
CCCG 2009, Vancouver, BC, August 17–19, 2009

Clarkson’s Algorithm for Violator Spaces

Yves Brise∗ Bernd Gärtner∗

Abstract

Clarkson’s algorithm is a two-staged randomized algo-
rithm for solving linear programs, but it can also be
applied to the more general LP-type problems which
comprise a number of non-linear geometric problems.
In 2006, it has been shown that the algorithm in its
original form works for violator spaces too, which are a
proper generalization of LP-type problems.

In this paper we show the following theoretical re-
sults: (a) It is shown, for the first time, that Clarkson’s
second stage can be simplified. (b) The previous sim-
plifications of Clarkson’s first stage carry over to the
violator space setting. (c) Furthermore, we show the
equivalence of violator spaces and partitions of the hy-
percube by hypercubes.

Keywords: Clarkson’s Algorithm, Violator Space, LP-
type Problem, Hypercube Partition

1 Introduction

Clarkson’s randomized algorithm [2] is the earliest prac-
tical linear-time algorithm for linear programming with
a fixed number of variables. Combined with a later al-
gorithm by Matoušek, Sharir and Welzl [7], it yields the
best (expected) worst-case bound in the unit cost model
that is known today. The combined algorithm can solve
any linear program with d variables and n constraints
with an expected number of O(d2n + exp(O(

√
d log d)))

arithmetic operations [4]. Its generalization to LP-type
problems makes it applicable to a number of non-linear
and mostly geometric problems. For example, comput-
ing the smallest enclosing ball of n points in R

d, or
computing the distance between two d-polytopes with
n facets.

Both stages of Clarkson’s algorithm are based on ran-
dom sampling and are conceptually very simple. The
main idea is that we solve a subproblem subject to only
a small number of (randomly chosen) constraints, but
still have only few (of all) constraints that are violated
by the solution of the subproblem. Some extra ma-
chinery was originally needed to make the analysis go
through. For the first stage, it was already shown by
Gärtner and Welzl that the extra machinery can be re-

∗Department of Computer Science, Swiss Federal Institute of
Techology (ETHZ), ybrise | gaertner@inf.ethz.ch

moved [5]. The result is what we call the German Al-
gorithm below. In this paper, we do the removal also
for the second stage, resulting in the Swiss Algorithm.
We believe that the German and the Swiss Algorithm
together represent the essence of Clarkson’s approach.

Gärtner, Matoušek, Rüst, and Škovroň proved that
Clarkson’s original algorithm is applicable in a still
broader setting: It actually works for the class of vi-
olator spaces [3]. At first glance, this seems to be yet
another generalization to yet another abstract problem
class, but it can be shown that it stops here: the class of
violator spaces is the most general one for which Clark-
son’s algorithm still works [9]. It was unknown whether
the analysis of the German Algorithm (the stripped-
down version of Clarkson’s first stage) also works for
violator spaces. For LP-type problems, the analysis is
nontrivial and constructs a “composite” LP-type prob-
lem. Here we show that this can still be done for violator
spaces, in essentially the same way.

For the Swiss Algorithm (the stripped-down version
of Clarkson’s second stage), we provide the first analysis
at all.

See [1] for some additional notes on violator spaces.

The German Algorithm (GA). Let us stick to the prob-
lem of finding the smallest enclosing ball of a set of n
points in R

d . The algorithm proceeds in rounds and
maintains a working set G, initialized with a subset R of
r points drawn at random. In each round, the smallest
enclosing ball of G is being computed (by some other
algorithm). For the next round, the points that lie out-
side this ball are added to G. The algorithm terminates
as soon as everybody is happy with the smallest enclos-
ing ball of G. A point is happy, of course, if it lies inside
a ball.

The crucial fact is this: the number of rounds is at
most d+2, and for r ≈ d

√
n, the expected maximum size

of G is bounded by O(d
√

n). This means that GA reduces
a problem of size n to d + 2 problems of expected size
O(d
√

n). We call this the German Algorithm, because it
takes – typically German – one decision in the beginning
which is then efficiently pulled through.

The Swiss Algorithm (SA). Like GA, this algorithm
proceeds in rounds, but it maintains a voting box that
initially contains one slip per point. In each round, a
set of r slips is drawn at random from the voting box,

21st Canadian Conference on Computational Geometry, 2009

and the smallest enclosing ball of the corresponding set
R is computed (by some other algorithm). For the next
round, the number of slips of the unhappy points is dou-
bled. The algorithm terminates as soon as everybody is
happy with the smallest enclosing ball of the sample R.

Below, we will prove the following: if r ≈ d2, the ex-
pected number of rounds is O(log n). This means that
SA reduces a problem of size n to O(log n) problems of
size O(d2). We call this the Swiss Algorithm, because
it takes – typically Swiss – many independent local de-
cisions that magically fit together in the end.

Hypercube partitions. A hypercube partition is a par-
tition of the vertices of the hypercube such that every
element of the partition is the set of vertices of some
subcube. It was known that every nondegenerate vi-
olator space induces a hypercube partition [8, 6]. We
prove here that also the converse is true, meaning that
we obtain an alternative characterization of the class of
violator spaces.

2 Prerequisites

2.1 The Sampling Lemma

The following lemma is due to Gärtner and Welzl in [5]
and was adapted to violator spaces in [3]. Let S be a
set of size n, and ϕ : 2S → R a function that maps any
set R ⊆ S to some value ϕ(R). Define

V(R) := {s ∈ S\R |ϕ(R ∪ {s}) 6= ϕ(R)}, (1)

X(R) := {s ∈ R |ϕ(R\{s}) 6= ϕ(R)}. (2)

V(R) is the set of violators of R, while X(R) is the set
of extreme elements in R. Obviously,

s violates R⇔ s is extreme in R ∪ {s}. (3)

For a random sample R of size r, i.e., a set R chosen
uniformly at random from the set

(

S
r

)

of all r-element
subsets of S, we define random variables Vr : R 7→
|V(R)| and Xr : R 7→ |X(R)|, and we consider the ex-
pected values vr := E[Vr], and xr := E[Xr].

Lemma 1 (Sampling Lemma, [3]) For 0 ≤ r < n,
vr/(n− r) = xr+1/(r + 1).

Proof. See the full version of this paper [1]. �

2.2 Violator Spaces

Definition 2 A violator space is a pair (H, V), where
H is a finite set and V is a mapping 2H → 2H such that
the following two conditions are fulfilled.

(i) G ∩ V(G) = ∅ holds for all G ⊆ H, and
(ii) for all F ⊆ G ⊆ H, where G ∩ V(F) = ∅,

we have V(G) = V(F).
Condition (i) is usually known as consistency, and (ii)
is referred to as locality.

Lemma 3 ([3]) Any violator space (H, V) satisfies
monotonicity defined as follows:

V(F) = V(G) implies V(E) = V(F) = V(G)
for all sets F ⊆ E ⊆ G ⊆ H.

Proof. Assume V(E) 6= V(F), V(G). Then locality
yields ∅ 6= E ∩ V(F) = E ∩ V(G) which contradicts
consistency. �

Definition 4 Consider a violator space (H, V).

(i) We say that B ⊆ H is a basis if for all proper
subsets F ⊂ B we have B ∩ V(F) 6= ∅. For G ⊆
H, a basis of G is a minimal subset B of G with
V(B) = V(G). A basis in (H, V) is a basis of some
set G ⊆ H.

(ii) The combinatorial dimension of (H, V), denoted by
dim(H, V), is the size of the largest basis in (H, V).

(iii) (H, V) is nondegenerate if every set set G ⊆ H,
|G| ≥ dim(H, V), has a unique basis. Otherwise
(H, V) is degenerate.

Corollary 5 (of Lemma 1) Let (H, V) be a violator
space of combinatorial dimension d, and |H | = n. If
we choose a subset R ⊆ H, |R| = r ≤ n, uniformly at
random, then E[|V(R)|] ≤ dn−r

r+1 .

Proof. The corollary follows from Lemma 1, with the
observation that |X(R)| ≤ d, ∀R ⊆ H . �

3 Clarkson’s Algorithm Revisited

Clarkson’s algorithm computes a basis of some violator
space (H, V), n = |H |. It consists of two separate stages
and the Brute Force Algorithm (BFA). The results about
the running time and the size of the sets involved are
summarized in Theorem 6 and Theorem 11.

The main idea of both stages (GA and SA) is the follow-
ing: We draw a random sample R ⊆ H of size r = |R|
and then compute a basis of R using some other algo-
rithm. The crucial point here is that r≪ n. Obviously,
such an approach may fail to find a basis of H , and we
might have to enter a second round. That is the point
at which GA and SA most significantly differ.

In both stages we assume that the size of the ground
set, i.e., n, is larger than r, such that we can actually
draw a sample of that size.

3.1 The German Algorithm (GA)

This algorithm works as follows. Let (H, V) be a vio-
lator space, |H | = n, and dim(H, V) = d. We draw a
random sample R ⊆ H , r = d

√

n/2, only once, and
initialize our working set G with R. Then we enter a
repeat loop, in which we compute a basis B of G (by

CCCG 2009, Vancouver, BC, August 17–19, 2009

calling the Swiss Algorithm) and find all violators of B
in H . If there are none, we are done and return B.
Otherwise, we add those violators to our working set G
and repeat the procedure.

The analysis shows that (i) the number of rounds is
bounded by d + 1, and (ii) the size of G in any round
is bounded by O(d

√
n). Note that V|G denotes the re-

striction of the violator mapping to the set G.

Algorithm 1: GA(H, V)

input : Violator space (H, V), |H | = n, and
dim(H, V) = d

output: A basis B of (H, V)

r← d
√

n/2;
Choose R with |R| = r, R ⊆ H u.a.r.;
G← R;
repeat

B ← SA(G, V|G);
G← G ∪ V(B);

until V(B) = ∅ ;
return B

Theorem 6 Let (H, V) be a violator space of combina-
torial dimension d, and n = |H |. Then the algorithm
GA computes a basis of (H, V) with at most d + 1 calls
to SA, with an expected number of at most O(d

√
n) con-

straints each.

Proof. The proof is a modification of a similar proof
found in [5], where it is employed in the framework of
LP-type problems; see [1]. �

3.2 The Swiss Algorithm (SA)

Let the input be a violator space (H, V), |H | = n, and
dim(H, V) = d. We will compute a basis B of H .

First, let us introduce the notation R(i), B(i), and
V (i) for i ≥ 1 for the sets R, B and V(R) in round i
of SA respectively. The set B(i) is a basis of R(i) and
V (i) = V(R(i)) = V(B(i)).

After the initialization we enter the first round and
choose the random sample R(1) of size r = 2d2 uniformly
at random from H . Then we compute an intermediate
basis B(1) of the violator space (R(1), V|R(1)) by using
BFA as a black box. In the next step we compute the
set of violated constraints, i.e., V (1). So far, it is the
same thing as in GA. But now, instead of enforcing the
violated constraints, we just increase their probability
that they will be chosen in the next round. Repeat this
procedure until the solution to the subproblem has no
more violators.

To formalize the above, we associate the multiplic-
ity µh ∈ N with every h ∈ H . For an arbitrary
set F ⊆ H we define the cumulative multiplicity as

µ(F) :=
∑

h∈F µh. For i ≥ 0 we will use µ
(i)
h (and

µ(i)(F)) to denote the (cumulative) multiplicity at the

end of round i. We define µ
(0)
h := 1 for any h ∈ H , and

therefore µ(0)(F) = |F |.
To increase the probability that a constraint h ∈ V (i)

is chosen in the random sample of round i+1 we double

the multiplicity of h, i.e., µ
(i)
h = 2µ

(i−1)
h . The random

sample is chosen as follows. We consider a collection of
elements in which every constraint h appears with its

multiplicity µ
(i)
h . From this we draw a r-element subset

u.a.r. and then discard multiple entries. In general, our
random sample R therefore has size 1 ≤ |R| ≤ r.

Algorithm 2: SA(H, V)

input : Violator space (H, V), |H | = n, and
dim(H, V) = d

output: A basis B of (H, V)

µh ← 1 for all h ∈ H ;
r ← 2d2;
repeat

choose random R from H according to µ;
B ← BFA(R, V|R);
µh ← 2µh for all h ∈ V(B);

until V (B) = ∅ ;
return B

The following lemma guarantees that in every round
the multiplicity of at least one element of the final basis
is doubled.

Lemma 7 (Observation 22, [3]) Let (H, V) be a vi-
olator space, F ⊆ G ⊆ H, and G ∩ V(F) 6= ∅. Then
G∩V(F) contains at least one element from every basis
of G.

The analysis of SA will show that the elements in any
basis B of H will increase their multiplicity so quickly
that they are chosen with high probability after a loga-
rithmic number of rounds. This, of course, means that
the algorithm will terminate, because there will be no
violators. Formally, we will consider a modification of
SA that runs forever, regardless of the current set of vi-
olators. Let us call the modified algorithm SA forever.
We call a particular round i controversial if V (i) 6= ∅.
Furthermore, let Cℓ be the event that the first ℓ rounds
are controversial in SA forever.

Lemma 8 Let (H, V) be a violator space, |H | = n,
dim (H, V) = d, B any basis of H, and k ∈ N some pos-
itive integer. Then, in SA forever, the following holds
for the expected cumulative multiplicity of B after kd
rounds, 2k Pr[Ckd] ≤ E[µ(kd)(B)].

Proof. In any controversial round, Lemma 7 asserts
that B ∩ V (i) 6= ∅. So, in every controversial round,

21st Canadian Conference on Computational Geometry, 2009

the multiplicity of at least one element in B is dou-
bled. Therefore, by conditioning on the event that the
first kd rounds are controversial, there must be a con-
straint in B that has been doubled at least k times
(recall that |B| ≤ d). It follows that E[µ(kd)(B)] =
E[µ(kd)(B) |Ckd] Pr[Ckd] + E[µ(kd)(B) |Ckd] Pr[Ckd] ≥
2k Pr[Ckd]. �

Lemma 9 Let (H, V) be a violator space, |H | = n,
dim (H, V) = d, B any basis of H, and k ∈ N some pos-
itive integer. Then, in SA forever, the following holds
for the expected cumulative multiplicity of B after kd

rounds, E[µ(kd)(B)] ≤ n
(

1 + d
r

)kd
.

Proof. The detailed proof can be found in [1]. What we
do is basically construct a different violator space in ev-
ery round, that captures the sampling process, and then
we apply the sampling lemma to this new space. This
lets us bound from above the cumulative multiplicity of
the original space after some number of rounds. �

Using ℓ = kd, and combining Lemmata 8 and 9, we

now know that 2k Pr[Cℓ] ≤ n
(

1 + d
r

)ℓ
, which gives us

a useful upper bound on Pr[Cℓ], because the left-hand
side power grows faster than the right-hand side power
as a function of ℓ, given that r is chosen large enough.

Let us choose r = c d2 for some constant c >
log2 e ≈ 1.44. We obtain Pr[Cℓ] ≤ n

(

1 + 1
c d

)ℓ
/ 2k ≤

n 2(ℓ log2 e)/(c d)−k, using 1 + x ≤ ex = 2x log2 e for all x.
This further gives us

Pr[Cℓ] ≤ nαℓ, (4)

where α = α(d, c) = 2(log2 e−c)/(c d) < 1. This implies
the following tail estimate.

Lemma 10 For any β > 1, the probability that
SA forever starts with at least ⌈β log1/α n⌉ controver-

sial rounds is at most n1−β.

Proof. The probability for at least this many lead-
ing controversial rounds is at most Pr[C⌈β log1/α n⌉] ≤
nα⌈β log1/α n⌉ ≤ nαβ log1/α n = nn−β = n1−β . �

So, we can bound the expected number of leading
controversial rounds in SA forever, and this bounds the
expected number of rounds in SA, because SA terminates
upon the first non-controversial round it encounters.

Theorem 11 Let (H, V) be a violator space, |H | = n,
and dim (H, V) = d. Then the algorithm SA computes a
basis of H with an expected number of at most O(d ln n)
calls to BFA, with at most O(d2) constraints each.

Proof. A detailed computation of the expected num-
ber of leading controversial rounds can be found in [1].
The second part of the theorem follows immediately, be-
cause we make calls to BFA with at most cd2 constraints
each. �

4 Hypercube Partitions

Let H be a finite set. Consider the graph on the vertices
2H , where two vertices F, G are connected by an edge
if they differ in exactly one element, i.e., G = F ∪̇ {h},
h ∈ H . This graph is a hypercube of dimension n = |H |.
For the sets A ⊆ B ⊆ H , we define [A, B] := {C ⊆
H | A ⊆ C ⊆ B} and call any such [A, B] an interval. A
hypercube partition is a partition P of 2H into (disjoint)
intevals.

Let (H, V) be a violator space. We call two sets
F, G ⊆ H equivalent if V(F) = V(G), and let H be
the partition of 2H into equivalence classes w.r.t. this
relation. We call H the violation pattern of (H, V).

Theorem 12 Any hypercube partition P is the vio-
lation pattern of some nondegenerate violator space
(H, V).

Proof. The proof (including some auxiliary Lemmata)
can be found in the full version of this paper [1]. �

5 Conclusion

We analyzed Clarkson’s algorithm in what we believe
to be its most general as well as natural setting. Ad-
ditionally, we have given an equivalence between non-
degenerate violator spaces and hypercube partitions,
which could help identifying further applications in com-
putational geometry as well as other fields of computer
science. A major challenge will be to establish a subex-
ponential analysis for the framework of violator spaces
(as there already exists for LP’s and LP-type problems).

References

[1] Yves Brise and Bernd Gärtner. Clarkson’s algorithm for violator
spaces, arXiv:0906.4706v2, 2009.

[2] Kenneth L. Clarkson. Las Vegas algorithms for linear and integer
programming when the dimension is small. Journal of the ACM,
42(2):488–499, 1995.

[3] Bernd Gärtner, Jǐŕı Matoušek, Leo Rüst, and Petr Škovroň. Vio-
lator spaces: Structure and algorithms. Discrete Applied Math-
ematics, 156(11):2124–2141, 2008.

[4] Bernd Gärtner and Emo Welzl. Linear programming - random-
ization and abstract frameworks. In Proceedings of the 13th An-
nual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 1046 of Lecture Notes in Computer Science,
pages 669–687. Springer, 1996.

[5] Bernd Gärtner and Emo Welzl. A Simple Sampling Lemma:
Analysis and Applications in Geometric Optimization. Discrete
& Computational Geometry, 25(4):569–590, 2001.

[6] Jǐŕı Matoušek. Removing degeneracy in LP-type problems revis-
ited. Discrete & Computational Geometry, 2008.

[7] Jǐŕı Matoušek, Micha Sharir, and Emo Welzl. A subexponential
bound for linear programming. Algorithmica, 16:498–516, 1996.

[8] Jǐŕı Matoušek and Petr Škovroň. Removing degeneracy may
require a large dimension increase. Theory of Computing,
3(1):159–177, 2007.

[9] Petr Škovroň. Abstract Models of Optimization Problems. PhD
thesis, Charles University, Prague, 2007.

