjacency eigenvalues of Γ are

λ1 = λ2 =
√

2 and λ3 = λ4 = −
√

2.

Theorem 3.7 says that Γ ∗Λ has the numbers

ζ1 = λ1(m − 2d−Λ) + d±Λ = −
√

2 − 2 and ζ3 = λ3(m − 2d−Λ) + d±Λ =
√

2 − 2

as adjacency eigenvalues of multiplicity 2. Such prediction is confirmed by a Maple 17
computation, the rest of the spectrum being 1 + 2

√
2 and 1 − 2

√
2, both with multi-

plicity 4.

Let Γ and Λ be as in Example 3.8. It is worth pointing out that the multiset
Spec(A(Λ)) = {−2,1(2)} has an empty intersection with Spec (A (Γ ∗Λ)). On the
contrary, Spec(A(Λ)) ∩ Spec (A (Γ∗Λ)) is equal to {1(2)} by Theorem 3.5.

u1

u4

u2

u3

Γ = (C4, σ)

v1

v3

v2

Λ = (C3,−)

w12

w23

w41

w11 w21

w31

w13

w43 w33

w32

Fig. 2: The graph on the right represents Γ ∗Λ considered in Examples 3.8 and
3.11. wij stands for (ui, vj).
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The last two theorems concern the Laplacian matrix of the new lexicographic
product

L(Γ ∗Λ) =D(G ∗H) −A(Γ ∗Λ)

and its spectrum.

Theorem 3.9. Let Γ = (G,σ) and Λ = (H,τ) be two signed graphs. The diagonal
matrix D(G ∗H) and the Laplacian matrix L(Γ ∗Λ) assume the following form:

D(G ∗H) =mD(G)⊗ Im + In ⊗D(H), (3.4)

and
L(Γ ∗Λ) =mD(G)⊗ Im −A(Γ)⊗ J(Λ) + In ⊗L(Λ). (3.5)

Proof. Recall that vertices in Γ ∗ Λ = (G ∗ H,σ ∗ τ) are sorted according to the
lexicographic order. Hence the first equation of the statement comes from (2.4)
and the definition of the Kronecker product. Theorem 3.3 and (3.4) suggest the
substitutions to make in (3.5) in order to get the second equation of the statement.

Theorem 3.10. Let Γ be an r-regular signed graph of order n, and let Λ be a co-
regular graph of order m with co-regularity pair (s, d±Λ). The graph Γ∗Λ is (mr+ s)-
regular, hence

Spec(L(Γ ∗Λ)) = {mr + s − λ ∣λ ∈ Spec(A(Γ ∗Λ)) }.

This spectrum contains in particular

mr + s − ζ1, mr + s − ζ2, . . . , mr + s − ζn,

where the numbers ζ1, . . . , ζn are given in (3.3).

Proof. The (mr + s)-regularity of Γ ∗ Λ comes from Part (i) of Corollary 2.7. It
follows that its Laplacian matrix can be also written as

L(Γ ∗Λ) = (mr + s)Imn −A(Γ ∗Λ).

Hence any λ-eigenvector of A(Γ ∗ Λ) is an (mr + s − λ)-eigenvector of L(Γ ∗ Λ).
Theorem 3.7 now proves our claim.

Example 3.11. Let Γ and Λ be the graphs of Example 3.8. In the case at hand, Γ is
2-regular and Λ is co-regular with co-regularity pair (2,−2). Theorem 3.10 predicts
that Γ ∗Λ is 8-regular, and

8 − ζ1 = 10 +
√

2 and 8 − ζ3 = 10 −
√

2

both belong to the Laplacian spectrum of Γ ∗ Λ with multiplicity at least 2. A
Maple 17 computation confirms that

Spec(L(Γ ∗Λ)) = { (7 − 2
√

2)(4), (10 −
√

2)(2), (7 + 2
√

2)(4), (10 +
√

2)(2) }.
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