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Abstract

Let n1, n2, n3, m ∈ Z and p be a prime, and write b := m+ pZ and ai :=
ni + pZ for each i ∈ {1, 2, 3}. Given a partition of Z/pZ into nonempty
subsets Z/pZ = A1∪A2∪A3, we say that (s1, s2, s3) is a rainbow solution
of a1x1 + a2x2 + a3x3 − b = 0 if it is a solution of this equation and
Ai ∩ {s1, s2, s3} �= ∅ for each i ∈ {1, 2, 3}; we denote by R the family of
rainbow solutions of a1x1 + a2x2 + a3x3 − b = 0. The first result of this
paper is that if a1a2a3 �= 0+pZ and the coefficients a1, a2, a3 are not equal,
then |R| = Ω(min{|A1|, |A2|, |A3|}) where the constants are absolute.
The second result of this paper is that if |A1|, |A2|, |A3| are almost equal,
n1n2n3 �= 0 = m and p � 0, then |R| = Ω(min{|A1|, |A2|, |A3|}2) where
the constants depend only on n1, n2, n3.

1 Introduction

In this paper R, Z, Z+, Z+
0 denote the set of real numbers, integers, positive in-

tegers and nonnegative integers, respectively. Let X be a set and n ∈ Z+. An
n-colouring of X is a surjective function χ : X → {1, 2, . . . , n}; thus an n-colouring
is identified with the partition into n nonempty subsets X =

⋃n
i=1 χ

−1(i). The sets
χ−1(1), χ−1(2), . . . , χ−1(n) are known as chromatic classes. A subset Y of X is rain-
bow with respect to χ if it intersects each chromatic class. If it is clear with respect
to which colouring we are talking about, then we simply say that Y is rainbow. We
say that a subset Y of X is monochromatic with respect to χ if Y is contained in a
chromatic class.

The study of rainbow objects has had a very long history. However, the study of
rainbow solutions of linear equations

∑n
i=1 aixi = b given an n-colouring of a com-

mutative group χ : G → {1, 2, . . . , n} is more recent, see [1–6, 8, 9, 11–13, 15–17]. In
this paper, we will work with Z/pZ which is the set of congruence classes modulo a
prime p with its usual field structure; we write (Z/pZ)∗ := Z/pZ \ {0+ pZ}. For any
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a1, a2, a3 ∈ (Z/pZ)∗ and b ∈ Z/pZ, we denote the equation a1x1+a2x2+a3x3−b = 0
(where the variables are x1, x2, x3) by eq(a1, a2, a3, b). For any colouring χ : Z/pZ →
{1, 2, 3}, we say that a solution (s1, s2, s3) of eq(a1, a2, a3, b) is rainbow (respectively,
monochromatic) with respect to χ, if the set {s1, s2, s3} is rainbow (respectively,
monochromatic) with respect to χ. The family of rainbow (respectively, monochro-
matic) solutions (s1, s2, s3) (with respect to χ) of the equation eq(a1, a2, a3, b) will
be denoted by R(eq(a1, a2, a3, b), χ) (respectively, M(eq(a1, a2, a3, b), χ)). The study
of which a1, a2, a3 ∈ (Z/pZ)∗, b ∈ Z/pZ and colourings χ : Z/pZ → {1, 2, 3} sat-
isfy R(eq(a1, a2, a3, b), χ) �= ∅ can be found in [8], [11], [15]. In particular, it is
proven in [8, Thma6̇] that if a1, a2, a3 are not equal and min1≤i≤3 |χ−1(i)| > 1,
then R(eq(a1, a2, a3, b), χ) �= ∅. Another step in the study of the set of rainbow
solutions of a given linear equation eq(a1, a2, a3, b) was to bound its size. Nonethe-
less, there are very few results about |R(eq(a1, a2, a3, b), χ)|. More specifically, Ba-
landraud in [2, Prop. 1] and Montejano and Serra in [17, Prop. 11] found lower
bounds of |R(eq(1 + pZ, 1 + pZ,−2 + pZ, 0 + pZ), χ)| for some colourings χ; also,
some relations between M(eq(a1, a2, a3, b), χ) and R(eq(a1, a2, a3, b), χ) were found
by Cameron, Cilleruelo and Serra in [3].

The first result of this paper provides a nontrivial lower bound of
|R(eq(a1, a2, a3, b), χ)| whenever a1, a2, a3 are not equal.

Theorem 1.1. Let p be a prime, c1 := 31·10−1550, a1, a2, a3 ∈ (Z/pZ)∗ and b ∈ Z/pZ.
Assume that a1, a2, a3 are not equal. Then, for any colouring χ : Z/pZ → {1, 2, 3},
we have

|R(eq(a1, a2, a3, b), χ)| ≥ min

{
c1p− 6

5
,
1

13
· min
1≤i≤3

|χ−1(i)| − 3

}
.

In particular, since min1≤i≤3 |χ−1(i)| ≤ p
3
,

|R(eq(a1, a2, a3, b), χ)| ≥ 3c1 min
1≤i≤3

|χ−1(i)| − 6

5
.

To explain the exclusion of the case a1 = a2 = a3 from Theorem 1.1, we give an
example that shows that the conclusion of Theorem 1.1 is not always true in this
case. Take a prime p > 6

5c1
and set n := �p

3
� and m := 2�p

3
�. Define the colouring

χ : Z/pZ → {1, 2, 3} with

χ(l + pZ) :=

⎧⎨
⎩

1 if 0 ≤ l < n;
2 if n ≤ l < m;
3 if m ≤ l < p.

Then the equation x1 + x2 + x3 − b = 0 has no rainbow solutions so

|R(eq(1 + pZ, 1 + pZ, 1 + pZ, b), χ)| = 0,

while
min
1≤i≤3

|χ−1(i)| = min{n,m− n, p−m} =
⌊p
3

⌋
,
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and then the conclusion of Theorem 1.1 does not hold in this case.

For any n,m ∈ Z, we write n � m if n does not divide m. Let n1, n2, n3, m ∈ Z.
Theorem 1.1 implies that for all p prime satisfying p � ni for all i ∈ {1, 2, 3} and for
any colouring χ : Z/pZ → {1, 2, 3}, we have

|R(eq(n1 + pZ, n2 + pZ, n3 + pZ, m+ pZ), χ)| ≥ 3c1 min
1≤i≤3

|χ−1(i)| − 6

5
. (1)

Nevertheless, we think that the term min1≤i≤3 |χ−1(i)| can be improved to

(min1≤i≤3 |χ−1(i)|)2 in (1). First we show that if this can be done, this is the best
possible. Let p be a prime, a1, a2, a3 ∈ (Z/pZ)∗, b ∈ Z/pZ and χ : Z/pZ → {1, 2, 3}
a colouring such that

|χ−1(1)| = |χ−1(2)| ≤ |χ−1(3)|.
For each i, j ∈ {1, 2, 3} with i �= j, the number of rainbow solutions (s1, s2, s3)
with si ∈ χ−1(1) and sj ∈ χ−1(2) is at most |χ−1(1)| · |χ−1(2)| (since the term
sk ∈ {s1, s2, s3} \ {si, sj} is determined by si and sj); hence there are at most
6|χ−1(1)| · |χ−1(2)| rainbow solutions so

|R(eq(a1, a2, a3, b), χ)| ≤ 6|χ−1(1)|2 = 6

(
min
1≤i≤3

|χ−1(i)|
)2

.

Thus nothing better than (min1≤i≤3 |χ−1(i)|)2 can be expected in (1) but we conjec-
ture that this is the correct term.

Conjecture 1.2. Let n1, n2, n3, m ∈ Z. There exist c2 = c2(n1, n2, n3, m), c3 =
c3(n1, n2, n3, m) with the following property. Take p a prime satisfying p � ni for
all i ∈ {1, 2, 3}, and p � (nj − nk) for some j, k ∈ {1, 2, 3}. For any colouring
χ : Z/pZ → {1, 2, 3}, we have that

|R(eq(n1 + pZ, n2 + pZ, n3 + pZ, m+ pZ), χ)| ≥ c2

(
min
1≤i≤3

|χ−1(i)|
)2

− c3.

For any n,m ∈ Z+, the van der Waerden number w(n,m) is the smallest positive
number w with the property that for any colouring χ : {1, 2, . . . , w} → {1, 2, . . . , n},
there is a monochromatic arithmetic progressions with length m.

For any prime p and m ∈ Z+, we say that a colouring χ : Z/pZ → {1, 2, 3} is
m-almost equinumerous if

3

(
3∑

i=1

|χ−1(i)|2
)

− p2 ≤ p2 − p

6w(3, m)2
.

The second result of this paper gives some evidence that Conjecture 1.2 is true.

Theorem 1.3. Let n1, n2, n3 ∈ Z \ {0} be such that n1 + n2 + n3 = 0. Set m :=
1 + max1≤i≤3 |ni| and w := w (3, m). For any prime p > w and for any m-almost
equinumerous colouring χ : Z/pZ → {1, 2, 3}, we have that

|R(eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ), χ)| ≥ p2 − p

6w2
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In particular, since min1≤i≤3 |χ−1(i)| ≤ p
3
and p ≥ 3,

|R(eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ), χ)| ≥ 1

w2

(
min
1≤i≤3

|χ−1(i)|
)2

.

We sketch the proofs of the main results of this paper.

• The proof of Theorem 1.1 is divided into two cases: when there are i, j ∈
{1, 2, 3} such that ai �∈ {±aj} (see Theorem 3.1), and when ai ∈ {±aj} for
all i, j ∈ {1, 2, 3} (see Theorem 3.2). In the proof of Theorem 3.1, first it is
shown that if A1, A2, A3 are the chromatic classes with |A1| ≤ |A2| ≤ |A3| and
ai �∈ {±aj}, then |(aiA1 + ajA2) ∪ (ajA1 + aiA2)| − |A1| − |A2| is not very
small; this is done by contradiction using the structural statements Theorem
2.1 and Theorem 2.3 (which are the main features in the proof and are not
used previously in the area for this application). After this is done, it is seen
that the number of rainbow solutions of the given equation is at least |(aiA1 +
ajA2) ∪ (ajA1 + aiA2)| − |A1| − |A2|, and this provides the desired conclusion.
The proof of Theorem 3.2 is similar but, instead of using Theorem 2.3, the
pairwise disjointedness of the chromatic classes is crucial in the proof of this
statement.

• The proof of Theorem 1.3 is done in two stages. First we bound the number of
monochromatic solutions of eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ); this is done
using the fact that if A ⊆ Z/pZ is a sufficiently long arithmetic progression,
then it has a monochromatic solution of the equation. Each solution cannot be
in many arithmetic progressions so there are many monochromatic solutions
of the equation; this is Theorem 4.1. The second stage is to use Theorem
2.6 which relates the number of rainbow and monochromatic solutions of 3-
variables linear equations.

This paper is organized as follows. In Section 2 we state the auxiliary results
that will be needed in the proofs of the main results. The proof of Theorem 1.1 will
be a direct consequence of Theorems 3.1 and 3.2; they will be stated and proven in
Section 3. The proof of Theorem 1.3 will rely on Theorem 4.1 and the proofs of these
statements can be found in Section 4.

2 Preliminaries

In this section we state some auxiliary results needed in the proofs of Theorem 1.1
and Theorem 1.3.

Let p be a prime, A,B nonempty subsets of Z/pZ and c ∈ Z/pZ. We write

A+B := {a + b : a ∈ A, b ∈ B}
−A := {−a : a ∈ A}
cA := {ca : a ∈ A}

A+ c := A + {c}.
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For any d ∈ (Z/pZ)∗ and l ∈ Z+
0 , an arithmetic progression with difference d and

length l in Z/pZ is a subset of the form {a+(i+pZ)d ∈ Z/pZ : i ∈ {0, 1, 2, . . . , l−1}}
for some a ∈ Z/pZ. For any nonempty subset A of Z/pZ, denote by Ad(A) the
family of arithmetic progressions with difference d which contain A; the length of
the smallest element of Ad(A) (with respect to ⊆) will be denoted by ld(A). The
first result of this section is a weak version of a result of Grynkiewicz.

Theorem 2.1. Let p be a prime, r ∈ Z+
0 and A,B subsets of Z/pZ. Write C :=

Z/pZ \ −(A +B). Assume that

• r ≤ c1p− 6
5

• |A|, |B|, |C| ≥ r + 3

• |A+B| = |A|+ |B|+ r − 1.

Then there is d ∈ (Z/pZ)∗ such that ld(A) ≤ |A| + r, ld(B) ≤ |B| + r and ld(C) ≤
|C|+ r.

Proof. See [7, Thm. 21.8].

We will use the following consequence of Theorem 2.1.

Corollary 2.2. Let p be a prime, r ∈ Z+
0 and A,B subsets of Z/pZ. Assume that

• r ≤ c1p− 6
5

• |A|, |B| ≥ r + 3

• |A+B| ≤ p− r − 3

• |A+B| ≤ |A|+ |B|+ r − 1.

Then there is d ∈ (Z/pZ)∗ such that ld(A) ≤ |A|+ r and ld(B) ≤ |B|+ r.

Proof. Set r′ := |A + B| − |A| − |B| + 1 and C := Z/pZ \ −(A + B). Then r′ ≤ r
and |C| = |Z/pZ \ −(A +B)| = p− |A+B|. Note that the assumption gives

• r′ ≤ r ≤ c1p− 6
5

• |A|, |B|, |C| ≥ r + 3 ≥ r′ + 3

• |A+B| = |A|+ |B|+ r′ − 1.

Hence Theorem 2.1 yields the existence of d ∈ (Z/pZ)∗ such that ld(A) ≤ |A|+r′ and
ld(B) ≤ |B|+r′. Finally, since r′ ≤ r, we get that ld(A) ≤ |A|+r and ld(B) ≤ |B|+r
and we are done.

We will need also the following statement.
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Theorem 2.3. Let p be a prime, d1, d2 ∈ (Z/pZ)∗, r ∈ Z+
0 and A a subset of Z/pZ.

Assume that

• ld1(A) ≤ |A|+ r

• ld2(A) ≤ |A|+ r

• r + 3 ≤ |A| ≤ p− 4r − 10.

Then d1 ∈ {±d2}.

Proof. See [10, Thm. 1.1].

We will also need the well-known Cauchy-Davenport Theorem.

Theorem 2.4. Let p be a prime, and A,B nonempty subsets of Z/pZ. Then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. See [18, Thm. 5.4].

In Section 1 we already saw the definition of the van der Waerden numbers; their
existence is warranted by van der Waerden’s Theorem.

Theorem 2.5. Let m,n ∈ Z+. There exists w(n,m) ∈ Z+ with the following prop-
erty. For all w ∈ Z+ with w ≥ w(n,m) and for any n-colouring of {1, 2, . . . , w},
there exists a monochromatic arithmetic progression of length m.

Proof. See [14, Thm. 2.1].

The last result of this section is a particular case of a more general statement of
Cameron, Cilleruelo and Serra.

Theorem 2.6. Let p be a prime, a1, a2, a3 ∈ (Z/pZ)∗, b ∈ Z/pZ and χ : Z/pZ →
{1, 2, 3} a colouring. Write R := R(eq(a1, a2, a3, b), χ) and M :=
M(eq(a1, a2, a3, b), χ). Then

2|M | − |R| = 3

(
3∑

i=1

|χ−1(i)|2
)

− p2.

Proof. See [3, Thm. 4.2].
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3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. This will be an immediate consequence of
Theorems 3.1 and 3.2. The main ideas in both proofs are similar but there are some
technical differences; therefore, for the sake of comprehension, we decided to split
Theorem 1.1 into these statements.

Theorem 3.1. Let p be a prime, a1, a2, a3 ∈ (Z/pZ)∗ and b ∈ Z/pZ. Assume that
there are i, j ∈ {1, 2, 3} such that ai �∈ {±aj}. Then, for any colouring χ : Z/pZ →
{1, 2, 3}, we have that

|R(eq(a1, a2, a3, b), χ)| ≥ min

{
c1p− 6

5
,
1

13
· min
1≤i≤3

|χ−1(i)| − 3

}
.

Proof. For each i ∈ {1, 2, 3}, set Ai := χ−1(i), and assume without loss of generality
that |A1| ≤ |A2| ≤ |A3|. Also we assume without loss of generality that a1 �∈ {±a2}.
Write

r := min

{
c1p− 6

5
,
1

13
· |A1| − 3

}
B1 := a1A1 + a2A2

B2 := a2A1 + a1A2.

The first step in the proof is to show that

|B1 ∪B2| ≥ |A1|+ |A2|+ r, (2)

and this will be done by contradiction. If (2) is false, then

max{|B1|, |B2|} ≤ |A1|+ |A2|+ r − 1. (3)

In so far as

r ≤ c1p− 6

5

r + 3 ≤ |A1|
13

≤ |A1| ≤ |A2|
r + 3 ≤ |A1| − 12r ≤ |A3| − 12r ≤ p− |A1| − |A2| − r + 1 ≤ p−max{|B1|, |B2|},

we have by (3) that we can apply Corollary 2.2 to the pairs (a1A1, a2A2) and
(a2A1, a1A2), and therefore there exist d1, d2 ∈ (Z/pZ)∗ such that

ld1(a1A1) ≤ |A1|+ r, ld1(a2A2) ≤ |A2|+ r (4)

and
ld2(a2A1) ≤ |A1|+ r, ld2(a1A2) ≤ |A2|+ r. (5)

Multiplying a1A1 by a2a
−1
1 , we get from (4) that

la2a−1
1 d1

(a2A1) ≤ |A1|+ r. (6)



M. HUICOCHEA/AUSTRALAS. J. COMBIN. 78 (1) (2020), 118–132 125

Insomuch as

r + 3 ≤ |A1|
13

≤ |A1|
|A1| = p− |A2| − |A3| ≤ p− 2|A1| ≤ p− 4r − 10,

we can apply Theorem 2.3 to a2A1 by (5) and (6). Thus a2a
−1
1 d1 ∈ {±d2}, and we

assume without loss of generality that

a2a
−1
1 d1 = d2. (7)

On the one hand, since we are assuming that (2) is false,

|B1 ∪B2| ≤ |A1|+ |A2|+ r − 1.

On the other hand,
|B1 ∪ B2|+ |B1 ∩B2| = |B1|+ |B2|.

We have

|B1 ∩B2| = |B1|+ |B2| − |B1 ∪ B2| ≥ |B1|+ |B2| − |A1| − |A2| − r + 1. (8)

From Theorem 2.4, we have that for i ∈ {1, 2},
|Bi| ≥ |A1|+ |A2| − 1. (9)

Then (8) and (9) lead to

|B1 ∩B2| ≥ |A1|+ |A2| − r − 1. (10)

From (4), there are arithmetic progressions C1, C2 of difference d1 such that a1A1 ⊆
C1, a2A2 ⊆ C2, |C1| ≤ |A1|+r and |C2| ≤ |A2|+r. Note that C1+C2 is an arithmetic
progression of difference d1 such that

|C1 + C2| = |C1|+ |C2| − 1 ≤ |A1|+ |A2|+ 2r − 1. (11)

Notice that B1 ∩B2 ⊆ B1 ⊆ C1 + C2. Hence (10) and (11) yield that

ld1(B1 ∩B2) ≤ |B1 ∩B2|+ 3r. (12)

Likewise,
ld2(B1 ∩B2) ≤ |B1 ∩B2|+ 3r. (13)

Since

3r + 3 ≤ 2|A1| − r − 1 ≤ |A1|+ |A2| − r − 1 ≤ |B1 ∩B2|
|B1 ∩B2| ≤ |B1| ≤ |A1|+ |A2|+ r − 1 = p− |A3|+ r − 1 ≤ p− 12r − 10,

we can apply Theorem 2.3 to B1∩B2 by (12) and (13). Hence we get from Theorem
2.3 that d1 ∈ {±d2}. However, this inclusion and (7) imply that a1 ∈ {±a2} which
contradicts the assumption, and therefore (2) is true.
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Insomuch as

|(B1 ∪ B2) ∪ (−a3A3 + b)| ≤ |Z/pZ| = p = |A1|+ |A2|+ |A3|,
we get from (2) that

|(B1 ∪ B2) ∩ (−a3A3 + b)| ≥ |B1 ∪ B2|+ |a3A3 + b| − p

≥ |A1|+ |A2|+ r + |a3A3 + b| − p

= |A1|+ |A2|+ |A3| − p+ r

= r. (14)

Finally, for any s3 ∈ A3 such that−a3s3+b ∈ B1∪B2 = (a1A1+a2A2)∪(a2A1+a1A2),
we have that there are s1, s2 such that (s1, s2, s3) ∈ R(eq(a1, a2, a3, b), χ). Then, by
(14), there are at least r of these elements and the proof is completed.

Theorem 3.2. Let p be a prime, a1, a2, a3 ∈ (Z/pZ)∗ and b ∈ Z/pZ. Assume that
a1, a2, a3 are not equal but ai ∈ {±aj} for all i, j ∈ {1, 2, 3}. Then, for any colouring
χ : Z/pZ → {1, 2, 3}, we have that

|R(eq(a1, a2, a3, b), χ)| ≥ min

{
c1p− 6

5
,
1

5
· min
1≤i≤3

|χ−1(i)| − 3

}
.

Proof. Applying a dilation if necessary, we may assume that a1 = a3 = −a2 = 1+pZ.
For each i ∈ {1, 2, 3}, set Ai := χ−1(i), and assume without loss of generality that
|A1| ≤ |A2| ≤ |A3|. Write

r := min

{
c1p− 6

5
,
1

5
· |A1| − 3

}
B2 := A1 − A2

B3 := A1 − A3.

We will show that
|B2 ∪ (−B2)| ≥ |A1|+ |A2|+ r (15)

or
|B3 ∪ (−B3)| ≥ |A1|+ |A3|+ r, (16)

and this shall be done by contradiction. Thus we assume that (15) and (16) are false
so

|B2| ≤ |B2 ∪ (−B2)| ≤ |A1|+ |A2|+ r − 1 (17)

and
|B3| ≤ |B3 ∪ (−B3)| ≤ |A1|+ |A3|+ r − 1. (18)

In so far as

r ≤ c1p− 6

5

r + 3 ≤ |A1|
5

≤ |A1| ≤ |A2| ≤ |A3|
r + 3 ≤ |A2| − r + 1 = p− |A1| − |A3| − r + 1 ≤ p−max{|B2|, |B3|},
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we have by (17) and (18) that we can apply Corollary 2.2 to the pairs (A1,−A2) and
(A1,−A3), respectively. Hence there are d2, d3 ∈ (Z/pZ)∗ such that for i ∈ {2, 3},

ldi(A1) ≤ |A1|+ r, ldi(Ai) = ldi(−Ai) ≤ |Ai|+ r. (19)

Insomuch as

r + 3 ≤ |A1|
5

≤ |A1|
|A1| = p− |A2| − |A3| ≤ p− 2|A1| ≤ p− 4r − 10,

we can apply Theorem 2.3 to A1 by (19). Then d2 ∈ {±d3}, and we assume without
loss of generality that d2 = d3. Applying a dilation if necessary, we assume that

d2 = d3 = 1 + pZ. (20)

We need some notation. For any c, d ∈ Z/pZ, let n ∈ {0, 1, . . . , p−1} be the element
satisfying that d− c = n+ pZ; then we write

[c, d] := {c+ (i+ pZ) : i ∈ {0, 1, . . . , n}}.
From (19) and (20), there are b1, b2, b3, c1, c2, c3 ∈ Z/pZ such that Ai ⊆ [bi, ci] and
|[bi, ci] \ Ai| ≤ r for each i ∈ {1, 2, 3}. Call Ci := [bi, ci] \ Ai for each i ∈ {1, 2, 3}.
Then, for any i, j ∈ {1, 2, 3} with i �= j,

|[bi, ci] ∩ [bj , cj]| = |(Ai ∪ Ci) ∩ (Aj ∪ Cj)|
≤ |Ai ∩ (Aj ∪ Cj)|+ |Ci ∩ (Aj ∪ Cj)|
= |Ai ∩ Cj |+ |Ci ∩ (Aj ∪ Cj)|

(
since Ai ∩Aj = ∅

)
≤ |Cj|+ |Ci|
≤ 2r. (21)

Thus, by (21), the intervals [b1, c1], [b2, c2] and [b3, c3] can overlap but in very small
segments. Assume that c1 = b2+(n1+pZ), c2 = b3+(n2+pZ) and c3 = b1+(n3+pZ)
with n1, n2, n3 ∈ {0, 1, . . . , 2r − 1} (the other cases are done in the same way). For
each i ∈ {1, 2, 3} (considering i mod 3), we have that Ai ⊆ [bi, ci] = [bi, bi+1 + (ni +
pZ)] so

[bi+2 + (ni+1 + 1 + pZ), bi − (1 + pZ)]

=Z/pZ \ [bi, bi+2 + (ni+1 + pZ)]

=Z/pZ \ ([bi, bi+1 + (ni + pZ)] ∪ [bi+1, bi+2 + (ni+1 + pZ)])

⊆Z/pZ \ (Ai ∪ Ai+1)

=Ai+2; (22)

furthermore, note that

|[bi+2 + (ni+1 + 1 + pZ), bi − (1 + pZ)]| ≥ |[bi+2, bi + (ni+2 + pZ)]| − ni+1 − 2

= |[bi+2, ci+2]| − ni+1 − 2

≥ |[bi+2, ci+2]| − 2r − 1

≥ |Ai+2| − 2r − 1. (23)
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Write

D := [(b1 − b3) + (n3 + 2 + pZ),−n1 − 2 + pZ]

From (22), we conclude that

B2 = A1 − A2

⊇ [b1 + (n3 + 1 + pZ), b2 − (1 + pZ)]− [b2 + (n1 + 1 + pZ), b3 − (1 + pZ)]

= D, (24)

and likewise
−B2 ⊇ −D. (25)

We find a contradiction depending on whether or not D and −D are disjoint.

• Assume that D ∩ (−D) �= ∅. Then D ∪ (−D) = [n1 + 2 + pZ,−n1 − 2 + pZ]
or D ∪ (−D) = [(b1 − b3) + (n3 + 2 + pZ), (b3 − b1) − (n3 + 2 + pZ)]. If
D∪(−D) = [(b1−b3)+(n3+2+pZ), (b3−b1)−(n3+2+pZ)], then D∩(−D) =
[n1 + 2 + pZ,−n1 − 2 + p]. Thus, in any case,

D ∪ (−D) ⊇ [n1 + 2 + pZ,−n1 − 2 + pZ].

Hence, since n1 ≤ 2r − 1,

|D∪(−D)| ≥ |[n1+2+pZ,−n1−2+pZ]| = p−2(n1+2)+1 ≥ p−4r−1. (26)

Thus

|A1|+ |A2|+ r ≥ |B2 ∪ (−B2)| by (17)

≥ |D ∪ (−D)| by (24), (25)

≥ p− 4r − 1 by (26)

= |A1|+ |A2|+ |A3| − 4r − 1

= (|A1|+ |A2|+ r) + (|A3| − 5r − 1),

which is impossible since |A3| ≥ |A1| > 5r + 1.

• Assume that D ∩ (−D) = ∅. Then
|D ∪ (−D)| = |D|+ | −D| = 2|D|. (27)

Also

|D| =|[(b1 − b3) + (n3 + 1 + pZ),−(n1 + 2) + pZ]|
=|[b1 + (n3 + 1 + pZ), b2 − (1 + pZ)]

− [b2 + (n1 + 1 + pZ), b3 − (1 + pZ)]|
=|[b1 + (n3 + 1 + pZ), b2 − (1 + pZ)]|
+ |[b2 + (n1 + 1 + pZ), b3 − (1 + pZ)]| − 1

≥|A1|+ |A2| − 4r − 3 by (23) (28)
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Hence

|A1|+ |A2|+ r ≥ |B2 ∪ (−B2)| by (17)

≥ |D ∪ (−D)| by (24), (25)

= 2|D| by (27)

≥ (|A1|+ |A2|+ r) + (|A1|+ |A2| − 9r − 6); by (28)

however, this is impossible since |A2| ≥ |A1| > 5r + 3.

In any case, we have found a contradiction and hence (15) or (16) holds. Assume
without loss of generality that (15) is true. In so far as

|(B2 ∪ (−B2)) ∪ (−A3 + b)| ≤ |Z/pZ| = p = |A1|+ |A2|+ |A3|,
we get from (15) that

|(B2 ∪ (−B2)) ∩ (−A3 + b)| ≥ |B2 ∪ (−B2)|+ |A3 + b| − p

≥ |A1|+ |A2|+ r + | − A3 + b| − p

= |A1|+ |A2|+ |A3| − p+ r

= r. (29)

For any s3 ∈ A3 such that −s3+ b ∈ (A1−A2)∪ (A2−A1), we have that there s1, s2
such that (s1, s2, s3) is a rainbow solution of x1 − x2 + x3 − b = 0. Thus, from (29),
we conclude that there are at least r of these rainbow solutions and we are done.

In Theorems 3.1 and 3.2, when the two smallest chromatic classes have almost
the same size, the constant c1 can be substituted by a much bigger constant c′1 using
the structural results of [7, Ch. 19] instead of Theorem 2.1.

4 Proof of Theorem 1.3

In this section we show Theorem 1.3. It will be a consequence of Theorems 2.6
and 4.1.

Theorem 4.1. Let n1, n2, n3 ∈ Z \ {0} be such that n1 + n2 + n3 = 0. Set m :=
1 + max1≤i≤3 |ni| and w := w (3, m). For any prime p > w and for any colouring
χ : Z/pZ → {1, 2, 3}, we have that

|M(eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ), χ)| ≥ p2 − p

6w2
.

Proof. SetM := M(eq(n1+pZ, n2+pZ, n3+pZ, 0+pZ), χ). In so far as n1+n2+n3 =
0, we assume without loss of generality that n3 < 0 < n1 ≤ n2 so m = 1 − n3 and
n2 < n1 + n2 = −n3. For each a ∈ Z/pZ and d ∈ (Z/pZ)∗, write

Aa,d := {a+ (i+ pZ)d ∈ Z/pZ : i ∈ {0, 1, . . . , w − 1}}.
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We claim that for each a ∈ Z/pZ and d ∈ (Z/pZ)∗, there is a monochromatic
solution (with respect to χ) (s1, s2, s3) ∈ M such that {s1, s2, s3} ⊆ Aa,d and s1, s2, s3
are pairwise distinct. Take the colouring

χa,d : {1, 2, . . . , w} −→ {1, 2, 3}, χa,d(i) = χ(a+ (i− 1 + pZ)d).

Theorem 2.5 yields that there exist k ∈ {1, 2, 3} and q, r ∈ Z+ such that

{q + jr : j ∈ {0, 1, . . . , m− 1}} ⊆ χ−1
a,d(k).

Note that {a+(q−1+pZ)d, a+(q−n3r−1+pZ)d, a+(q+n2r−1+pZ)d} ⊆ Aa,d.
Since {q, q − n3r, q + n2r} is monochromatic with respect to χa,d, the definition of
χa,d implies that {a+(q− 1+ pZ)d, a+(q−n3r− 1+ pZ)d, a+(q+n2r− 1+ pZ)d}
is monochromatic with respect to χ. Also notice that

(n1 + pZ)(a + (q − 1 + pZ)d) + (n2 + pZ)(a + (q − n3r − 1 + pZ)d)

+(n3 + pZ)(a + (q + n2r − 1 + pZ)d) = 0 + pZ

so (a+ (q − 1 + pZ)d, a+ (q − n3r− 1 + pZ)d, a+ (q + n2r− 1 + pZ)d) is a solution
and therefore

(a+ (q − 1 + pZ)d, a+ (q − n3r − 1 + pZ)d, a+ (q + n2r − 1 + pZ)d) ∈ M

Furthermore, since 0 < n2r < −n3r ≤ w < p, the elements a + (q − 1 + pZ)d, a +
(q − n3r− 1 + pZ)d and a+ (q + n2r− 1 + pZ)d are pairwise distinct and the claim
is proven.

Note that for each (s1, s2, s3) ∈ M with the elements pairwise distinct, {s1, s2, s3}
can be contained in at most 6w2 arithmetic progressions Aa,d. Indeed, assume that
{s1, s2, s3} is in at least 6w2 + 1 arithmetic progressions Aa,d. i Then, since there
are six ordered pairs in {1, 2, 3} and the length of the arithmetic progressions Aa,d

is w, the Pigeonhole Principle yields a pair i, j ∈ {1, 2, 3} with i �= j, arithmetic
progressions Aa1,d1 , Aa2,d2 with (a1, d1) �= (a2, d2), and ki, kj ∈ {0, 1, . . . , w − 1} with
ki �= kj such that

si = a1 + kid1 = a2 + kid2

sj = a1 + kjd1 = a2 + kjd2;

however, the previous equalities imply that (a1, d1) = (a2, d2), and this contradiction
proves our claim. Hence, insomuch as a ∈ Z/pZ, d ∈ (Z/pZ)∗ are arbitrary, we

obtain that M has at least |Z/pZ×(Z/pZ)∗|
6w2 = p2−p

6w2 elements.

We conclude the proof of Theorem 1.3.

Proof. (Theorem 1.3) Set R := R(eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ), χ) and
M := M(eq(n1 + pZ, n2 + pZ, n3 + pZ, 0 + pZ), χ). Theorem 2.6 gives us

|R| = 2|M | − 3

(
3∑

i=1

|χ−1(i)|2
)

+ p2. (30)
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Applying Theorem 4.1,

2|M | ≥ p2 − p

3w2
. (31)

Also, insomuch as χ is m-almost equinumerous,

3

(
3∑

i=1

|χ−1(i)|2
)

− p2 ≤ p2 − p

6w2
. (32)

Finally (30), (31) and (32) let us conclude that

|R| ≥ p2 − p

6w2
.
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