
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Partial Searchlight Scheduling is Strongly PSPACE-Complete

Giovanni Viglietta∗

Abstract

The problem of searching a polygonal region for an
unpredictably moving intruder by a set of stationary
guards, each carrying an orientable laser, is known as
the Searchlight Scheduling Problem. Determin-
ing the computational complexity of deciding if the
polygon can be searched by a given set of guards is a
long-standing open problem.

Here we propose a generalization called the Partial
Searchlight Scheduling Problem, in which only a
given subregion of the environment has to be searched,
as opposed to the entire area. We prove that the
corresponding decision problem is strongly PSPACE-
complete, both in general and restricted to orthogonal
polygons where the region to be searched is a rectangle.

Our technique is to reduce from the “edge-to-edge”
problem for nondeterministic constraint logic machines,
after showing that the computational power of such ma-
chines does not change if we allow “asynchronous” edge
reversals (as opposed to “sequential”).

1 Introduction

Previous work. The Searchlight Scheduling
Problem (SSP), first studied in [3], is a pursuit-evasion
problem in which a polygon has to be searched for a
moving intruder by a set of stationary guards. The in-
truder moves unpredictably and continuously with un-
bounded speed, and each guard carries an orientable
searchlight, emanating a 1-dimensional ray that can
be continuously rotated about the guard itself. The
polygon’s exterior cannot be traversed by the intruder,
nor penetrated by searchlights. The intruder is caught
whenever it is hit by a searchlight. Because the in-
truder’s location is unknown until it is actually caught,
each guard has to sway its searchlight according to a
predefined schedule. If the guards always catch the in-
truder, regardless of its path, by following their sched-
ules in concert, they are said to have a search schedule.

SSP is the problem of deciding if a given set of guards
has a search schedule for a given polygon (possibly with
holes). The computational complexity of this decision
problem has been only marginally addressed in [3], but
has later gained more attention, until in [2] the space of

∗School of Computer Science, Carleton University, Ottawa
ON, Canada, viglietta@gmail.com.

all possible schedules has been shown to be discretizable
and reducible to a finite graph, which can be explored
systematically to find a search schedule, if one exists.
Since the graph may have double exponential size, this
technique easily places SSP in 2-EXP. Whether SSP is
NP-hard or even in NP is left in [2] as an open problem.

More recently, in [5, 7], the author studied the com-
plexity of a 3-dimensional version of SSP, in which the
input polygonal environment is replaced by a polyhe-
dron, and the 1-dimensional rays become 2-dimensional
half-planes, which rotate about their boundary lines.
This variation of SSP is shown to be strongly NP-hard.

Our contribution. In the present paper we take a
further step along this line of research, by introduc-
ing the Partial Searchlight Scheduling Problem
(PSSP), in which the guards content themselves with
searching a smaller subregion given as input. That is,
a search schedule should only guarantee that the given
target region is eventually cleared, either by catching
the intruder or by confining it outside. We prove that
PSSP is strongly PSPACE-complete, both for general
polygons and restricted to orthogonal polygons in which
the region to be searched is a rectangle.

To prove that PSSP is a member of PSPACE, we do
a refined analysis of the discretization technique of [2].
To prove PSPACE-hardness, we give a reduction from
the “edge-to-edge” problem for nondeterministic con-
straint logic machines, discussed in [1]. Another contri-
bution of this paper is the observation that the nonde-
terministic constraint logic model of computation stays
essentially the same if we allow “asynchronous” moves,
as opposed to “sequential” ones.

An earlier version of this paper has appeared in [4],
and most of the material is also contained in the author’s
Ph.D. thesis [6].

2 Preliminary observations

An instance of PSSP is a triplet (P, G, T ), where P is
a polygon, possibly with holes, G is a finite set of point
guards located in P or on its boundary, and T ⊆ P is
a target polygonal region. The question is whether the
guards in G can turn their lasers in concert, from a fixed
starting position and following a finite schedule, so as
to guarantee that in the end any intruder that moves in
P and tries to avoid lasers is necessarily not in T .



25th Canadian Conference on Computational Geometry, 2013

We remark that SSP �P PSSP trivially, in that in
SSP we have T = P always. One feature of SSP that
is not preserved by this generalization is what we call
the time reversal invariance property. In SSP, a given
schedule successfully searches P if and only if reversing
it with respect to time also searches P. In contrast, this
is not the case with PSSP, and Figure 1(a) shows a sim-
ple example. The dark target region can be cleared only
if the guard turns its searchlight clockwise, as indicated
by the arrow. If the searchlight is turned counterclock-
wise instead, the intruder can first hide in the protected
area on the left, then come out and safely reach the tar-
get region. Protected areas like this one, that cannot be
searched because they are invisible to all guards, provide
a constant source of recontamination, and will be exten-
sively used in our main PSPACE-hardness reduction
(see Lemma 4).

(a) (b)

Figure 1: Two instances of PSSP

A search heuristic called one-way sweep strategy was
described in [3] for SSP restricted to simple polygons,
and later extended to polygons with holes in [8]. An in-
teresting consequence of this heuristic is that, if a set of
guards lies on the boundary of a simple polygon, and no
point in the polygon is invisible to all guards, then there
is a schedule that successfully searches the whole poly-
gon. However, such property does not straightforwardly
generalize to PSSP, as Figure 1(b) illustrates. Here we
have a simple polygon with a guard on the boundary
that can see the whole target region. But, because there
are protected areas on both sides, the target region is
unsearchable, no matter in which direction the guard
turns it searchlight.

As it turns out, adding just another guard anywhere
on the boundary of the polygon in Figure 1(b) makes
the target region searchable. For example, if the second
guard is placed on the top-right corner, it can orient its
laser downward, thus “closing” the right protected area,
and allowing the first guard to search the target region
as in Figure 1(a). On the other hand, if the second
guard is placed on the boundary of any protected area,
then the whole polygon is visible to the guards, and
therefore we know that it can be entirely searched.

3 NCL machines and asynchrony

Our PSPACE-hardness reduction is based on a model
of computation called nondeterministic constraint logic,
whose definition and main properties are detailed in [1].
Here we extend the basic model by introducing asyn-
chrony, and showing that its computational power stays
the same.

Basic NCL machines. Consider an undirected 3-
connected 3-regular planar graph, whose vertices can
be of two types: AND vertices and OR vertices. Of the
three edges incident to an AND vertex, one is called its
output edge, and the other two are its input edges. Such
a graph is (a special case of) a nondeterministic con-
straint logic machine (NCL machine). A legal configu-
ration of an NCL machine is an orientation (direction)
of its edges, such that:

• for each AND vertex, either its output edge is di-
rected inward, or both its input edges are directed
inward;

• for each OR vertex, at least one of its three incident
edges is directed inward.

A legal move from a legal configuration to another con-
figuration is the reversal of a single edge, in such a way
that the above constraints remain satisfied (i.e., such
that the resulting configuration is again legal).

Given an NCL machine with two distinguished edges
ea and eb, and a target orientation for each, we consider
the problem of deciding if there exist legal configura-
tions A and B such that ea has its target orientation
in A, eb has its target orientation in B, and there is a
sequence of legal moves from A to B. In a sequence of
moves, the same edge may be reversed arbitrarily many
times. We call this problem Edge-to-Edge for Non-
deterministic Constraint Logic machines (EE-
NCL).

A proof that EE-NCL is PSPACE-complete is
given in [1], by a reduction from True Quantified
Boolean Formula. By inspecting that reduction, we
may further restrict the set of EE-NCL instances on
which we will be working. Namely, we may assume that
ea 6= eb, and that in no legal configuration both ea and
eb have their target orientation.

Asynchrony. For our main reduction, it is more conve-
nient to employ an asynchronous version of EE-NCL.
Intuitively, instead of “instantaneously” reversing one
edge at a time, we allow any edge to start reversing
at any given time, and the reversal phase of an edge
is not “atomic” and instantaneous, but may take any
strictly positive amount of time. It is understood that
several edges may be in a reversal phase simultaneously.
While an edge is reversing, its orientation is undefined,



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

hence it is not directed toward any vertex. During the
whole process, at any time, both the above constraints
on AND and OR vertices must be satisfied. We also
stipulate that no edge is reversed infinitely many times
in a bounded timespan, or else its orientation will not
be well-defined in the end. With these extended notions
of configuration and move, and with the introduction of
“continuous time”, EE-NCL is now called Edge-to-
Edge for Asynchronous Nondeterministic Con-
straint Logic machines (EE-ANCL).

Despite its asynchrony, such new model of NCL ma-
chine has precisely the same power of its traditional syn-
chronous counterpart.

Theorem 1 EE-NCL = EE-ANCL.

Proof. Obviously EE-NCL ⊆ EE-ANCL, because
any sequence of moves in the synchronous model triv-
ially translates into an equivalent sequence for the asyn-
chronous model.

For the opposite inclusion, we show how to “serialize”
a legal sequence of moves for an asynchronous NCL ma-
chine going from a legal configuration A to configuration
B in a bounded timespan, in order to make it suitable
for the synchronous model. An asynchronous sequence
is represented by a set

S = {(em, sm, tm) | m ∈M},

where M is a set of “edge reversal events”, em is an edge
with a reversal phase starting at time sm and terminat-
ing at time tm > sm. For consistency, no two reversal
phases of the same edge may overlap.

Because no edge can be reversed infinitely many
times, S must be finite. Hence we may assume that
M = {1, · · · , n}, and that the moves are sorted ac-
cording to the (weakly increasing) values of sm, i.e.,
1 6 m < m′ 6 n =⇒ sm 6 sm′ . Then we consider the
serialized sequence

S′ = {(em,m,m) | m ∈M},

and we claim that it is valid for the synchronous model,
and that it is equivalent to S.

Indeed, each move of S′ is instantaneous and atomic,
no two edges reverse simultaneously, and every edge is
reversed as many times as in S, hence the final configu-
ration is again B (provided that the starting configura-
tion is A). We still have to show that every move in S′

is legal. Let us do the first m edge reversals in S′, for
some m ∈M , starting from configuration A, and reach-
ing configuration C. To prove that C is also legal, con-
sider the configuration C ′ reached in the asynchronous
model at time sm, according to S, right when em starts
its reversal phase (possibly simultaneously with other
edges). By construction of S′, every edge whose direc-
tion is well-defined in C ′ (i.e., every edge that is not in

a reversal phase) has the same orientation as in C. It
follows that, for each vertex, its inward edges in C are
a superset of its inward edges in C ′. By assumption on
S, C ′ satisfies all the vertex constraints, then so does
C, a fortiori. �

Corollary 2 EE-ANCL is PSPACE-complete. �

4 PSPACE-completeness of PSSP

To prove that PSSP belongs to PSPACE we use the
discretization technique of [2], and to prove that PSSP
is PSPACE-hard we give a reduction from EE-ANCL.

Membership. Due to Savitch’s theorem, it suffices to
show that PSSP belongs to NPSPACE.

Lemma 3 PSSP ∈ NPSPACE.

Proof. As detailed in [2], a technique known as exact
cell decomposition allows to reduce the space of all pos-
sible schedules to a finite graph G. Each searchlight has
a linear number of critical angles, which yield an overall
partition of the polygon into a polynomial number of
cells. In the discretized search space, searchlights take
turns moving, and can stop or change direction only at
critical angles. Thus, a vertex of G encodes the status of
each cell (either contaminated or clear) and the critical
angle at which each searchlight is oriented.

As a consequence, G can be navigated nondetermin-
istically by just storing one vertex at a time, which re-
quires polynomial space. Notice that deciding if two
vertices of G are adjacent can be done in polynomial
time: an edge in G represents a move of a single search-
light between two consecutive critical angles, and the
updated status of each cell can be easily evaluated. In-
deed, cells’ vertices are intersections of lines through
input points, hence their coordinates can also be effi-
ciently stored and handled as rational expressions in-
volving the input coordinates.

Now, in order to verify that a path in G is a witness
for SSP, one checks if the last vertex encodes a status
in which every cell is clear. But the very same cell
decomposition works also for PSSP: the analysis in [2]
applies even if just a subregion of the polygon has to be
searched, and a path in G is a witness for PSSP if and
only if its last vertex encodes a status in which every
cell that has a non-empty intersection with the target
subregion is clear. �

Hardness. For the PSPACE-hardness part, we first
give a reduction in which the target region to be cleared
is an orthogonal hexagon. Then, in Section 5 we will
explain how to modify our construction, should we insist
on having a rectangular (hence convex) target region.



25th Canadian Conference on Computational Geometry, 2013

Lemma 4 EE-ANCL �P PSSP restricted to orthog-
onal polygons.

Proof. We show how to transform a given asyn-
chronous NCL machine G with two distinguished edges
ea and eb into an instance of PSSP.

A rough sketch of our construction is presented in
Figure 2. All the vertices of G are placed in a row (a),
and are connected together by a network of thin cor-
ridors (b), turning at right angles, representing edges
of G. (Although G is 3-regular, only a few of its edges
are sketched in Figure 2.) Each subsegment of a corri-
dor is a thin rectangle, containing a subsegment guard
in the middle (not shown in Figure 2). Two subseg-
ments from different corridors may indeed cross each
other like in (c), but in such a way that the crossing
point is far enough from the ends of the two subseg-
ments and from the two subsegment guards (so that
no subsegment guard can see all the way through an-
other subsegment). All the vertices of G and all the
joints between consecutive subsegments (i.e., the turn-
ing points of each corridor) are connected via extremely
thin pipes (d) to the upper area (e), which contains the
target region (shaded in Figure 2).

ANDANDAND OROR

(a)

(b)
(c)

(d)

(e)

(g)(f)

(d)

Figure 2: Construction overview

Two corridors (f) and (g) also reach the upper area,
and they correspond to the distinguished edges of G, ea
and eb, respectively. That is, if ea = {u, v}, and the
target orientation of ea is toward v, then the corridor
corresponding to ea connects vertex u in our construc-
tion to the upper area (e), rather than to v. The same
holds for eb. Indeed, observe that we may assume that
ea and eb are reversed only once (respectively, on the
first and last move) in a sequence of moves that solves
EE-ANCL on G. As a consequence, contributions to
vertex constraints given by distinguished edges oriented
in their target direction may be ignored.

Each pipe turns at most once, and contains one pipe
guard in the middle, lying on the boundary. Notice
that straight pipes never intersect corridors, but some
turning pipes do. Figure 3 shows a turning pipe, with
its pipe guard (a) and an intersection with a corri-
dor (b) (proportions are inaccurate). The intersection
guards (c) separate the pipe from the corridor with their

lasers (dotted lines in Figure 3), without “disconnect-
ing” the pipe itself. Although a pipe narrows every time
it crosses a corridor, its pipe guard can always see all the
way through it, because it is located in the middle. The
small nook (d) is unclearable because no guard can see
its bottom, hence it is a constant source of recontami-
nation for the target region (e), unless the pipe guard is
covering it with its laser. (Each straight pipe also has a
similar nook.)

(a)

(b)

(c)

(d)

(e)

(c)

(c)

(c)

Figure 3: Intersection between a pipe and a corridor

In our construction, corridor guards implement edge
orientations in G: whenever all the subsegment guards
in a corridor connecting vertices u and v have their
lasers oriented in the same “direction” from vertex u
to vertex v, it means that the corresponding edge {u, v}
in G is oriented toward v.

Figure 4 shows an OR vertex. The three subseg-
ment guards from incoming corridors (a) can all “cap”
pipe (b) with their lasers, and nook (c) guarantees that
the pipe is recontaminated whenever all three guards
turn their lasers away.

(a)

(b)
(c)

(a)

(a)

Figure 4: OR vertex

AND vertices are implemented as in Figure 5. The
two subsegment guards (a) correspond to input edges,
and are able to cap one pipe (e) each, whereas guard (c)
can cover them both simultaneously. But that leaves
pipe (d) uncovered, unless it is capped by guard (b),
which belongs to the corridor corresponding to the out-
put edge. Again, uncovered pipes are recontaminated



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

by unclearable nooks (f).

(e)

(a)(a)

(e) (d)

(b)

(c)

(f)

(f)

Figure 5: AND vertex

Joints between consecutive subsegments of a corridor
may be viewed as OR vertices with two inputs, shaped
like in Figure 4, but without the corridor coming from
the left.

Finally, Figure 6 shows the upper area of the con-
struction, reached by the distinguished edges ea and eb
(respectively, (a) and (b)), and by all the pipes (c). The
guard in (d) can cap all the pipes, one at a time, and
its purpose is to clear the left part of the target region,
while the small rectangle (e) on the right will be cleared
by the guard in (f). The two pipes (g) implement ad-
ditional OR vertices with two inputs, and prevent (d)
and (f) from acting, unless the respective distinguished
edges are in their target orientations. Nook (h) will
contaminate part of the target region, unless (d) is aim-
ing down. Nooks (i) prevent area (e) from staying clear
whenever guard (f) is not aiming up. The guard in (j)
separates the two parts of the target region with its
laser, so that they can be cleared in two different mo-
ments.

(a) (b)

(c)(c)

(d) (e)

(f)

(h)

(g) (g)

(j)

(i)

Figure 6: Target region

Suppose G is a solvable instance of EE-ANCL. Then
we can “mimic” the transition from configuration A to
configuration B (see Section 3) by turning subsegment
guards. Specifically, if edge e = {u, v} in G changes
its orientation from u to v, then all the subsegment
guards in the corridor corresponding to e turn their
lasers around, one at a time, starting from the guard
closest to u. Before this process starts, each pipe has
one end capped by some subsegment guard, and in par-
ticular pipe (g) on the left of Figure 6 is capped by the

guard in (a). Hence, guard (d) is free to turn and cap all
the pipes one by one, stopping for a moment to let each
pipe’s internal guard clear the pipe itself (which now has
both ends capped) and cover its nook (see Figure 3). As
a result, the left part of the target region can be cleared
by rotating (d) clockwise, from right to down. Then the
subsegment guards start rotating as explained above,
until configuration B is reached. If done properly, this
keeps all the pipes capped and clear, thus preventing
the left part of the target region from being recontam-
inated. (Note that it makes a difference whether we
turn a subsegment guard clockwise or counterclockwise:
sometimes, only one direction prevents the recontami-
nation of the pipe that the guard is capping.) When B
is reached, guard (f) can turn up to clear (e) and finally
solve our PSSP instance.

Conversely, suppose that G is not solvable. Observe
that rectangle (e) in Figure 6 has to be cleared by
guard (f) as a last thing, because it will be recontam-
inated by nooks (i) as soon as (f) turns away. On the
other hand, whenever a pipe has both ends uncapped
by external guards, some portion of the target region
necessarily gets recontaminated by some nook, regard-
less of where the pipe guard is aiming its laser. But
guard (d) can cap just one pipe at a time and, while it
does so, nook (h) keeps some portion of the target re-
gion contaminated. Thus, the entire process must start
from a configuration A in which all the pipes’ lower ends
are simultaneously capped by subsegment guards, and
guard (d) is free to turn (i.e., ea is in its target orienta-
tion). From this point onward, no pipe’s lower end may
ever be uncapped (i.e., legality must be preserved), oth-
erwise the target region gets recontaminated, and the
process has to restart. Finally, a configuration B must
be reached in which guard (f) is free to turn up (i.e.,
eb is in its target orientation). By assumption this is
impossible, hence our PSSP instance is unsolvable. �

By putting together Lemma 3 and Lemma 4, we im-
mediately obtain the following:

Theorem 5 Both PSSP and its restriction to orthog-
onal polygons are strongly PSPACE-complete. �

The term “strongly” is implied by the fact that all the
vertex coordinates generated in the PSPACE-hardness
reduction of Lemma 4 are numbers with polynomially
many digits (or can be made so through tiny adjust-
ments that do not compromise the validity of the con-
struction).

5 Convexifying the target region

We can further improve our Theorem 5 by making the
target region in Lemma 4 rectangular.

Our new target region has the same width as the pre-
vious one, and the height of rectangle (e) in Figure 6. In



25th Canadian Conference on Computational Geometry, 2013

order for this to work, we have to make sure that some
portion of the target region is “affected” by each con-
taminated pipe that is not capped by guard (d), no mat-
ter where all the pipe guards are oriented. To achieve
this, we make pipes reach the upper area of our con-
struction at increasing heights, from left to right, in a
staircase-like fashion.

(a)

(b)

(d)

(c)

Figure 7: Rectangular target region

Assume we already placed pipe (a) in Figure 7, and
we need to find the correct height at which it is safe to
connect pipe (b). First we find the rightmost intersec-
tion (c) between a laser emanating from the pipe guard
of (a) and the lower border of the target region. Then
we set the height of pipe (b) so that it is capped by
guard (d) when it aims slightly to the right of (c). This
is always feasible, provided that pipes are thin enough,
which is obviously not an issue.

After we have set all pipes’ heights from left to right,
the construction is complete and the proof of Lemma 4
can be repeated verbatim, yielding:

Theorem 6 Both PSSP and its restriction to orthogo-
nal polygons with rectangular target regions are strongly
PSPACE-complete. �

6 Further research

There are several promising directions for future re-
search. We suggest a few.

We could simplify PSSP by asking if there exists a
neighborhood of a given point, no matter how small,
that is clearable. Let this problem be called PSSP?.
In contrast with PSSP, here we do not have a polygo-
nal target region, but we are interested just in the sur-
roundings of a point. It is easy to show that PSSP? �P

PSSP: clearing a small-enough neighborhood of a point
is equivalent to clearing the cells whose topological clo-
sure contains the point (cf. the proof of Lemma 3).
The author proved in [6] that a 3-dimensional version
of PSSP? is PSPACE-hard, even restricted to or-
thogonal polyhedra. Our question is whether PSSP?

is PSPACE-hard (hence PSPACE-complete) for 2-
dimensional polygons, as well.

Similarly, we may investigate the complexity of PSSP
on other restricted inputs, such as simply connected

polygons, or target regions coinciding with the whole en-
vironment. The latter is in fact SSP, whose complexity
has been mentioned in Section 1 as an interesting long-
standing open problem. Although the author proved
that a 3-dimensional version of SSP is NP-hard [5],
determining the true complexity of either version still
seems a deep problem. Recall that, in our PSPACE-
hardness reduction of Lemma 4, we repeatedly used re-
gions that are visible to no guard, and hence can never
be cleared. As a matter of fact, this is a remarkably
effective way to force the recontamination of other ar-
eas whenever certain conditions are met. However, this
expedient is of no use in a reduction for SSP (trivially,
if the guards cannot see the whole polygon, they cannot
search it), and cleverer tools have to be devised for this
problem.

Other interesting variations of SSP involve the ad-
dition of new environmental elements, such as mirrors,
which specularly reflect lasers; transparent walls, which
can be traversed by lasers but not by the intruder; and
curtains, which can be traversed by the intruder but
block lasers. To the best of our knowledge, none of
these elements has ever been studied in connection with
SSP.

References

[1] R. A. Hearn and E. D. Demaine. PSPACE-completeness
of sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computation.
Theoretical Computer Science, vol. 343, pp. 72–96, 2005,
special issue “Game Theory Meets Theoretical Com-
puter Science”.

[2] K. J. Obermeyer, A. Ganguli, and F. Bullo. A com-
plete algorithm for searchlight scheduling. International
Journal of Computational Geometry and Applications,
vol. 21, pp. 101–130, 2011.

[3] K. Sugihara, I. Suzuki, and M. Yamashita. The search-
light scheduling problem. SIAM Journal on Computing,
vol. 19, pp. 1024–1040, 1990.

[4] G. Viglietta. Partial searchlight scheduling is strongly
PSPACE-complete. In Proceedings of the 28th European
Workshop on Computational Geometry, pp. 101–104, As-
sisi (Italy), 2012.

[5] G. Viglietta. Searching polyhedra by rotating half-
planes. International Journal of Computational Geom-
etry and Applications, vol. 22, pp. 243–275, 2012.

[6] G. Viglietta. Guarding and searching polyhedra.
Ph.D. Thesis, University of Pisa, 2012.

[7] G. Viglietta and M. Monge. The 3-dimensional search-
light scheduling problem. In Proceedings of the 22nd
Canadian Conference on Computational Geometry,
pp. 9–12, Winnipeg (Canada), 2010.

[8] M. Yamashita, I. Suzuki, and T. Kameda. Searching a
polygonal region by a group of stationary k-searchers.
Information Processing Letters, vol. 92, pp. 1–8, 2004.


	Introduction
	Preliminary observations
	NCL machines and asynchrony
	PSPACE-completeness of PSSP
	Convexifying the target region
	Further research

