
CCCG 2010, Winnipeg MB, August 9–11, 2010

Towards a Dynamic Data Structure for Efficient Bounded Line Range Search

Thuy Thi Thu Le Bradford G. Nickerson∗

Abstract

We present a data structure for efficient axis-aligned or-
thogonal range search on a set of n lines in a bounded
plane. The algorithm requires O(log n+ k) time in the
worst case to find all lines intersecting an axis aligned
query rectangle R, where k is the number of lines in
range. O(n + λ) space is required for the data struc-
ture used by the algorithm, where λ is the number of
intersection points among the lines. Insertion of a new
rightmost line ` or deletion of a leftmost line ` requires
O(n) time in the worst case. For a sparse arrangement
of lines (i.e., for λ = O(n)), insertion of a rightmost line
` or deletion of a leftmost line ` requires O(

√
n) time,

and O(log n + µ) expected time for µ the number of
intersection points between ` and existing lines.

1 Introduction

Lines in a bounded plane can represent a large variety
of natural phenomenon, including trajectories of moving
objects. Data structures for searching an arrangement
of n lines in the plane are presented in e.g. [3] and [4].
An arrangement stores the relationships among vertices,
edges and convex regions arising from the O(n2) inter-
sections of the lines. Arrangements arise naturally in
point search as points in primal space become lines in
dual space.

Line segment search is important class of geometric
search problem. Reporting the λ intersections among
a set of n line segments was solved in optimal time
O(n log n+λ) using O(n+λ) space in [2]. The space was
improved to optimal O(n) in [1]. Reporting horizontal
line segments intersecting a vertical query line segment
was solved in O(log n + k) time and O(n logn

log logn) space
[7]. A well known data structure, the persistent search
tree [9], can report k line segments crossing a vertical
segment in O(log n + k) time using O(n + λ) space to
store n line segments. However, this data structure does
not support insertion and deletion. We present a dy-
namic data structure to answer axis-aligned orthogonal
range queries in O(log n+k) time using O(n+λ) space.

To our knowledge, this is the first dynamic data struc-
ture to match the persistent search tree in space and
range search time complexity. Our algorithm is based

∗Faculty of Computer Science, University of New Brunswick,
P.O. Box 4400, Fredericton, N.B. Canada, {m6839,bgn}@unb.ca

o1

e2

o2o3 o4

v1

o6 o7 o8

0 10 15 20 x

y
ymax

5

o5

A B

CD

x-level(15.0) x-level(19.2)

y-level(6.3)

y-level(3.6)

xmax

e1 e5 e4 e6 e7 e8 e3

b1b2b3 b4 b6b5 b7 b8

v2
v3

v4

v5

v6

v7

Figure 1: Eight bounded lines having slopes m ∈
(0,−∞]. Query rectangle ABCD has points A=(17,
7.7) and C=(20,6). Dashed lines show x-levels and y-
levels near AD and DC. Bounded line oi has two end-
points bi and ei. v1, .., v7 are vertices at intersections.
Lines o3 and o8 are in range.

on an improvement to ordered polyline trees [5], making
it practical to implement. Proofs of Theorems, Lemmas,
and Corollaries in this paper are given in [6].

2 Data Structure

We are given a set L of lines on a 2-d plane bounded by
[0, xmax] and [0, ymax]. Searching for lines having slopes
m ∈ (0,∞] intersecting a query rectangle R with four
vertices A, B, C, and D (given in a clockwise direction)
is equivalent to finding lines intersecting the left ver-
tical line segment AD and the bottom horizontal line
segment DC (see Fig. 1). We divide a set L of lines
on the plane into two subsets L1 and L2. L1 contains
lines oriented with slope m ∈ (0,∞] and L2 has lines
with slope m ∈ (−∞, 0]. In the paper, we focus only
on L1, the subset of lines with slope m ∈ (0,∞]. A
similar algorithm and analysis applies to L2. Ordered
polyline trees for both L1 and L2 provide the basis for
the complete search algorithm.

We use the notion x-level(i) to refer to the set of lines
intersecting the line x = i ordered top-to-bottom. Sim-
ilarly, y-level(i) refers to a set of lines intersecting the
line y = i ordered left-to-right. Fig. 1 shows an example
of two x-levels: x-level(15.0) and x-level(19.2), and two
y-levels: y-level(3.6) and y-level(6.3). The order of lines
changes where lines intersect. For the set of eight lines
and query rectangle ABCD in Fig. 1, we only need to
search for lines intersecting AD on x-level(15) and DC
on y-level(3.6). An ordered polyline pi is created by con-
necting line segments at intersections (with each other

22nd Canadian Conference on Computational Geometry, 2010

and with the x = 0, x = xmax, y = 0, and y = ymax
boundaries). For example, the first three ordered poly-
lines in Fig. 1 are p1 = {b1, v3, e2}, p2 = {b2, v3, e1},
and p3 = {b3, v1, v6, e5}, ordered from left to right. Or-
dered polylines intersect each other only at intersection
vertices.

In the worst case, every line of n lines intersects all
other lines. There are at most n(n−1)

2 , or O(n2) inter-
sections among n lines. Each ordered polyline requires
at most 2(n− 1), or O(n) line segments.

Points in an ordered polyline are monotonically in-
creasing in both x and y. We connect points in an or-
dered polyline together into a list of entries, and arrange
ordered polylines in a balanced search tree, called the
ordered polyline tree. The depth of all leaves of the
tree differs by at most one, and the depth of the tree
containing n ordered polylines is blog2 nc. Each ordered
polyline pi divides the bounded plane into two disjoint
parts. Points to the left of pi are guaranteed to be in the
left subtree of the node containing pi. Similarly, points
to the right of pi are in the right subtree of the node
containing pi.

Each entry of an ordered polyline contains a point
(x, y), a line ID, (left, right, next) pointers on x, and
one next pointer on y. We use the term x-entry (y-
entry) to refer to x value (y value) at an entry. Fig.
2 shows the ordered polyline tree for ordered polylines
in Fig. 1. A full ordered polyline tree has pointers to

e1

o1o2

v3b2

e2

o2o1

v3b1

p5

p2

p7

p6

p8

p3p1

p4

e3

o3o8

v7b8

e5

o5

v6

o4o3

v1b3 e6

o6

v4

o3o5

v2b5

e4

o4

v6

o5

v2

o3o4

v1b4

e7

o7

v5

o3o6

v4b6

e8

o8

v7

o3o7

v5b7

Figure 2: Ordered polyline tree indexing the 8 lines from
Fig. 1. A two-row rectangle represents an ordered poly-
line, where each column represents an entry containing
a point and a line id oi. A dashed line points to the
next x-entry.

both x-entries and y-entries. For simplicity, Fig. 2 only
shows pointers (from one entry of each ordered polyline)
to the next x-entry.

For a polyline pi with x-entry xj , the (left, right,
next) pointers point to the largest x-entry ≤ xj in pi’s
(left child, right child, next polyline pi+1) nodes, respec-
tively. If no x-entries in pi’s (left, right, next) nodes are
≤ xj , the (left, right, next) pointers point to the small-
est x-entry > xj . In this way, we record all line seg-
ments in the arrangement of bounded lines such that

a traversal of the tree from root to leaf serves to find
the polyline immediately to the left of a query point
A. Following next pointers of x-entries finds segments
of ordered polylines in downward order for a vertical
query segment AD. Following next pointers of y-entries
finds segments of ordered polylines in left-to-right order
for a horizontal query segment DC.

Theorem 1 For a set L of n lines in a bounded plane,
the required space to index them using two ordered poly-
line trees is O(n + λ), where λ is the total number of
intersection points among the lines.

3 Search Complexity

The query rectangle R has four vertices A, B, C, and
D = (t, r) in a clockwise direction. The search proceeds
by finding the nearest polyline to the upper left of A,
following x-entries to find lines intersecting AD (with
x = t), then following y-entries to find lines intersect-
ing DC (with y = r). The main steps of the search
algorithm are as follows:

(1) Searching starts from the root node, choosing the
largest entry ei = (xi, yi, idi) where xi ≤ t. If t <
smallest xi, choose the smallest (first) entry.

(2) Follow the entry’s left or right pointer to the next
entry by comparing line idi to point A. If A is left
of the line, follow the left pointer; otherwise follow
the right pointer.

(3) We arrive at entry ei = (xi, yi, idi) for node pi.
Choose the largest entry ej = (xj , yj , idj) following
ei whose xj ≤ t. If t is smaller than the smallest
xj , choose the smallest (first) entry.

(4) Repeat (2) and (3) until reaching a leaf node.

(5) At node entry ej = (xj , yj , idj), if A is left of line
idj , check to see if line idj intersects AD; if so,
report line idj .

(6) Use the next pointer at this x-entry to find the next
adjacent polyline entry xi. If xi > t, xi ← xi−1. If
xi ≤ t, xi ← xi+1.

(7) If line idi intersects AD, report line idi, and repeat
step (6).

(8) We arrive at an entry ei = (xi, yi, idi) in polyline
pi with a line idi below D. Find the entry ei in pi
with the largest y-entry value ≤ r. Report idi if it
intersects DC.

(9) Use the next pointer at this y-entry to find the next
adjacent polyline entry yi. If yi > r, yi ← yi−1. If
yi ≤ r, yi ← yi+1.

CCCG 2010, Winnipeg MB, August 9–11, 2010

(10) If line idi intersects DC, report line idi, and repeat
step (9).

(11) We arrive at an entry ei = (xi, yi, idi) with a line
idi right of C, so no possible lines remain that can
intersect R.

Theorem 2 Using an ordered polyline tree indexing n
bounded lines in the plane, an algorithm exists to report
the k lines intersecting an axis aligned query rectangle
R in worst case time O(log n+k), where k is the number
of lines in range.

4 Dynamic Updates

We consider a limited form of dynamic updates. Line
insertions (deletions) are done on the right (left) hand
side (e.g., corresponding to rightmost (leftmost) end-
point on the line y = 0) of the plane. This dynamic
data structure would be useful, for example, when rep-
resenting a set of moving objects on a graph’s edge. For
x representing time, and y representing positions along
an edge, the (time × position) space admits new mov-
ing objects on the right (for the L1 subset). Similarly,
we delete the oldest moving objects from the left side of
the (time × position) space.

Insertion of a new line happens at the rightmost node.
As a result of the insertion process (see Section 4.1), the
left subtree of an internal node is always a complete tree.
Building an ordered polyline tree indexing n bounded
lines using n insertions requires O(n2) time [6].

When all leaves of the left subtree TL at the root node
of an ordered polyline tree T are one level shallower than
all leaves of the right subtree TR of T , the number of
nodes of TR with depth log2 n−1 is (20 + ..+ 2log2 n−2),
and the number of nodes of TL with depth log2 n− 2 is
(20 + ..+2log2 n−3). There are (20 + ..+2log2 n−2)−(20 +
..+ 2log2 n−3) = 2log2 n−1= n

4 more nodes in TR than in
TL. Therefore, the left tree TL contains b 3n8 c nodes, and
the right tree TR contains b 5n8 c nodes. Similarly, when
all leaves of TL are one level deeper than those of TR
(except the rightmost leaf), TL contains b 5n8 c nodes and
TR contains b 3n8 c. We obtain the following Lemma:

Lemma 1 For an ordered polyline T containing n
nodes constructed using the insertion at right-hand-side
algorithm, the number of nodes in the left subtree TL or
the right subtree TR of T is between b 3n8 c and b 5n8 c, and
|TL|+ |TR|+ 1 = n. The height of T is blog2 nc.

4.1 Insertion

If a new line ` is inserted on the right-hand-side, and
there are µ intersection points between ` and ordered
polylines pn−(µ−1), .., pn−1, pn (see [6]), the required
time to insert ` into the ordered polyline tree T is
O(log n + µ). There is one intersection between ` and

each of the µ ordered polylines. Assume u1, .., uµ is the
top-down y-sorted list of µ intersection points of ` and
lines `1, .., `µ among µ ordered polylines. In this case,
`µ belongs to the rightmost ordered polyline pn in T .

Finding µ intersections requires O(log n+ µ) time by
first finding the ordered polyline pn−(µ−1)intersecting `,
then finding the intersecting line `1 and computing the
intersection point u1. We use the next pointer at the
current entry containing `1 to compute u2, where u2

is the intersection between ` and `2. This process is
repeated until we reach `µ on pn and obtain uµ.

Updating µ ordered polylines requires O(µ) time. An
ordered polyline containing points e1, ..., ew is separated
into two parts at the intersection point ui of ` and `i
(1 ≤ i ≤ µ). The first part contains entries e1, .., ei, ui,
and the second part is (ui, ei, .., ew). An updated or-
dered polyline is obtained by concatenating its first part
to the y = ymax end point of ` or to the second part
of the previous ordered polyline. The first updated or-
dered polyline will concatenate the y = ymax end point
of `. A new ordered polyline node pn+1 is created by
concatenating the y = 0 end point of ` and the second
part of pn. Inserting an entry to each ordered poly-
line requires O(1) time to find ui and concatenation. It
takes O(1) time to travel from one inserted entry of an
ordered polyline to the next inserted entry of the next
ordered polyline. Therefore, the required time to insert
µ entries to µ ordered polylines is O(µ). This leads to
the following lemma:

Lemma 2 The time to find the location of a new line
`, and to insert µ intersections from ` into each of µ
existing ordered polylines is O(log n+ µ).

Constructing a balanced ordered polyline tree by in-
sertion of rightmost lines always results in a complete
binary right sub-tree at any node of the tree. Inserting
node pn+1 to the ordered polyline tree can make the
tree unbalanced. The log2 n nodes in the path from the
rightmost leaf to the tree root have their height informa-
tion updated, and at most 4 nodes (or O(1) nodes) are
involved in tree re-balancing. We cannot delay chang-
ing pointers as in the partial rebuilding technique of [8].
Left and right pointers of nodes involved in re-balancing
must be immediately updated to give correct results for
a query on the set of lines including `. Each node con-
tains at most n entries which need to reassign their left
or right pointers. It requires O(n) time to change left
and right pointers in the nodes being re-balanced in this
worst case. Assigning four pointers (i.e., left, right, and
next x-pointer, and its next y-pointer) for each new in-
serted entry takes O(1) time by using the pointers of
the previous entry in the same ordered polyline node.
Therefore, the total required time is O(log n + µ + n),
or O(n). We have the following Theorem:

22nd Canadian Conference on Computational Geometry, 2010

Theorem 3 The time to insert a new rightmost line `
into an ordered polyline tree indexing n lines is O(n).

Definition 1 A sparse arrangement of n bounded lines
in a plane has λ=O(n).

Theorem 4 The time to insert a rightmost line ` into
the ordered polyline tree of a sparse arrangement of n
bounded lines in the plane is O(

√
n).

Corollary 1 The expected time to insert the rightmost
line ` into the ordered polyline tree of a sparse arrange-
ment is O(log n+ µ).

4.2 Deletion

Deleting a leftmost line `, having µ intersections with
µ existing lines, from the ordered polyline tree requires
O(log n + µ) time. We need to delete µ intersection
points from µ ordered polylines. Let u1, .., uµ be µ y-
sorted intersection points between ` and lines `2, .., `µ+1,
where `2 is on the leftmost ordered polyline. Note that if
an ordered polyline pi contains `, there exists a line seg-
ment (uj , uj+1) of ` belonging to pi. This line segment
needs to be removed from pi. An ordered polyline pi
containing points e1, .., ej−1, uj , uj+1, ej+2, .., ew is sep-
arated into three parts. The first part e1, .., ej−1 is kept
in pi. The middle part uj , uj+1 is removed from pi. The
third part ej+2, .., ew is concatenated to the first part of
pi+1 to form the updated pi+1. The updated ordered
polyline pi contains its first part concatenated with the
third part of pi−1. It takes O(1) time to update an or-
dered polyline pi by deleting the middle part uj , uj+1

and concatenating the first part of pi and the third part
of pi+1.

We then use the next pointer at the entry containing
uj+1 of pi to locate the entry on pi+1 containing uj+1.
This step requires O(1) time. Now we have a new pi
with its middle part uj+1, uj2 , so we repeat the deletion
and update operations until all µ intersections are vis-
ited. Updating µ ordered polylines thus requires O(µ)
time.

Deleting node p1 from n existing nodes of the ordered
polyline tree can make the tree unbalanced. Similar to
insertion, it requires O(n) time to reorder all nodes of
the tree in the worst case. Therefore, the total required
time for deleting leftmost line ` is O(µ + n), or O(n).
We have the following Theorem:

Theorem 5 The time to delete a leftmost line ` from
an ordered polyline tree indexing n lines is O(n).

Theorem 6 The time to delete a leftmost line ` from
an ordered polyline tree of a sparse arrangement of n
bounded lines in the plane is O(

√
n).

5 Conclusion

We present a new dynamic data structure for efficient
axis aligned range search of a set of n lines on a
bounded plane. To the best of our knowledge, this is
the first dynamic data structure to solve this problem
in O(log n+ k) search time in the worst case to find all
lines intersecting an axis aligned query rectangle R, for
k the number of lines in range, and O(n+ λ) space.

Can the approach used here support general insertion
or deletion of any bounded line? An open problem is
how to build an I/O-efficient data structure to achieve
logarithmic search time on a set of n bounded lines.
The unpredictable number of intersections among lines
makes the optimal branching factor hard to determine.

References

[1] I. J. Balaban. An optimal algorithm for finding seg-
ments intersections. In SCG ’95: Proceedings of the
eleventh annual symposium on Computational ge-
ometry, pages 211–219, New York, NY, USA, 1995.
ACM.

[2] B. Chazelle and H. Edelsbrunner. An optimal algo-
rithm for intersecting line segments in the plane. J.
ACM, 39(1):1–54, 1992.

[3] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry Algorithms
and Applications. Third edition. Springer-Verlag,
2008.

[4] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Con-
structing arrangements of lines and hyperplanes
with applications. SIAM J. Comput., 15(2):341–363,
1986.

[5] T. T. T. Le and B. G. Nickerson. Ordered poly-
line trees for efficient search of objects moving on
a graph. In ICCSA 2010, pages 401–413, Fukuoka,
Japan, March 23-26 2010.

[6] T. T. T. Le and B. G. Nickerson. A Dynamic Data
Structure for Efficient Bounded Line Range Search.
Technical report, TR10-200, UNB, Canada, May,
2010, 13 pages.

[7] C. W. Mortensen. Fully-dynamic two dimensional
orthogonal range and line segment intersection re-
porting in logarithmic time. In SODA ’03, pages
618–627, Philadelphia, PA, USA, 2003.

[8] M. H. Overmars. The design of dynamic data struc-
tures. Springer Verlag, 1983.

[9] N. Sarnak and R. E. Tarjan. Planar point loca-
tion using persistent search trees. Commun. ACM,
29(7):669–679, 1986.

