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A new algorithm and improved lower bound for point placement on a line in
two rounds

Md. Shafiul Alam*

Abstract

In this paper we show how to construct in 2 rounds a
line-rigid point placement graph of size 4n/3+0(1) from
small graphs called 6:6 jewels, an extension of the 4:4
jewel of [3]. This improves a result reported in [2] that
uses b-cycles. More significantly, we improve their lower
bound on 2-round algorithms from 17n/16 to 14n/13.

1 Introduction

Let P = {p1,p2,...,pn} be a set of n distinct points
on a line L. In this paper, we consider the problem of
learning P (up to translation and reflection) by making
distance queries between pairs of points.

For starters, here’s a simple algorithm [3]. Query the
distance between two points, say p; and ps. The posi-
tion of each of the remaining points p; > 3 is determined
by querying the distances from p; to p; and ps; p; lies
between p; and ps if the sum of the distances is equal
to |p1pe|, and to the left of p; or to the right of po if
the difference of the distances is equal to |pipa|. The
number of queries made is 2n — 3, which is of the form
an + B.

We can represent the 2n — 3 queries above in the form
of a point placement graph (ppg) on P, with an edge
between p; and p; if we have queried the distance be-
tween them. As there is a unique placement on L of the
vertices of this graph we call it line-rigid. Structurally,
the ppg is made up of n — 2 triangles, with a common
edge. Each individual triangle is line-rigid as long as the
length of one side is the sum or difference of the lengths
of the other two.

This provides the cue to more efficient algorithms -
find larger graphs than triangles which are either in-
trinsically line-rigid (such as the triangle or the jewel of
Damaschke [3]) or are line-rigid under some constraints
on their edge lengths (thus a quadrilateral is line-rigid
as long as it is not a parallelogram [3]). We glue to-
gether line-rigid quadrilaterals into a line-rigid ppg. Us-
ing quadrilaterals as the basic line-rigid elements, brings
down a to 3/2 as we query 3 edges per 2 points. To meet
the line-rigidity condition for quadrilaterals, we must
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choose point-pairs carefully. Here is a simple 2-round
algorithm due to Damaschke [3].

In round one we query all the edges incident at the
end points of the edge zy (Fig. 1). In round two we
form line-rigid quadrilaterals by querying edges joining
pairs of points p and ¢ that makes the quadrilateral
xpqy line-rigid. We can make sure that |zp| # |yg| by
having 2 extra edges at y, in view of the following basic
observation:

Observation. At a point p on a line there can be at
most two edges incident that have the same length.

We complete this round by making 2 triangles with x
and each of the 2 residual edges.

The motivation for this problem comes from diverse
areas - biology, learning theory, computational geome-
try. Early research on this problem was reported in [4].
It was shown in [3] that the 4:4 jewel (see next section
for a definition) and K> 3 are both line-rigid, and also
how to build large rigid graphs of density 8/5 (this is an
asymptotic measure of the number of edges per point as
the number of points go to infinity) using the jewel as
a basic line-rigid component. Chin et al [2] improved
many of the results of [3], their principal contribution
being the 3-round construction of rigid graphs of den-
sity 5/4 from 6-cycles and a lower bound of 17n/16 on
« in any 2-round algorithm.

In [1] we proposed a 2-round algorithm that queries
10n/7 + O(1) edges to construct a line-rigid ppg on n
points, using a 5:5 jewel as the basic component. In
this paper we propose a 2-round algorithm that queries
4n/3 + O(1) edges to construct a line-rigid ppg on n
points, using a 6:6 jewel as the basic component, better-
ing a result of [2] that uses 5-cycles. More significantly,
we improve their lower bound on any 2-round algorithm
from 17n/16 to 14n/13.
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Figure 1: Creating a ppg

with quadrilaterals. Figure 2: 6:6 jewel.
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2 A two-round algorithm

A generic m : n jewel consists of an m-cycle, Cy, and
an n-cycle, Cy, that are hinged at a common vertex
with a strut between two other vertices (Fig. 2 shows
a 6:6 jewel). This is a generalization of Damaschke’s
4:4-jewel. We use 6:6 jewels to build a line-rigid ppg.

First we determine a set of sufficient conditions that
make them line-rigid by drawing it as a layer graph [2].
A layer graph has (i) all its edges parallel to one of the
two orthogonal directions, z and y; (ii) the length of an
edge is equal to its weight; (iii) not all edges are along
the same direction (implying a two-dimensional extent);
(iv) when collapsed (i.e., rigidly folded onto a line) along
either side of either axis, no two vertices coincide.

The importance of a layer-graph drawing lies in the
fact proved by Chin et al. [2] that a ppg is line-rigid iff
it cannot be drawn as a layer graph.

Since by making the individual 6-cycles C; and Cy
line-rigid we reduce the 6:6 jewel to a triangle that can-
not be drawn as a layer graph, the union of the condi-
tions that make these cycles individually line-rigid are
sufficient to make the 6:6 jewel line-rigid.

A 6-cycle can be drawn as a layer graph in 16 different
configurations giving rise to 16 different rigidity condi-
tions. For the 6-cycle XABY CD the conditions are:
YB| # |XA|, |XD| # |AB], [XA| # |CD], [YC| #
XD|, [YB| # |CDI, [YC| # |AB|, |YB| # |XD|,
YC| # |XAl, |AB| # |CD, [VB| # |XA| + [XD],
VBl # [YC| % | XA, |XA| £ [YC| % |CD|, [YB| #
YCI£IXDI, [YC| # [XA[£|X D, [Y B # | X D|£CD|
and |[XA| # |YB|+|CD|.

For the 6-cycle XPQZRS they are: |ZQ| # |X P,
XS] # [PQI, [XP| # |SR|, |ZR| # | XS], |2Q| # |RS|,
|ZR| # |PQ), |2Q| # X5, |ZR| # |XP], |PQ| # |RS],
1ZQ| # |XP| +|XS|, |ZQ| # |ZR| + [XP], |XP| #
|ZR|£|RS|, |ZQ| # |ZR|+|X S|, |ZR| # | X P|+|X5],
12Q| # XS] £ |RS| and | XP| # |2Q| £|RS|.

Hence a total of 32 conditions that make a 6:6 jewel
line-rigid. Several of the above conditions involve the
edges AB,CD, PQ and RS. These come in the way of
the line-rigid ppg we want to build. So we reformulate
the 14 conditions involving these distances with other
suitable ones.

For the 6-cycle XABYCD we can replace |AB| #
|CD| with |YB| £ |YC| # |XA| £ |XD| (Fig. 3a).
Similarly, for the 6 cycle XPQZRS we can replace
|PQ| # |RS| with |ZQ|+|ZR| # | X P|£|X S| (Fig. 3b).

As for the rest, we draw the layer graph of the whole
jewel in such a way that those conditions are violated.
Then we replace them with the conditions that make
the whole jewel line-rigid. Let us consider the 6 cycle
XABY CD and reformulate the condition | X A| # |CD|
(Fig. 3b). YZ may be horizontal or vertical. First we
consider different configurations when Y Z is horizontal.
Since ZX is diagonal there will be 4 different configu-
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Figure 3: Replacing conditions (a)|AB| # |CD| and
(b)[XA[ #|CD].

rations for P and @ (Fig. 4a - 4d). In these figures we
do not draw the edges XS, SR and RZ. If we make
these configurations line-rigid X PQZ will be line-rigid.
So, we shall also need |XS| # |ZR| to make the whole
jewel line-rigid for all these configurations.

To make these configurations line-rigid we need:
ZQl # |XA| £ |XP| (Fig. 4a), [YC| % |[vZ| #
|XD| £ |XP| (Fig. 4b), |ZQ| # |XA| (Fig. 4c) and
|ZQ| £ |YC| £ |YZ| # |XD| + | XP| (Fig. 4d). The
conditions for Fig. 4b and Fig. 4d are obvious. The
conditions for the other two figures will make X PQZ A
line-rigid. Since Y Z is an edge X PQZA will collapse
on YZ. Now X and C are fixed, and XD and CD are
known. So, D will also be unique. Hence, the whole
configuration will be line-rigid.
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Figure 4: Replacing condition | X A| # |CD| when YZ
is horizontal.

When Y Z is vertical and |YZ| = | X A| there is only
one layer graph (Fig. 5). For this case |XA| # |CD|
can be replaced with |[YZ| # |XA| and |XP| # |ZQ)|.
|XP| # |ZQ| will make XPQZ line-rigid. Then for
the cycle XABY ZQP we need |YZ| # | X A| to make
it line-rigid. Thus, X and Y are fixed. For the 4-cycle
XYCD it is evident that | XD| # |[YC|. This makes
the 4-cycle line-rigid, and hence make C' and D unique.
As before we also need | XS| # |ZR| to make the whole
jewel line-rigid.

Similarly, we can replace the other conditions involv-
ing AB, CD, PQ and RS. We summarize the results
in the following lemma.

Lemma 1 A 6:6 jewel with vertices X, Y, Z, A, B,
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Figure 5: Replacing condition | X A| # |CD| when YZ
is vertical and |Y Z| = | X A|.

C, D, P, Q, R, S and edges | X A|, |AB|, |BY|, |[YC|,
(CDI, IDX], |XP|, |PQ|, |QZ], |ZR], |RS|, |SX], |Y Z|
1s line-rigid if its edges satisfy a set of 74 sufficient con-
ditions.

Proof. Omitted. O

This brings us to the construction of a line-rigid
ppg that has a structure shown in Fig. 6 - a whole
lot of 6:6 jewels whose strut vertices Y and Z are
chosen from a complete graph on 40 points. Each strut
Y Z should satisfy the following conditions on its length:

{|XA[ [XD|, [XP], | XS], |[XA|£|XP],

YZ|# |XD|+|XP|, |XA|+|XS|}.

These are 10 in number; in view of the Observation
stated in the Introduction section, at Y there can be,
in the worst case, 2 edges that are equal to each of the
edges | X A|, |XD| etc. Thus to pick a Z so that |YZ|
satisfies all of the above conditions, we have to know
the pairwise distances from Y to 21 other points from
which we can pick a Z.

But if we use 22 fixed points for the selection of Z
for a particular Y it may happen that all the 6:6 jewels
get attached to one fixed point chosen as Z. We need
to attach the 6:6 jewels evenly to all the fixed points so
that the same number of edges can be attached to them
in the first round and all of them, except a constant
number of them, are used to attach the 6:6 jewels. To
specify the number of 6:6 jewels attached to a fixed point
we shall use the term valence.

Lemma 2 A set S of 40 fixed points is sufficient to
attach 6:6 jewels uniformly to them.

Proof. Omitted. 0

In addition to the extra 216 edges needed at each of
Z’s to satisfy the conditions on Z@Q and ZR we need
2 more edges to accommodate this difference of 1 6:6
jewel that can be attached to them. Thus, we need a
total of 218 extra edges at each of the 40 fixed points.

Algorithm For convenience we change the labels as
follows: X — X;, A— A;, B— Bj, C = By, D = D,,
P—P,Q — Qun, R— Q;and S — S;. Let the total
number of points be n. We shall attach b number of
jewels to each of 20 fixed points and b+ 1 to each of the

rest 20 fixed points. There will be a total of 20b + 10
jewels.

In the first round, we choose the distance queries
represented by the edges of the graph in Fig. 6. All
the nodes Y; or Z; (i = 1,...,40) are mutually con-
nected to form a complete graph. There are 780 edges
in the subgraph. FEach of Y;/Z; (i = 1,...,40) has
2b + 218 leaves to attach b or b + 1 jewels. Extra
216 leaves are needed to have the latitude to satisfy
the conditions on Z;Q);. We query the distances Y;B;
and Z;Q; (4,1 = 1,...,2b + 218). Since there will be
20b + 10 extended jewels we have 20b + 10 groups of
5 nodes (4;,D;,S;, P;, X;) (i = 1,...,20b + 10). We
query the distances |A; X;|, |D;X;|, |S:X;| and |P;X,],
(i=1,...,200 4+ 10). In total there will be 160b + 9540
pairwise distance queries in the first round for the place-
ment of a total of n = 180b + 8810 points.

Y, Complete subgraph of 40 points 7

Bj Bk l Qmm
2b+218 leaves 2b+ 218 leaves
Ai D; S; P
X; 206+ 10 4-links

Figure 6: Queries in the first round for 6:6 jewel.

In the second round, for each 4-link (A4;, D;, S;, P;, X;)
we find edges Y;B;, Y; By, Y;Z; rooted at Y;, and Z;Q,
Z;Qm, rooted at Z; to form a 6:6 jewel which satisfy the
conditions for line-rigidity. Then we query the distances
|AiBj‘, |DZB]€|, |Sle| and |P1Qm| The 216 additional
children at Y; and Z; provide us with the latitude to
choose edges that satisfy the above conditions for line-
rigidity. So, for each 4-link (4;, D;,S;, P;, X;) we can
always find edges Y B;, Y By, YZ;, ZQ; and ZQ,, for
the 6:6 jewel such that the conditions for line-rigidity
are satisfied. For each of the unused 216 or 218 leaves
B; of node Y; or Q; of node Z; we query its distance
from a fixed point other than its parent. Total number
of queries in the second round will be 80b + 8760.

In both the rounds a total of 240b 4+ 18300 pairwise
distances are to be queried for the placement of 180b +
8810 points. Thus, 4n/3 + O(1) queries are sufficient to
place n distinct points on a line using two rounds.

3 Lower Bound for Two Rounds

We push the adversarial argument given in the lower
bound proof of [2] very much farther.

Let the set of edges queried in the first and second
round be E; and Es respectively, the query graph in
the first round be G; = (V, E7), and the ppg be Gy =
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(V, FEiU EQ)

In the first round the adversary will fix the length of
the edges according to the following strategy to keep
open options to make the ppg ambiguous:

1. Fixes the layout of all nodes of degree 3 or more and
reports the lengths of the edges incident on these
nodes.

2. For maximal paths of length 3 or more formed
by degree 2 nodes, say pi,pe,...,pr(k > 3), let
po and pry1 be the nodes of degree not equal to
2 which are adjacent to p; and pg. The adver-
sary sets the edge lengths as follows: |p;pi+1| =
Ipi—1Pi+2| and [pi—1pi| = [pi+1pit2|,i = 1(mod 3).
Nodes p; and p;+1, ¢ = 1(mod 3), are treated as
special node pairs [2].

3. For maximal paths of length 2 formed by one node
of degree 2 and another node of degree 1 the ad-
versary sets the length of the edge common to both
the nodes same for all such paths.

Now we consider second round. Strategy 2 of the
adversary warrants that for each special node pair
(pi,pi+1) in Ga, there must be at least one edge from
Es incident on either p; or p; 41 [2]. This means that in
G2 any maximal path of degree 2 can have at most 2
consecutive edges from FEj. Together with this require-
ment strategy 3 of the adversary requires the following
property for the ppg:

Lemma 3 The number of nodes in any maximal path
of degree 2 in G2 is at most 3.

Proof. Suppose number of degree 2 nodes in a maximal
path is 4. Let the nodes be p1, p2, p3 and py. Let pg and
ps be nodes of degree at least 3 that are adjacent to p;
and p4 respectively. Since any maximal path of degree
2 in G5 can have at most 2 consecutive edges from FE;
we can have the following 5 combinations of the E; and
Ej edges for the edges |pop1, |[pip2l, [p2psl, [pspal and
|paps|:

Es, Ey, Es, By, Ey; B, Ev, By, B, Ev; En, Ea, By,
Es, By By, By, Es, B, By By, By, By, By, By

For combination 1, since there are two edges in Fo
lengths of those edges can be set in such a way that
lpops| = |p1ps| and |pop1| = [psps|, and the graph G
becomes non-rigid. Similarly, for combinations 2-4 the
adversary can make the graph ambiguous. As for com-
bination 5, the adversary can set |p1ps| = |psp4| in the
first round by strategy 3 and can set the length of paps
in round 2 in such a way that |paps| = |paps| + |pspo| +
|[pop1|. Then the cycle po,p1,p2, 3, P4, s Will not be
line-rigid. U

Theorem 4 The minimum density of any line-rigid
ppg for two round queries is at least 14/13.

Proof. We determine the minimum of the average
numbers of edges for all types of nodes. For this the
ppg is divided into pieces each of which consists of one
node and fractions of edges incident on it. To split the
edges and allocate their parts between their correspond-
ing adjacent nodes the nodes are categorized as light
and heavy nodes. If an edge joins two light nodes or
two heavy nodes then the edge is divided equally. Oth-
erwise, the light node owns 1/2 4 g and the heavy node
owns 1/2 — g, where 0 < g < 1/2.

By construction there are three types of nodes that
are analyzed below for their average density:

a. Special node pairs: They are considered as heavy
nodes. Since each special node pair has at least one
edge in E5 incident on one of them, the total edge
allocated to the pair will be at least 1/242(1/2—g)
and 1/24 (1/2 — g). Average density for each node
is at least (5 — 6g)/4.

b. Normal nodes of degree at least 3: They are
also heavy nodes. Each node has at least 3(1/2—g)
edges.

c. Nodes in the maximal path formed by de-
gree two normal nodes: These are light nodes.
By Lemma 1 each maximal path of degree two has
length k£ where k < 3. The total edge for a path is
2(1/2+ g) 4+ (k — 1). The average density for each
node in a path is 1 + 2g/k. It is minimum when
k = 3. Thus, each node has at least 1+2g/3 edges.

Minimum average density for all nodes in G5 will be
max min{(5 — 6g)/4,3/2 — 39,1+ g/2} = 14/13 when
g =3/26. o

An important open problem is to further refine this
argument to obtain a better lower bound. We believe
that this may be possible.
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