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Abstract

A new fully automatic method for detecting auroral ovals

in images produced by the NASA IMAGE satellite’s Far Ul-

tra Violet (FUV) sensor is introduced. The method exploits

the shape characteristics of the auroral oval and utilizes do-

main knowledge. The shape exploitation involves an effi-

cient Hough-based process. Experimental results show that

the new method can accurately detect the auroral oval in

the FUV images.

1. Introduction

At the speed of several hundred or more kilometers per

second, solar wind constantly strikes the Earth’s magnetic

field. The interaction between the solar wind and the mag-

netic field causes the spectacular phenomena of the auro-

rae. Study of auroral activity is important due to its helpful-

ness in analyzing high-latitude ionosphere-thermosphere-

magnetosphere (ITM) behaviors. One source of a large

collection of imagery for study of auroral activity is the

Far Ultra Violet (FUV) sensor on board the NASA Imager

for Magnetopause-to-Aurora Global Exploration (IMAGE)

satellite. Since the start of its mission in March 2000, FUV

has so far produced over 1.5 million images.

Many auroral physics studies require determination of

the location of auroral activity in imagery. The auroral ac-

tivity occurs within a ring, called the auroral oval. Manual

determination of the auroral oval in an image is somewhat

tedious, and, sometimes, difficult. Fig. 1(a) shows a sam-

ple FUV image. Fig. 1(a) (and the others of FUV images)

in this paper are identified by the date and time of capture

(e.g., Fig. 1(a) was captured at 00:20 on the 346th day of

year 2000). Fig. 1(a) also has labels for some features of in-

terest overlaid on it. This figure, and the other FUV images

shown in this paper, are contrast-enhanced using histogram

equalization for viewing clarity. Fig. 1(b) shows a manual

auroral oval detection result for this image. From Fig. 1(a),
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Figure 1. (a) A sample FUV image, (b) Manual auro-

ral oval detection result

it can be seen that the intensity contrast around the auroral

oval remains very low even after enhancement; low contrast

is a challenge for automated detection. Yet automated meth-

ods to detect the auroral oval in imagery can be beneficial,

especially since study of auroral behavior over time requires

consideration of a series of images. Besides the low level of

contrast, another major complication for both manual and

automatic detection methods is the dayglow contamination

in many FUV images. Dayglow is caused by emission of

the excited atoms and molecules in the upper atmosphere

[7]. The bright crescent-shaped part near the bottom of Fig.

1(a) is an example of dayglow. In FUV, dayglow intensities

usually are significantly higher (e.g., as much as an order

of magnitude or more) than auroral intensities. In addition,

the presence of bright stars, which are also present in Fig.

1(a), can complicate processing, especially for automated

methods.

In this paper, a method for automatic and accurate au-

roral oval detection in FUV imagery is introduced. The

method is, to our knowledge, the first automatic method for

auroral oval detection in FUV images. The new method is

motivated by the method of Cao et al. [1] for Polar Ul-

traviolet Imager (UVI) images. Although several methods,

including the Cao et al. method, have been successfully ap-
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Figure 2. (a) PCNN-based method result, (b) HKM

result, (c) AMET result, (d) Shape-based method re-

sult

plied to UVI images for auroral detection, we have found

that direct application of these methods to FUV imagery

produces poor results. These existing methods and the au-

roral oval detection results they produce for UVI imagery

are described in Section 2. One reason that the existing

methods for UVI imagery fail to produce accurate results

for FUV imagery is that the dayglows in FUV images are

much brighter than those observed in UVI images. This

problem is due to the fact that the FUV sensor has a much

larger field of view (15◦) than the UVI sensor (8◦), causing

more and brighter dayglow to be imaged.

This paper is organized as follows. In Section 2, related

work in auroral oval detection is presented. In Section 3, the

new method is introduced. In Section 4, results of applying

the new method to a set of FUV images are shown. The

paper is concluded in Section 5.

2. Related Work

In this section, related works are described. We focus

on the four methods that have been applied to auroral oval

detection in UVI imagery. UVI is a sensor aboard the long-

running NASA Polar Satellite that has acquired over 9 mil-

lion images. The methods are the pulse-coupled neural net-

work (PCNN)-based [3], histogram-based K-means (HKM)

[4], adaptive minimum error thresholding (AMET) [6], and

shape-based [1] methods. Although developed for UVI im-

agery, later in this section we exhibit application of the

methods to FUV imagery. To our knowledge, these exhibits

are the first application of those methods to FUV imagery.

The PCNN-based method described by Germany et al.

[3] was the first method applied to aurora detection in UVI

imagery. The method associates a pulse-coupled neuron (a

segmentation neuron [8]) with each pixel in the image. Ev-

ery segmentation neuron has an internal activity that is de-

termined by combining the feeding input, which is the in-

tensity of its associated pixel, and the linking input from

neurons associated with nearby pixels. A neuron will “fire”

if its internal activity is above a threshold value. The neu-

rons associated with pixels whose intensities are above a

preset threshold fire first. The output impulses of the neu-

rons that fire first become the linking inputs to the nearby

neurons. When no more neurons fire, those pixels whose

associated neurons have fired are viewed as auroral oval

pixels. Fig. 2(a) shows the result of applying the method

to the Fig. 1(a) image.

The HKM method of Hung and Germany [4] detects the

auroral oval in UVI images using a K-means approach. It

first divides the image pixels into different clusters. Then, it

finds the clusters with the highest intensity means and takes

them as the auroral regions. Histogram information is ex-

ploited when computing the cluster means and when clus-

tering the pixels. Fig. 2(b) shows the method’s result for the

Fig. 1(a) image. Since UVI data is normalized to [0..255]

and FUV is floating point data, applying the PCNN-based

and HKM methods’ codes directly requires normalizing the

intensity range of the FUV image to [0..255].

The AMET method of Li et al. [6] detects the auroral

oval in UVI images by first dividing the image into sub-

zones based on the Magnetic Local Time (MLT). MLT is

related to magnetic longitude; all the points with the same

magnetic longitude have the same MLT [9]. For example,

when the magnetic longitude line is facing the sun, the MLT

for all the points on this line is 12:00 [9]. AMET then ap-

plies minimum error thresholding [5] in each subzone. Fi-

nally, the threshold value applied to each pixel is the aver-

age of the thresholds of the three nearby subzones. Fig. 2(c)

shows the result of applying AMET to the Fig. 1(a) image.

The shape-based method of Cao et al. [1] exploits the

elliptic shape trait of the auroral oval to detect it in UVI

images in a fully automated way. The method finds re-

gions of high activity and then the edges of these regions.

The set of edges is separated into two parts roughly corre-

sponding to the inner and the outer boundary of the oval.

Then, linear least-squares fitting (LLSF)-based randomized

Hough transform (RHT) [10] is used to determine ellipses

that well-model each boundary. The region between the two

fitted ellipses is taken as the auroral oval. Fig. 2(d) shows

the result of applying the method to the Fig. 1(a) image.

The Fig. 2 results are typical; the existing methods used

for auroral oval detection for UVI images do not produce

accurate results when applied to FUV imagery.

3. New Method Description

In this section, the new method is described. It has three

major stages. These stages exploit domain knowledge (e.g.,

the auroral oval’s inner boundary is completely inside its

outer boundary). First, stars and part of the dayglow and the

background are automatically removed based on knowledge

of the aurora’s location. Second, the outer boundary of the

auroral oval is automatically found. Based on the found

outer boundary, the inner boundary is then automatically

found. Fig. 3 shows the flow of processing.
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Figure 3. New method’s (fully automated) processing

3.1 The Three Major Stages

Aurorae normally appear in a certain magnetic latitude

(MLAT) range called the aurora zone [2]. Usually, the au-

roral emissions excited by precipitating protons only appear

between MLAT 57.5◦ and 67◦ within the aurora zone [2].

Therefore, our method’s first stage zeroes the pixels that

have MLAT below 55◦ to 0. (We note here that the MLAT

and MLT of every FUV image pixel are known.) In ad-

dition, since the dayglows should appear on the day side

of the Earth, pixels that have magnetic local time between

8:00 and 15:00 are zeroed. After that, the method applies

AMET to the resulting image to binarize the image into two

regions. The region containing higher intensity pixels is

considered to be the foreground region (i.e., the potential

auroral oval); although it usually contains part of the day-

glow, it is saved for further processing.

In the second stage, the outer boundary of the auroral

oval is localized. Localization involves first extracting the

boundary of the foreground region. Then, radial-based pro-

cessing is used to find the outer extent of the foreground.

The radial-based processing involves scanning the image

along the outgoing directions from the North Pole (N ) in-

side the foreground region to the border of the image. Point

N is located by averaging the positions of the pixels whose

MLAT’s are very close to 90◦. The boundary pixels Pi’s

encountered first in each radial scan of the region are ig-

nored. The second boundary pixels encountered along the

scans are taken as candidate outer boundary pixels unless

they are within a small distance (e.g., 5 pixels) of a Pi pixel.

We note here that since the foreground region may contain

part of the dayglow, the outer boundary pixels may be from

the boundary of the dayglow. To find the true auroral oval’s

outer boundary, the method fits an ellipse Eo to the set of

candidate outer boundary pixels using LLSF-based RHT, as

was described in the shape-based method for UVI of Cao et

al. [1]. Eo is then taken as the true outer boundary of the

auroral oval.

In the third stage, the inner boundary of the auroral oval

is localized. First, the pixels outside Eo in the original im-

age are zeroed due to the fact that the auroral oval should

be completely inside Eo. Then, the method applies AMET

to the resulting image to find the potential auroral oval. Af-

ter that, the method extracts the inner boundary pixels us-

ing radial-based processing. This processing scans starting

just inside Eo and proceeds along the directions from Eo

toward N . Similar to the radial-based processing in the sec-

ond stage, the boundary pixels encountered first along the

scans are ignored since they are probably the outer bound-

ary pixels. The second boundary pixels encountered along

the scans are taken as inner boundary pixels unless they are

too close to the outer boundary pixels (e.g., within 2 pixels).

Then, an ellipse Ei is fit to the inner boundary pixels using

the LLSF-based RHT. Finally, the region between Eo and

Ei is taken as the auroral oval.

3.2 Processing Illustration

Fig. 4 illustrates these three stages for the FUV image

shown in Fig. 4(a). Fig. 4(b) shows the result of zeroing

the pixels whose MLAT is smaller than 55◦ and the pixels

whose MLT is between 8:00 and 15:00. Fig. 4(c) shows

the foreground region obtained in the first stage. Fig. 4(d)

shows the extracted boundary of the foreground region in

the second stage. Fig. 4(e) shows the scan directions of

the radial-based processing in the second stage. Fig. 4(f)

shows the extracted outer boundary pixels and the Eo. Fig.

4(g) shows the extracted inner boundary pixels and the Ei.

Fig. 4(h) shows the Eo and the Ei overlaid on the original

image. Fig. 4(i) shows the final result.

4 Experimental Results

This section presents some auroral oval detections from

applying the new method to a set of 131 FUV images taken

from five days of the year 2000. Fig. 5 shows some sam-

ple results for these images. The first row of Fig. 5 shows

the original images. The second row of Fig. 5 shows the

detected ellipses for the inner and the outer boundary of the

auroral oval overlaid on the original image.

The 131 results accurately matched human experts in

123 (93.8%) cases. In 8 (6.2%) cases, the method’s results

were subpar, although there were no abject failures. Among

the subpar results, 3 have inaccurate outer boundaries and 8

have inaccurate inner boundaries. One reason for the subpar

results is that some images have auroral oval inner bound-

aries that are irregular in shape (due to substorms). Another

reason is that the auroral activity in some images is very

low. In those images, there is a very low contrast between

the auroral oval and the background.

5 Conclusion

This paper presents, to our knowledge, the first auto-

matic method for auroral oval detection in FUV images.

The method utilizes domain knowledge of the shape and
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Figure 4. Illustration of processing: (a) Original im-

age, (b) Result after background and dayglow reduc-

tion, (c) Foreground region, (d) Extracted boundary,

(e) First radial-based scan directions, (f) Detected

outer ellipse overlaid on the outer boundary pixels, (g)

Detected inner ellipse overlaid on the inner boundary

pixels, (h) Detected ellipses overlaid on the image, (i)

Detection result

location of the auroral ovals to guide the detection. Exper-

imental results show that the method is highly accurate de-

spite the extreme low level of contrast and strong dayglows

present in the images. The method might be applicable for

future efforts to allow retrieval of imagery from a database

of FUV images.

Acknowledgment

This work was partially funded by the NASA Science Mis-

sion Directorate under grant NNG06E60G.

References

[1] C. Cao, T. Newman, G. Germany: “Shape-Based Aurora

Oval Segmentation from UVI Images,” Eos Tran. AGU,

86(52), Abs. SM51B-1285, 2005.

(a) 20003311217 (b) 20003460036 (c) 20003460222

(d) (e) (f)

Figure 5. Auroral oval detection results: original im-

ages (first row) and detections (second row)

[2] M. Galand, D. Lummerzheim, A. Stephan, B. Bush, S.

Chakrabarti: “Electron and Proton Aurora Observed Spec-

troscopically in the Far Ultraviolet,” J. Geophysical Res.,

107(A7), pp. SIA 14-1 to 14-14, 2002.

[3] G. Germany, G. Parks, H. Ranganath, R. Elsen, P. Richards,

W. Swift, J. Spann, M. Brittnacher: “Analysis of Auroral

Morphology: Substorm Precursor and Onset on January 10,

1997,” Geophysical Res. Letters, 25, pp. 3042-3046, 1998.

[4] C. Hung, G. Germany: “K-means and Iterative Selection

Algorithms in Image Segmentation,” Proc., IEEE Southeast

Conf., Jamaica, West Indies, 2003.

[5] J. Kittler, J. Illingworth: “Minimum Error Thresholding,”

Pattern Recognition, 19, pp. 41-47, 1986.

[6] X. Li, R. Ramachandran, M. He, S. Movva, J. Rushing, S.

Graves, W. Lyatsky, A. Tan, G. Germany: “Comparing Dif-

ferent Thresholding Algorithms for Segmenting Auroras,”

Proc., Int’l Conf. on Info. Tech.: Coding and Comp., pp.

594-601, Las Vegas, 2004.

[7] X. Li, R. Ramachandran, S. Movva, S. Graves, G. Germany,

W. Lyatsky, A. Tan: “Dayglow Removal from FUV Auro-

ral Images,” Proc., IEEE Int’l Geosci. and Remote Sensing

Symp., vol. 6, pp. 3774-3777, 2004.

[8] H. Ranganath, G. Kuntimad: “Image Segmentation using

Pulse Coupled Neural Networks,” Proc., IEEE Int’l Conf.

Neural Nets., vol. 2, pp. 1285-1290, 1994.

[9] D. Stern, M. Peredo: “Get a Straight Answer,”

http://www-spof.gsfc.nasa.gov/Education/FAQs1.html, Ac-

cessed, July 2006.

[10] L. Xu, E. Oja, P. Kultanen: “A New Curve Detection

Method: Randomized Hough Transform (RHT),” Pattern

Recog. Letters, 11(5), pp. 331-338, 1990.

586


