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Abstract

It is known that the r-dimensional hypercube @), can be decomposed
into r-cycles and into 2r-cycles when r is even. We generalize these
results to the class of the Cartesian product of cycles. We also prove
that the k-ary r-cube QF, which is the Cartesian product of r k-cycles,
can be decomposed into (tkr/2)-cycles if ¢ divides k and 4 divides t.
Consequently, a decomposition of (), into 4r-cycles for any even r > 4,
is obtained.

1 Introduction

The graphs considered in this paper are finite, simple and undirected. By a k-cycle
we mean a cycle of length k, denoted by Cy. A decomposition of a graph G is a
collection Hy, Hs, ..., H, of edge-disjoint subgraphs of G, such that every edge of
G belongs to exactly one H;. If all the subgraphs in the decomposition of G are
isomorphic to a graph H, we say that G can be decomposed into H or G has an
H-decomposition. The Cartesian product of two graphs GG and Gy is a graph G;0Go
with vertex set V(Gp) x V(G2), where vertices (u1,us) and (v, vs) are adjacent if
and only if either u; = v, and us is adjacent to ve, or us = vy and u; is adjacent
to vq.

An r-dimensional torus is the Cartesian product of r cycles. The torus Cy, OC%, 0
- 0OCk, is a graph with kiky ...k, vertices and rkiky ...k, edges. In particular,
the torus C,0C,O---0OCy, is the k-ary r-cube, denoted by QF. The r-dimensional

NV
r factors

hypercube @), is the Cartesian product of r copies of the complete graph K,. If r is
even, then Qf o= @,. The multidimensional tori, k-ary r-cubes and hypercubes are
popular interconnection networks (see [9,13]).
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Graph decomposition has been the focus of a great deal of research. In particular,
cycle decompositions of the Cartesian product of cycles have a long history. In 1973,
Kotzig [12] proved that the Cartesian product of two cycles is decomposable into
Hamiltonian cycles. Foregger [11] guaranteed such a decomposition for the Cartesian
product of three cycles while Aubert and Schneider [2] generalised this result for the
Cartesian product of a 4-regular graph and a cycle. Alspach et al. [1] extended the
result further and proved that the Cartesian product of a finite number of cycles has
a Hamiltonian decomposition. The existence of Hamiltonian decompositions of the
hypercube @, for even r, is an immediate consequence of this result. Furthermore,
decompositions of the hypercubes and Cartesian product of even cycles into regular,
connected, subgraphs are studied in [3,5-8,16]. Recently, Bogdanowicz [4] obtained
some interesting results on the decomposition of the Cartesian product of directed
cycles into cycles of equal lengths.

In this paper, we mainly focus on cycle decompositions of the Cartesian product
of cycles.
Note that the hypercube @, has 2" vertices and r2"~! edges. For even r, Ramras

[15] proved that @, can be decomposed into r-cycles while Mollard and Ramras [14]
obtained a decomposition of @), into 2r-cycles and posed the following problem.

Problem 1.1 ([14]) For which k > 4 dividing r2"~' does the hypercube Q, have a
decomposition into k-cycles?

We consider this problem for the class of r- dimensional tori.

Problem 1.2 For which k>4 dividing rkiks . . . k. does the torus C,0Cy, 0 - - - OCY,
have a decomposition into k-cycles?

El-Zanati et al. [10] proved that the graph Cox, OCok, O+ - - OCh, can be decom-
posed into 2¢-cycles for any given ¢ with 2 <t < ky+ky+-- -+ k,. As a consequence,
they proved the existence of a cycle decomposition of @, into 2'-cycles, where r is
even and 2 < t < r and thus solved Problem 1.1 for the case k = 2¢.

In this paper, we obtain the following results.

Theorem 1.3 Letr > 2, k; > 3 for 1 < i <r be integers such that k; is even for at
least two values of i and let G be the Cartesian product of cycles Cy,, Ch,, ..., Ck,.
Then G can be decomposed into cycles of length 2r and further, an edge can be selected
from each of these 2r-cycles to form a perfect matching of G.

Theorem 1.4 Letr > 2, k; > 3 for 1 < i <r be integers such that k; is even for at
least two values of i and let G be the Cartesian product of cycles Cy,, Ck,, ..., Ck,.
Let k € {ky,ka, ..., k.} be an even integer. Then G can be decomposed into cycles of
length kr and further, k/2 edges can be chosen from each of these kr-cycles to form
a perfect matching of G.
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For even r, Q, = Q? /o Hence it follows that @), can be decomposed into r-cycles and
into 2r-cycles from Theorems 1.3 and 1.4 respectively.

Theorem 1.5 Let t,k be positive integers such that 4 divides t and t divides k.
Then the k-ary r-cube Q% can be decomposed into (tkr/2)-cycles. Moreover, from
each of these cycles, kt/4 edges can be selected such that they together form a perfect
matching of QF.

Corollary 1.6 For even r > 4, the hypercube QQ, can be decomposed into 4r-cycles.

This solves the Problem 1.1 for the case k& = 4r.

As the structure of the Cartesian product of cycles is recursive, use of induction
is effective in proving the results for such graphs. The proofs of all our results are
based on induction on the number r of cycles involved in the product. In Section 2,
we prove a general induction step that is used in the proofs of all the above three
theorems. In Section 3, we prove Theorems 1.3 and 1.4 while Theorem 1.5 is proved
in Section 4.

2 General Induction Step

We first discuss the nature of the Cartesian product of two cycles for better under-
standing and set some notations which are used in the proofs.

We use the notation [n] for the set {1,2,...,n}. In what follows, by product we
mean the Cartesian product.

Notation 2.1 Consider the Cartesian product C,,0C), of two cycles C,,, and C),. La-
bel the vertices of Cy, by the set {v1,vq, ..., vy} so that v, is adjacent to v, (mod m)
and label the vertices of C,, by {1,2,...,n} so that j is adjacent to j + 1 (mod n).
So the vertex set of C,,,0C, is given by {(v,,j): p € [m] and j € [n]}. Denote (v, j)
by UI{ for convenience; the subscripts are computed modulo m with representatives
in [m] and superscripts are computed modulo n with representatives in [n].

By the definition of the Cartesian product of graphs, the edge set of C,,0C),
consists of n copies of the cycle C,, (say) CL,C2,...,C" and the edges joining
the corresonding vertices in C7, and CJ ', for each j € [n]. Therefore the vertex
v} in Cj, is adjacent to the corresponding vertex vJ™ in G}, for all p € [m].
For even m, let M; and M, be the disjoint perfect matchings of C,, with M; =
{vyvp1:p=1,3,...,m —1} and My = {v,v,11: p = 2,4,...,m}. Let M{ and M}
be the matchings of the cycle CY, corresponding to M; and M,, respectively. Let eg;

be the edge viv] | of CJ, and fJ be the cross edge vJvit! for p € [m] and j € [n].

(See Figure 1 for better understanding,.)

We prove the general induction step followed by its illustration.
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Figure 1: C,,0C,

Theorem 2.2 (General Induction step). Let H be a graph which has a de-
composition into cycles Cy,,Ch,,...,Ck, and each Cy, contains a set M; of m; > 0
edges, such that U§:1 M; is a perfect matching of H. Let C,. be a cycle of length r.
Then the graph HOC,. has a decomposition into cycles C/g1+2m1’ C,f;QJerQ, e C,gt”mt,
for 1 < 5 < r. Further, each C’,f;i”mi contains a set Fij of m; edges such that

Uj—s UL_, F/ is a perfect matching of HOC,.

Proof. Let G = HOC,. The graph G consists of r copies H*, H? ..., H" of H
such that the vertices of H7 are adjacent to the corresponding vertices of H I+ for
j € [r], where the addition in the superscripts is taken modulo r. Let C’lj% be the
ki-cycle in H corresponding to the cycle Cy, of H and let MZJ be the matching of C’gi
corresponding to the matching M; of Cy,, where i € [t] and j € [r]. Then M/ consists
of m; edges egl,egé,...,egmi of C,Jﬁz Let M7 = J_, M/ = {e: 1 € [mi]; i € [t]}.
Then M/ is a perfect matching of H7. Let uzl and vzl be the end vertices of the edge
e, 1 € [my]. Let fJ be the edge of G' with end vertices u/, and u/;"" while A, be the
edge of G joining v/, to v/

For every ¢ and j, we construct a (k; 4+ 2m;)-cycle C,f;i +om, I G from the cycle C’gi by
deleting the matching MZJ and adding the matching MZJ oof C’,]Jl and also adding

the edges fZ]l and hgl between these matchings. Let
Cl o, = (CL = MY UM U{f]: 1€ [mi]} U{h]: 1 € [m]} (see Figure 2).

Thus we have constructed (k; + 2m;)-cycles C,f;l +omyr Clotamgs -+ C,f;t +om, Of G, for
cach j € [r].
We prove that these cycles are edge-disjoint. For every i, the cycles C,ii, C,gi, 5 O

are vertex-disjoint and so are edge-disjoint in G. Further, for every j, the cycles
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Figure 2: Construction of (k; + 2m;)-cycles in G = HOC,

C’,f;l,C’,zw .. .,C’,f;t are edge-disjoint in H’ and their matchings Mf,Mg, .. .,Mtj are
vertex-disjoint. This implies that the cycles C3 5., Cl tomys - - -+ Chyom, are edge-
disjoint in G. Thus the cycles C} ., , where i € [t] and j € [r], are edge-disjoint.
These cycles together decompose the graph G as

T t
SN N com| = (ke k) + 2(ma A+ my - my)]
j=1 i=1
= rl[EH)[+[V(H)]] = |EG)].
Now we need to select m; edges from each cycle C,f;i Lom, that will form a perfect
matching of G. Let F/ = M/™, for i € [t],j € [r]. Since J'_, M/ is a perfect



S.A. TAPADIA ET AL./AUSTRALAS. J. COMBIN. 74 (3) (2019), 443459 448

matching of H’ and the graphs H’ are vertex-disjoint,
T t ‘ T t ‘ r ‘
w=0Ur =0Uw -UUn
j=1i=1 j=1i=1 j=1i=1

is a matching in G. In fact, M is a perfect matching of the graph G since

LIESIAEDY W<2H>I _ v _ [ve)

— £ 2 2
Jj=1 =1
This completes the proof. O

HNlustration 2.3 Let H = C,;. Then H trivially has a cycle decomposition. Let
{e1,e2} be a perfect matching of H. The graph HOC3 consists of three copies
C1,C? and C? of Cy and the edges joining the corresonding vertices in C? and
C’i“ (mod 3), for each j € [3]. This graph decomposes into 8-cycles Cy, CZ, C3 such
that each C¢ contains the matching {e ™' ™ 8 et tmed ). 5 ¢ 3]}, Clearly, the
set {el, el j € [3]} forms a perfect matching of HOCs.

I ! /
1 2
€ i€ /i€
_ - ~ =
i
. [
S I SR
"’v . ‘\‘\
1 2 i3
: 61 _ - % ’6“1— - - _ N \\ 61
R 2 3"
C; Ci Cy

Figure 3: Decomposition of Cy0C5 into 8-cycles

3 Decomposition into small cycles

In this section, we prove Theorems 1.3 and 1.4. As the proofs are based on induction
on the number of cycles involved in the product, we need to prove the basis steps for
both the theorems.

The following lemma serves as the basis step for Theorem 1.3.

Lemma 3.1 Suppose C,,, and C,, are cycles of even length. Then the graph C,,0C,
can be decomposed into 4-cycles. Moreover, from each of these 4-cycles, one edge can

be selected such that the collection of these edges together forms a perfect matching
of C,,0C,.
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Proof. Recall Notation 2.1. The vertices of the graph G = C,,,0C), are labelled by
(vp, j) = v, where v, € V(Cp) = {v1,v2,...,v} and j € V(Cy) = {1,2,...,n}.
The graph G consists of n copies C} C? ... C" of the cycle C,,, where the corre-
sponding vertex vJ in C, is adjacent to vJ*' in C7F, for all p € [m]. Let M; and
M, be the dlsJomt perfect matchings of C, with M; = {v,vp41: p=1,3,...,m—1}
and My = {v,v,11: p=2,4,...,m}. Let M] and Mj be the matchmgs of the cycle
Cy cqrrespondmg to My gmd Mg, respectively. Let eg) be the edge v/ Jv) . of CJ. and
let fJ be the cross edge vJv/ ™! for p € [m] and j € [n].

We construct 4-cycles which decompose the graph G by using the four edges eJ el +1

fg and f; +1- Note that for every p and j, these four edges induce a 4-cycle in G. So

; : - J JHL 1 i
in terms of the vertices, the 4-cycles are (v ,va, AR AR )

J

?}j p+1 1)j+1
p+1 p+1
7 j+1
€p €p
J J+1
Up J Up
fp

For both p and j odd, denote such a 4-cycle by Zg while for both p and j even,
denote it by W) . Tt follows that the cycles ZJ are mutually vertex-disjoint. Similarly,
the cycles Wg are mutually vertex-disjoint. Let Z = {Zg: p=13..m-1;5 =
1,3,...n— 1} and W = {Wj p =2, 4 ..m;j = 2,4,...n} be the collections of
4-cycles. Then [V(Z)| = |[V(W)| = 4x %% = mn = |V(G)|. So the union of all cycles
in Z forms a spanning subgraph of G. Slmllar is the case for W. Further, from the
construction it is clear that each WIZ is edge-disjoint from all the cycles ZI{. Therefore
the collection of 4-cycles Z U W decomposes the graph G. An illustration of such a
decomposition is given in Figure 4.

v Vs v v
el es

L il |k
€3 e3 el | €

: o e3 &
ef | b
vl v P o} vl P v} o
(a). 4-cycles ZJ (b). 4-cycles W)

Figure 4: Decomposition of Cs0C} into 4-cycles
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Further, we select a set of edges
My ={el e B(Z)):p=1,3,...m—1; j=1,3,...n—1}
from the cycles Zg while from the cycles Wg, we select
My = {eé € E(Wg) p=24,...m; j=24,...n}.
Clearly, M; U M, forms a matching of G. In fact,

mn mn mn |V(C,O0C,)|
M My|l=—"-+—=—">-="r-—"—
R 2

Therefore M; U M, forms a perfect matching of G. a

We now give a formal Proof of Theorem 1.3.

Proof. 'We proceed by induction on the number of cycles r. The case r = 2 follows
from Lemma 3.1. Suppose r > 3. Assume that the statement holds for the product
of r — 1 cycles. Write G as G = HOC, where C' is a cycle and H is the product
of r — 1 cycles, at least two of which are even. H is 2(r — 1)-regular graph and so
|E(H)| = (r — 1)|V(H)|. By induction, H can be decomposed into cycles of length

2(r — 1) (say) 21, Zs, ..., 2, where t = ‘2%(?1))' = W(Q—H)‘ Moreover, each Z; contains
an edge e; such that {e;: 1 =1,2,...,t} is a perfect matching of H. By Theorem 2.2,

G can be decomposed into 2r-cycles I'1, Iy, ..., I'y. Then t' = EG)] — 2Vl 1

2r 2 2r
|V (H)|IC]
2

= t|C|. Moreover, every I'; contains an edge f; such that {f;:i=1,2,...,t'}
is a perfect matching of G. a

The following lemma is the basis step for the proof of Theorem 1.4.

Lemma 3.2 Let C,, and C, be cycles of even lengths and let | € {2m,2n}. Then
the graph C,,0C,, can be decomposed into l-cycles. Moreover, from each of these l-
cycles, 1/4 edges can be selected such that the collection of these edges form a perfect
matching of C,,0C,,.

Proof. Without loss of generality, we construct a decomposition of C,,0C,, into
cycles of length 2m.
Recall Notation 2.1. The 2m-cycles in the decomposition of C,,0C,, are as follows.
For odd j, let Z9 = M} U MJ™ U {fi:pe[m]}
and for even j, let W7 = M{ UM U{fi: p € m]}.

The 2m-cycles Z7 (similarly, W7) are mutually vertex-disjoint and together form a
2-regular spanning subgraph (say) F (similarly, F3) of C,,0C,,. Moreover, from the
construction, it follows that F} and F; are edge-disjoint. Now

\E(FY)| + |E(Fy)| = g X 2m + g x 2m = 2mn = |E(C,,0C,,)|.
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U % %
Ll |

v vf v} o vi vf v o
(a). 12-cycles Z7 (b). 12-cycles W7

Figure 5: Decomposition of CgOC, into 12-cycles

Thus the collection F{UF, = {Z7 : j=1,3,...n—1} U{W7J : j =24 .. .n} gives
an edge decomposition of C,,,0C),, into 2m-cycles.

Now we select the set of edges My = {f] = vjvJ*' : p=1,3,...m — 1} from Z7,
where j = 1,3,...n — 1 and the set of edges My = {f] = vJvJ*! : p=2,4,...m}
from W/, where j = 2,4,...n. As the cycles Z7 (similarly, W7) are vertex-disjoint,
My (similarly, My) is a matching in C,,0dC,,. Also, note that in M;, we have chosen
the edges from odd levels while in Ms, the edges are taken from even levels. So
M; UM, forms a matching of C,,0C,. In fact, [My| 4+ [M,| = &2 4 22 — 2 —
w. So My UM, is a perfect matching of C,,0C,,, as desired. (See Figure 5
for illustration.) O

We are all set to prove Theorem 1.4.
Proof of Theorem 1.4. The proof is by induction on the number of cycles r in
the product. Without loss of generality, assume that ki, ky are even. Suppose r = 2.
Then G = Cy,0Cy, and k € {ky, ko}. Now the result follows by taking [ = 2k in the
above lemma. Suppose r > 3. Let H = C},0Cy,0 ...0OC%, _,. Then G = HOCY,.
By induction hypothesis, H can be decomposed into cycles of length k(r — 1) (say)
Zy, Za, ..., Zy, where t = |E(H)|/k(r — 1). Moreover, each Z; contains k/2 edges
€1, €i2, - - -, €iky2 such that {e;; : i € [t], j € [k/2]} is a perfect matching of H.
By Theorem 2.2, G can be decomposed into kr-cycles I'1, 'y, ..., 'y with ¢/ = tk,.
Further, every T'; contains k/2 edges fi, fi2, ..., firj2 such that {f;; : i € [t'], j €
[k/2]} is a perfect matching of G. 0

4 Decomposition of QF

In this section, we prove Theorem 1.5 using induction on r. The non-trivial part of
the proof is to prove the basis step. The basis step consists of two parts; the first
part deals with the decomposition of Cy,OC} into tk-cycles and the second deals with
finding a perfect matching from the cycle decomposition.
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It follows from the definition of the Cartesian product that the graph C,O0C} can
be decomposed into k-cycles. In the following lemma, we construct tk-cycles, for any
divisor t > 2 of k, giving a decomposition of this graph. Our construction is similar
to the construction of Hamiltonian cycles giving a decomposition of C,,0C,, due to
Kotzig [12] (also see Mollard and Ramras [14]).

Lemma 4.1 Suppose t > 2 and k > 4 be integers such that t divides k. Then the
graph CxOCY can be decomposed into tk-cycles.

Proof. Let V(Cy) = Zy, with i adjacent to i + 1 modulo k£ and let G = C,OC.
Then V(G) = Zy, x Zx. Two vertices of G are adjacent if their corresponding 2-tuples
differ in exactly one component by 4+1 modulo k. We call an edge horizontal with
direction 1, if its end vertices are (z,y), (r + 1,y), where x,y € Zj. Similarly, we say
that an edge is vertical with direction 2, if its end vertices are (z,y), (z,y + 1).

We construct a tk-cycle viz. @ as follows.
o, = ((0,0), (1,0),...,(t—1,0),

(t—1,1),(,1),...,(2(t—1),1),
2t —1),2),(2(t — 1)+ 1,2),...,(3(t — 1),2),

((k_1)<t_1>7 k_1>7 ((k_1>(t_1)+17 k_1>7 SRR (k(t_1>7 k_1>? (k(t_l)a k) = (07 O>>7
since k =0 (mod k).

One can observe that ®; consists of k vertical edges with direction 2, and (¢ — 1)k
horizontal edges with direction 1 forming £ horizontal paths each of length ¢t — 1.

Alternately, we write ®; = ((0,0),.S), where the initial vertex of ®; is (0,0) and
its edge-direction sequence is S = (1,1,...,1,2,1,1,...,1,2,...,1,1,...,1,2). Note
————

t—1 terms
that the string 1,1,...,1,2 of length ¢ is repeated k times in S. For convenience, we

say that ®, is a horizontal cycle. (See Figure 6(a).)

Similarly,
I'y =((0,0),(0,1),(0,2),...,(0,t — 1),

(Lt —1),(L,(t—=1)+1),...,(1,2(t = 1)),
(2,2(t —1)), (2,2t — 1)+ 1), (2,2(t = 1) +2),...,(2,3(t — 1)),

is a vertical cycle. The initial vertex of I'; is (0,0) and its edge-direction sequence is
given by 8" = (2,2,...,2,1,2,2,...,2,1,...,2,2,...,2,1). The cycle I'; consists of
N——

t—1 terms

k horizontal edges and k vertical paths each of length ¢ — 1. (See Figure 6(b).)
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We decompose COC} into tk-cycles using the horizontal cycles and the vertical
cycles constructed from ®; and I';. Since t divides k, we have k = tm for some
m > 1.

The remainder of the proof is split into three steps as follows.

(I). We construct horizontal cycles from ®; by using graph-isomorphisms.

For i € [m], let ¢' : V(CrOC}) — V(CrOC}) be defined by ¢'((x,y)) = (z + (i —
1)t,y). It follows that ¢° is a graph-isomorphism. Let ®; = ¢'(®;). Then ®; is a
tk-cycle with initial vertex ((¢ — 1)¢,0) and edge-direction sequence S.

For example, the cycle @, is given by ((¢,0),S), where (¢,0) is the initial vertex and
S is the direction sequence previously defined. So

Oy = ((£,0), (t +1,0),..., (2t — 1,0),

(2t —1,1),(2t,1),..., (3t — 2,1),
(3t —2,2), (3t —1,2),..., (4t — 3,2),

(k=1)(t—-1)+1k=2),(k—1)(t—-1)+2,k—2),...,(k(t—1)+1,k—2) = (1,k—2),
(Lk—=1),(2,k—=1),...,(t,k = 1),(¢,0)).
Observe that V(®1) ={(y(t — 1)+ s,y) : y € Zy, s€{0,1,...,t —1}}.
Hence
V(@) ={(yt—1)+ (G —1)t+s,y): y€Zy, s€{0,1,....6 —1}}. (%)

Note that the horizontal edges in the cycle ®; are of the form < (z,y), (z + 1,y) >,
where © = y(t — 1) + (i — 1)t + s, and the vertical edges in ®; are of the form
< (x,y),(x,y+1) > where x = (y+1)(t — 1)+ (: — 1)t.

Claim: The cycles @1, P,, ..., P, are mutually vertex-disjoint.

On the contrary assume that for 7 < j, the cycles ®; and ®; have a vertex v in
common. Being a vertex in ®;, for some y € Z; and s € {0,1,...,t — 1},

v=(yt—-1)+@@—-1t+s, y).
Similarly, as a vertex in ®/, for some 3 € Z; and s’ € {0,1,...,t — 1},
v=( -1+ -Dt+s, y).
Therefore we get
yt—1)+ G —t+s=y'(t—1)+G -1t +¢
in Zy and y = y'. This implies that

s—s =(j—it (modk).
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As k=tm with 1 < j —i < m, we have s — s =0 (mod t). But 0 < 5,5 <t gives
s = s'. Hence (j — i)t = 0 (mod k). This implies that j —i = 0 (mod m), which
is a contradiction as 1 < j —¢ < m. Thus the cycles &1, ®,,..., P, are mutually
vertex-disjoint.

Further, the subgraph U ®; has mtk = k* = |V(C,OCY)| vertices and so it spans
i=1
the graph C.0OCY%.

(IT). We now construct the vertical cycles.

The map R : V(CyOCy) — V(CyOCY) defined by R((z,y)) = (y,z) is a graph-
isomorphism. Note that Iy = R(®;). Let I'; = R(®;), for j € [m]. Then I'; is
the cycle of length tk with initial vertex (0,(j7 — 1)t) and edge-direction sequence
S’. Since the horizontal cycles ®; are vertex-disjoint, the vertical cycles I'; are also
vertex-disjoint and together they too span the graph C,0OCY%

Note that as I'; is obtained from ®; just by reversing the co-ordinates of the vertices,
the horizontal (similarly, vertical) edges in I'; are obtained from the vertical (simi-
larly, horizontal) edges in ®;, just by reversing the co-ordinates of the end vertices.
(See an illustration in Figure 6.)

(III). We prove that the cycles ®; and I'; are edge-disjoint for any i and j.

Without loss of generality assume that ¢ = 1. Suppose if possible ®; and I'; have an
edge (say) e in common. Then the edge e is either horizontal or vertical.

Suppose e is horizontal. Then the end vertices of e are (z,y) and (x + 1,y) for
some x,y € Zg. As e is an edge in @y, from equation (), we have z = y(t — 1) + s
for some s € {0,1,...,t — 2}. Also, e is a horizontal edge in I';. Therefore y =
(x+1)(t—1)+ (j — 1)t in Zy. This gives

y=yt—12+(s+1)(t—1)+ (G —1)t (mod k).
As t divides k, we have

y=y(0—172+(s+1)(0—1)+(j —1)0 (mod t).
This implies that s + 1 = 0 (mod ¢). Therefore ¢ divides s + 1, a contradiction to
the fact that 0 < s < ¢ — 2.

Suppose e is a vertical edge. Then the end-vertices of e are (z,y) and (x,y + 1) for
some x,y € Zj. As e is a vertical edge in ®;, we have x = (y + 1)(t — 1). Since
ec BE(I';),y=a(t —1)+ (j — 1)t + s for some s € {0,1,...,¢ — 2}. Hence

y=w+1{t—-1>*+ (G —Dt+s (mod k)

As t divides k,
y=y+1+4+s (modt),

giving s +1 = 0 (mod ¢), a contradiction. Therefore the cycles ®; and I'; are
edge-disjoint, for any i, j.
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Figure 6: Decomposition of C1,0C" 5 into tk-cycles, with t = 4, k = 12
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Thus J~, ®; and |J;*, I; are 2-regular edge-disjoint spanning subgraphs of the graph
COC%. Hence the collection of tk-cycles {®;: i =1,2,... m}U{l;:i=1,2,...,m}
decompose the graph C,0CY%. a

In the following lemma, we prove that if ¢ is a multiple of 4, then the tk-cycles ®;
and ['; that are constructed in the above lemma also satisfy an additional condition
related to a perfect matching.

Lemma 4.2 Let k,t be positive integers, t divides k and 4 divides t. Then the graph
C,OCk can be decomposed into tk-cycles. Further, from every tk-cycle in the decom-
position, kt/4 edges can be chosen to form a perfect matching of C,OCY.

Proof. Suppose k = tm for some m > 1. Consider the horizontal tk-cycles ®;,
i € [m], that are constructed in the proof of Lemma 4.1. Observe that for each
y € Zy = {0,1,2,...,k — 1}, every cycle ®; contains a unique horizontal path,
P! = ((z,y),(z + 1,y),...,(x + (t — 1),y)) of length ¢t — 1, with =z = y(¢t — 1) +
(1 — 1)t. Denote by e, the edge of the path P/ with end vertices (z + s,y) a
nd (r+s+1,y), s=0,1,....t — 2. Amongst the ¢t — 1 edges of P/, choose t/4
edges alternately startmg from the first edge e}, and denote this set by M;. Thus
M} = {efy, €, €fs - -, €51y )} is a matching. Let M; Uk oMY Since P! is

vertex-disjoint with Piy/ for y # v/, M; is a matching in C,OC}, consisting of k|M/| =
kt/4 = k*/4m edges of ®;. Let M = |J", M;. Since the cycles ®; are mutually
vertex-disjoint, M is a matching in C,OC}, consisting of m|M;| = k? /4 edges.

Similarly, for each = € Zj, every vertical tk-cycle I'; contains a unique vertical path
of length ¢ — 1 given by P* = ((z,y), (x y+1),(x,y+2),...,(z,y + (t — 1))) with
y = x(t — 1) + (i — 1)t. Denote by f% the edge of the path P? with end vertices

(x,y +s) and (z,y + s + 1). Select t/4 edges alternately from the path PF, starting
from the ¢/2'" edge f¥ (t/2)" Therefore the set {f(t/2 (t/2+2),f(t/2+4 N 2 1
denoted by Nf, is a matching. Let N; = Uk h N and let N = (J", NZ. Clearly,

N = {f&: s iseven and t/2 < ¢’ < t — 2} is a matching of C,OC), consisting of
|N| = k?/4 edges from the cycles T';.

Claim: M U N is a matching of C,0C.

Let V(M) and V(N) be the set of end vertices of the edges in M and the edges in
N, respectively. Since M and N are matchings of COCYk, it is sufficient to prove
that V(M) NV(N) = ¢.

Assume that V(M) NV (N) # ¢. Let v € V(M) NV(N). As v € V(M), we have
v=(x+s,y)or (z+s+1,y) withz = y(t—1)+(j—1)t, for some y € {0,1,...,k—1},
s €{0,2,4,...,t/2 =2} and j € [m]. Also v € V(N) implies that v = (2/,y + &)
or (',y +s +1) with ¢/ = 2/(t — 1) + (« — 1)t, for some 2/ € {0,1,...,k — 1},
ste{t/2,t/2+2,...,t —2} and i € [m].

Thus we get two cases as follows. Observe that because v € V(M) N V(N), each
case involves two possible pairs for v. Also, it suffices to workout the contradiction
for any one pair in each case.
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Case 1. v = (z+s,y) and v = (2, y'+5'),or v = (z+s+1,y) and v = (o', y'+5 +1).

Without loss of generality, assume that v = (z + s,y) and v = (2/,y' + '). Then
r+s=12"andy =y +s inZ. Since y = 2/'(t—1)+(i—1)t and v = y(t—1)+(j—1)t,
we have

Pt —1)+ (i —1)t+ s (mod k)

(x+s)(t—1)+ (i —1)t+¢ (mod k)

yt =12+ (G —Dtt—1) +s(t—1)+ (i — 1)t + 5 (mod k)
y—s+s (modt)...(ast divides k).

Therefore s' = s (mod t). Hence t divides s’ — s. However, 0 < s < ¢’ <t — 2 gives
0<s —s<t—2<t,a contradiction.

Case 2. v = (z+s,y) and v = (2/,y/+5'+1),orv = (x+s+1,y) and v = (2/, ¢y’ +5).

Again, without loss of generality, assume that v = (z +s,y) and v = (2/, 3/ + 5"+ 1).
Then 4+ s =2’ and y = ¢y + s + 1 in Zy. Since 3/ = 2/(t — 1) + (i — 1)t and
r=y(t—1)+ (j — 1)t, we have

Pt —1)+ (G —1)t+5+1 (mod k)
(x+s)(t—1)+ (G —1)t+5 +1 (mod k)

yt =12+ (G —-Dtt—1)+st—1)+ (@ —1)t+ s +1 (mod k)
Yy+0—54+0+s+1 (modt)...(as t divides k).

Y

Therefore s —s+1 =0 (mod t). Hence ¢ divides s’ —s+ 1. But, 0 < s < ¢ <t —2
gives 1 <s' —s+1<t—1<t, a contradiction.

Thus M U N is a matching of C,OC}.
The number of edges in M U N is given by,

KOk kK |V(COC))
MUN|=|M N=—4—=—=——~"" "2
MUN| = |M|+ [N = =+ 2 =2 :

Hence M U N is a perfect matching of the graph C,OCj.

Thus the tk-cycles ®; and I';, i = 1,2,..., m, together decompose the graph C,OCY%
and kt/4 edges can be selected from each of these cycles in order to form a perfect
matching of C,0CY. a

We now prove Theorem 1.5, which is restated below for convenience.

Statement of Theorem 1.5. Lett, k be positive integers such that t divides k and 4
divides t. Then the k-ary r-cube QF can be decomposed into (tkr/2)-cycles. Moreover,
from each of these cycles, kt/4 edges can be selected such that they together form a
perfect matching of QF.
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Proof. ~ We prove the result by induction on r. The result holds for r = 2 by
Lemmas 4.1. and 4.2. Suppose r > 3. Assume that the statement holds for Q% .
Now QF = Q% ,0C). By induction, Q% ; can be decomposed into cycles of lengths
tk(r —1)/2, (say) @1, ®s,..., P, such that each ®; contains a matching M; of kt/4
edges so that [ J;_, M; is a perfect matching of @*_,. Then, by Theorem 2.2, Q* can
be decomposed into cycles of length tkr/2, (say) I'1,Ts,..., 'y, such that each I';
contains a matching N; of tk/4 edges such that Uf/:l N; is a perfect matching of QF.
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