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Largest Subsets of Triangles in a Triangulation∗
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Abstract

Given a triangulation of n points, with some triangles
marked “good”, this paper discusses the problems of
computing the largest-area connected set of good tri-
angles that (i) is convex, (ii) is monotone, (iii) has a
bounded total angular change, or (iv) has a bounded
negative turning angle. The first, second, and fourth
problems are solved in polynomial time, the third prob-
lem is NP-hard.

1 Introduction

One of the uses of triangulations is to subdivide a region
into smaller elements that are easier to handle or to eval-
uate. If the triangulation is a terrain, we can evaluate
the slope of each triangle, for instance. We may want
to find a large subregion of the terrain where the slope
does not exceed a given value. This eliminates some tri-
angles, since slope is constant over a triangle. Similarly,
we could specify that any north-facing triangle is bad.
We consider computing a simple polygon of maximum
area, formed as a union of good triangles and satisfying
an additional shape constraint.

More formally, we address the following problems.
Given a triangulation of a point set with any subset
of triangles marked bad (the rest are good), find the
largest-area simply-connected region comprised of good
triangles, and such that:

(i) it is convex (see Figure 1(a)),
(ii) it is monotone in some direction,
(iii) the total (absolute) angular change is at most β,
(iv) or the maximum negative turning angle (defined

below) is at least −γ for some γ < π.

To define the maximum negative turning angle of
a simple polygon P , let P be defined by the edges
~e1, ~e2, . . . , ~em in counterclockwise order, see Figure 1(b).
We define the turning angle from edge ~ei to edge ~ej
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Figure 1: (a) The largest convex polygon (light gray)
that is the union of triangles in a triangulation, while
excluding bad (dark gray) triangles. (b) The maximum
negative turning angle of the polygon is slightly less
than −π/2.

for i 6= j as α(~ei, ~ej) =
∑j−1

k=i ](~ek, ~ek+1) (indices wrap
around, the sum is taken over at most n − 1 angles),
where ](~ek, ~ek+1) is the counterclockwise turn from ~ek

to ~ek+1 (a clockwise turn yields a negative ](~ek, ~ek+1)).
When i = j, we set α(~ei, ~ei) = 0. The maximum neg-
ative turning angle Φ of a simple polygon P is defined
as mini,j α(~ei, ~ej). Note that Φ ≤ 0, and that a simple
polygon is convex if and only if Φ = 0.

We show that problem (i) can be solved in O(n2) time,
problem (ii) in O(n2) time if the direction is given and
in O(n3) time otherwise, problem (iv) in O(n6) time,
and problem (iii) is NP-hard.

If the largest-area simple polygon we aim to compute
were not constrained to be a union of good triangles, but
just to be contained in that union, problem (i) would
turn into the well-known potato-peeling problem that
can be solved [5] in time O(n7) if the union of good tri-
angles is simple, and in time O(n8) otherwise. Other pa-
pers present algorithms for the largest axis-parallel rect-
angle inside a polygon with or without holes [4, 7], the
largest similar copy of a polygon inside a polygon [6, 10],
or the largest axially symmetric polygon inside a convex
polygon [3]. Turning angles are used for shape match-
ing of polygons [2] and for certain optimal geometric
tours [1, 8].

Henceforth, T is a triangulation of a set of n points.
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2 Largest convex polygon

In this section we compute the largest-area convex poly-
gon formed as a union of good triangles of T . Without
loss of generality, we assume that no two vertices of T
have the same x-coordinate.
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Figure 2: An admissible collection C of good triangles
(gray) for the edge pair (e, e′).

Given two edges e, e′ of T , we call a collection C
of good triangles admissible for (e, e′) if the following
conditions hold (see Figure 2):

• U := U(C) ∩H(e, e′) is a convex polygon, where

– r = (rx, ry) is the leftmost of the right end-
points of e and e′,

– H(e, e′) is the half-plane x ≤ rx, and
– U(C) is the union of the triangles in C.

• The rightmost top edge of U lies on e.
• The rightmost bottom edge of U lies on e′.
• Every triangle of C intersects H(e, e′).

Now set Q(e, e′) := −∞ if (e, e′) has no admissible col-
lection of good triangles, otherwise Q(e, e′) is defined
to be the largest area(U(C)∩H(e, e′)) achieved by (the
union of) such a collection C, restricted to H(e, e′). We
will compute Q(e, e′) by dynamic programming. Notice
that, if e and e′ share their right endpoints, Q(e, e′) is
precisely the area of the largest convex polygon consist-
ing of good triangles and having e and e′ as its rightmost
top and bottom edges, respectively. Hence, examining
Q(e, e′) over all pairs of edges with the same right end-
point, one can find the area of the desired largest-area
convex polygon. The polygon itself can be extracted by
standard dynamic programming methods. Henceforth
we focus on computing the quantity Q(e, e′) for all pairs
(e, e′) of edges.

We call a pair of edges (e, e′) promising if e lies above
e′ and the trapezoid T (e, e′), defined as the locus of
points vertically below e and above e′, does not con-
tain an interior point of a bad triangle. Clearly, any
pair that is not promising has Q value of −∞ (notice
that the converse does not hold!). We will first give
the sketch of an algorithm to identify all the promising

pairs, before explaining how to compute Q values for all
pairs of edges.

For a given pair of edges (e, e′), with e above e′, let
X(e, e′) be the common interval of their x values. It
must be non-empty for promising pairs.

We sweep T by a vertical sweep-line ` moving from
left to right and stopping at each vertex. At a given
point of the sweep, when we are at a sweep-line ` : x =
A, all the promising pairs with X(e, e′) to the left of A
have already been discovered. All the ones with A ∈
X(e, e′) and with no interior point of a bad triangle in
T (e, e′) to the left of ` are currently being maintained.

Along the sweep, we maintain the following informa-
tion. For each edge e meeting the sweep-line, we keep
two sorted lists Ea(e) and Eb(e). Eb(e) contains all the
edges e′ meeting ` below e, which have their leftmost
endpoint to the left of that of e and such that the in-
tersection of T (e, e′) with the halfplane x < A is free of
interior points of bad triangles. Eb(e) is stored sorted, in
downward direction along `. Ea(e) is analogous but for
the edges lying above e. In addition to these two lists,
we also keep a list LL(e) that contains all the edges
e′ such that Ea(e′) or Eb(e′) contains e. The need for
these cross-references will become clear later.

We discern three different types of events. When a
new edge e begins, we walk along ` upwards collecting all
the edges crossing ` above e, and adding them to Ea(e)
(and adding the corresponding cross-references to the
LL lists). This continues until a bad triangle is reached.
The same is done downwards to fill in Eb(e). We spend
constant time per added pair. When an edge e ends, we
use Ea(e), Eb(e) and LL(e) to generate all the promising
pairs that involve e and update the lists of remaining
edges. This takes constant time per pair as well. The
last type of event occurs when a bad triangle B begins,
at some vertex v. Intuitively we want to remove all
pairs (e, e′) for which T (e, e′) contains v. Each such no-
longer-promising pair has a top edge e above v and a
bottom edge e′ below v. We can assume that no other
bad triangle B′ interferes with (e, e′). We walk up `,
from v, looking for candidates e, until we hit a bad
triangle. For each e found, we scan its list Eb(e), from
the tail backwards. If the last element e′ is above v,
the entire list is safe. If it is below v, the pair (e, e′) is
not promising, and we drop e′ from Eb(e) (and e from
LL(e′)), continuing upwards until the first e′ above v.
This is repeated until all non-promising pairs have been
dropped. Similarly, we walk down ` from v and scan
Ea(e). Each pair dropped is processed only once, so we
do at most O(n2) work overall. It follows that all the
promising pairs can be computed in total O(n2) time.

Having established how to identify promising pairs
(e, e′), we explain how to compute the remaining values
Q(e, e′). Conceptually, we order pairs (e, e′) by their
rx value (the x-coordinate of the leftmost of their right
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Figure 3: Reduction of knapsack to maximum area subtriangulation with bounded total angular change.

endpoints) and compute the values for later pairs from
the values of earlier ones. Practically, we proceed as
follows: For a promising pair (e, e′) sharing their left
endpoint, let Q(e, e′) be the area of the triangle delim-
ited by e, e′ and the vertical line through the leftmost of
their right endpoints. For every vertex v, with e1 ending
at v, e2 starting at v, and such that the slope of e2 is
smaller than that of e1, we set Q(e2, e

′) = Q(e1, e
′)+A,

for all pairs (e1, e
′), (e2, e

′) of promising pairs, where
A is the area of T (e2, e

′); since (e2, e
′) is promising the

whole area added is good. Similar actions are taken for
promising pairs where the bottom edge changes at v.

It is easy to organize the computation so that all pairs
sharing leftmost or rightmost endpoints are processed
in total time proportional to the square of the degree of
their common vertex and the remaining updates can be
made in time proportional to n times the degree of the
vertex. This leads to quadratic time.

Theorem 1 Given a triangulation of n points, with
any subset of triangles marked as good, a maximum-
area convex polygon that is the union of good triangles
can be computed in O(n2) time.

Turning to problem (ii), we note that the algorithm
given above can easily be adapted to compute the
largest-area polygon that is monotone in a given direc-
tion. We omit the details due to space limitations.

Theorem 2 Given a triangulation of n points, with
any subset of triangles marked as good, a maximum-area
monotone polygon that is the union of good triangles can
be computed in O(n2) time if the direction is given, or
in O(n3) time otherwise.

3 Largest-area bounded-angular-change region

We now consider the problem of finding the largest-area
simple polygon comprised of good triangles, so that the
total angular change of its boundary is at most some
constant. We show that this problem is NP-hard for a
total angular change of, say, 3π. The reduction is from
the NP-hard problem knapsack [9]: Given a set of n
pairs (s1, p1), . . . , (sn, pn), where si is the size of the ith

item and pi is its profit, and a maximum allowed size S,
select the subset of total size at most S maximizing total
profit . Without loss of generality, we assume that the
sizes s1, . . . , sn and S have been scaled so that S = π.
We construct a triangulation as follows, see Figure 3.

Take a pair (si, pi). If si > S = π then we discard
it. Otherwise we construct a rectangle Ri of height 1
and width 2/ tan(si/4), and put a fifth vertex mi in the
middle of its top side. Triangulate the rectangle in a star
fashion from mi. Scale the construction so that the area
of Ri is 2pi. The total angular change of a path that
arrives horizontally from the left at the lower left corner
of Ri, goes diagonally up to mi, and then diagonally
down to the lower right corner of Ri, and then goes
horizontally to the right, is si, and the area in Ri and
below the path is pi. This corresponds to choosing the
ith item in the knapsack: the profit (area) is pi and
the cost (extra angular change) is si. Now we combine
the rectangles so that all lower sides lie on a common
horizontal line ` and they are sufficiently spaced; their
order is irrelevant. All triangles above `, except the
largest one in each rectangle, are marked bad. Below
the line ` we make large good triangles whose union is
a large rectangle R̄ with the following properties:

• The top side of R̄ lies on `.
• The upper left corner of R̄ is strictly to the left of

all the rectangles Ri above `.
• The upper right corner of R̄ is strictly to the right

of all the rectangles Ri above `.
• Every triangle in a triangulation of R̄ has area

greater than
∑n

i=1 pi (note that R̄ has all bottom
vertices of rectangles Ri on its top side).

All four conditions are easily satisfied. By construction,
a maximum area solution will contain at least all trian-
gles inside R̄, because leaving one out cannot be com-
pensated by all remaining good triangles, namely those
that lie in Ri. The total angular change of R̄ is exactly
2π. We can choose each of the remaining good triangles
independently. A good triangle lying in Ri has cost of
si and area pi. Hence, the subset of items with maxi-
mum profit in the knapsack with total size at most π
corresponds precisely to the subset of extra triangles
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Figure 4: Path from u to v showing the turning angle
of each edge, with respect to the first edge of the path.
The extreme edges are the ones with the maximum and
minimum turning angle.

that together with triangles of R̄ form the largest-area
simple polygon with angular change bounded by 3π.

Theorem 3 Given a triangulation of n points, with
a subset of the triangles marked as good, computing
the maximum-area polygon, comprised of good triangles,
with total angular change at most 3π is NP-hard.

4 Bounded maximum negative turning angle

We want to find the largest-area simple polygon P that
is a union of good triangles, with the constraint that the
maximum negative turning angle Φ of its the boundary
is bounded by some constant γ ≥ 0; specifically we re-
quire that Φ := mini,j α(~ei, ~ej) > −γ.

For a given path from vertex u to vertex v, we define
the extreme edges ~suv and ~tuv as follows: ~suv is the edge
of the path with the largest turning angle with respect
to the first edge of the path, whereas ~tuv is the edge
with the smallest one. See Figure 4 for an example.

It will be useful to redefine our angle constraint
in terms of extreme edges. Given a polygon P =
{~e1, ~e2, . . . , ~em}, we can split it into a path at any
vertex v on its boundary. Such a path, counterclock-
wise from v to v around the polygon, will have a pair
of extreme edges ~svv and ~tvv. It can be shown that
mini,j α(~ei, ~ej) > −γ if and only if, for every vertex v of
P α(~tvv, ~svv) > −γ. The subregion we are looking for
is a simple polygon P . Our dynamic programming algo-
rithm defines a value function Q which assigns to each
subproblem the value of an optimal solution of the sub-
problem. A subproblem is defined on a pair of vertices,
a pair of edges that are incident to those vertices, and
a pair of extreme directions. Let (v, u,~ev,out, ~eu,in, σ, τ)
be such an instance. The subproblem is to find a path
from v to u, that uses ~ev,out as the first edge and ~eu,in

as the last edge, such that the directions of the extreme
edges ~svu and ~tvu of the path are bounded by σ and τ .
The polygon consisting of this path and edge ~uv should
be a simple polygon containing no (parts of) bad trian-
gles and have optimal area. Note that ~uv is the only
edge of this polygon that is not necessarily an edge of
the triangulation.

The dynamic program is based on the fact that the
optimal polygon P ∗ has a triangulation (not to be con-
fused with the given triangulation T of the whole re-
gion), and we can use it to recursively define the solu-
tion to an instance in terms of the solutions to smaller
instances. In particular, the path from v to u in the in-
stance S = (v, u,~ev,out, ~eu,in, σ, τ) is composed of a path
from v to some vertex w and a path from w to the vertex
u, and such that uw and vw are diagonals of a triangula-
tion of the solution to the instance S. We can maximize
over all vertices w, the edges incident to w that are used
on the paths, and the way the bounds of the extreme
directions may occur in the subproblems, as long as the
solutions do not contain bad triangles. The details are
rather involved and deferred to the full paper.

As for a time analysis, we have a table with O(n4)
entries: there are a linear number of possibilities for the
pair (v,~ev,out), a linear number for the pair (u,~eu,in), a
linear number for σ, and a linear number for τ . We can
fill any entry in quadratic time, so we need O(n6) time
in total.
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