
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Planar Convex Hull Range Query and Related Problems

Nadeem Moidu ∗ Jatin Agarwal † Kishore Kothapalli ‡

Abstract

We consider the planar convex hull range query prob-
lem. Let P be a set of points in the plane. We prepro-
cess these points into a data structure such that given an
orthogonal range query, we can report the convex hull
of the points in the range in O(log2 n + h) time, where
h is the size of the output. The data structure uses
O(n log n) space. This improves the previous bound of
O(log5 n+h) time and O(n log2 n) space. Given a range
query, it also supports extreme points in a given direc-
tion, tangent queries through a given point, and line-hull
intersection queries on the points in the range in time
O(log2 n) for each orthogonal query and O(log n) time
for each additional query on that range. These problems
have not been studied before.

1 Introduction

Planar convex hull is a well studied topic in computa-
tional geometry. Let P be a set of n points on the plane.
Overmars and van Leeuwen gave a data structure which
allows insertions and deletions in P in O(log2 n) time
and reporting of points on the hull in O(log n+h) time,
where h is the number of points on the hull [7]. Instead
of supporting reporting of the entire hull, recent works
provide data structures to support common queries on
the convex hull, CH(P), without actually computing it.
The following queries are typically studied:

1. Extreme point query : Find the most extreme vertex
in CH(P) along a query direction

2. Tangent query : Find the two vertices of CH(P)
that form tangents with a query point outside the
hull

3. Line stabbing query : Find the intersection of
CH(P) with an arbitrary query line

These queries can be supported in O(log n) time by
the structure of Overmars and van Leeuwen [7]. Brodal
and Jacob gave a solution which supports insertions and
deletions in O(log n) amortized time and the first two
queries in O(log n) time without actually computing the
hull [3]. Chan gave a data structure which supports the

∗nadeem.moiduug08@students.iiit.ac.in
†jatin.agarwal@research.iiit.ac.in
‡kkishore@iiit.ac.in

third query in O(log3/2 n) time [4] and later improved
it to O(log1+ε n) time [6].

In this paper, we study the orthogonal range query
versions of the above problems. Given an orthogonal
range query of the form q = [xlow, xhigh]× [ylow, yhigh],
we support the above queries for the points in P ∩ q.
Brass et al. first gave a solution to report the convex
hull of an orthogonal range in O(log5 n + h) time in
[2]. The other problems are being studied for the first
time but the data structure in [2] can be enhanced to
support these queries in O(log5 n) time per orthogonal
range query and an additional O(log2 n) time for any of
the above queries. Our data structure takes O(log2 n)
time to process one orthogonal range query. Once this
is done, we can report the points on the hull of P ∩ q
in O(h) time and any of the above queries in O(log n)
time.

2 Overview

In a standard two dimensional range tree, a query is di-
vided vertically into O(log n) rectangular regions where
each region corresponds to a canonical node in the pri-
mary tree. Each of these primary regions are further
divided horizontally into O(log n) regions correspond-
ing to canonical nodes in the secondary tree. However,
these horizontally divided regions are independent of
each other, i.e. they correspond to different intervals
in different primary regions. In our data structure we
modify the secondary trees such that, for a given query,
the horizontal divisions are same across all canonical
primary node regions. So an orthogonal query is di-
vided into a grid of O(log n) × O(log n) regions which
are perfectly aligned as shown in figure 1. By having
the divisions aligned like this, we are able to discard a
large number of regions which do not contribute to the
final hull without processing them. This idea is similar
to the method used by Abam et al. to enhance kinetic
kd-trees in [1].

3 Data Structure

Let P be a static set of points on a plane. We construct
a one dimensional range tree, Ty of all the points based
on their y coordinates. We call this the template tree.
Given a subset S of the point set P , the contracted tree
of Ty with respect to S is defined as the tree obtained

25th Canadian Conference on Computational Geometry, 2013

Standard 2D Range Tree Proposed Tree

Figure 1: Example of how a query is split into canonical
node regions for (a) normal 2D range tree and (b) our
tree

by removing all subtrees which do not have a leaf in
S and contracting all nodes which have only one child.
See Figure 2. Since a contracted tree is a full binary
tree (i.e. a tree in which each node has exactly either
zero or two children), it takes O(|S|) space.

a b c d e f g h

a

c d

f

Figure 2: Original tree and the contracted tree for the
set {a,c,d,f}

Next, we construct a primary tree, T , which is a
one dimensional range tree based on the x coordinates.
Each node in this primary tree contains a secondary tree
which is a contracted version of Ty with respect to the
points in the corresponding x range.

A convex hull can be divided into four parts based
on the extreme points along each axis. The upper right
part goes from the point with maximum y coordinate to
the point with maximum x coordinate. The other parts
are similar. Our data structure is designed to compute
the upper right part of the convex hull. The other parts
can be computed similarly and the four parts can be
joined together to obtain the final convex hull. From
here on, we will refer to the upper right convex hull as
urc-hull.

We now describe the information stored at each sec-
ondary tree node. Each internal secondary tree node
corresponds to a set of points which is a union of two
disjoint sets of points, separated by a horizontal line.
So the urc-hull of the points in a node will comprise a
part of each of the child node urc-hulls and the outer
common tangent (bridge) connecting them. We store
the following variables in each internal node, u:

1. A boolean variable which indicates whether the left
child (horizontally lower part) contributes any part
to the urc-hull. If this variable is false, then the
next three parameters are set to NULL.

2. The outer common tangent (bridge) connecting the
urc-hulls of the children, represented by the points
where it intersects the urc-hulls, Bl(u) and Br(u).

3. Both neighbors of Bl(u) and Br(u) in the urc-hulls
of the respective child. (These parameters are re-
quired for computing the common tangent between
two hulls).

4. Indices of Bl(u) and Br(u) in the urc-hulls of the re-
spective child, Indexl(u) and Indexr(u). We need
these two parameters to know the portion of each
child urc-hull that contributes to the urc-hull of the
current node.

5. The y range spanned by the node.

6. Number of points in the urc-hull, N(u).

For leaf nodes, we simply store the point. Since each
secondary tree node stores a constant amount of infor-
mation, the space taken by each primary tree node is
proportional to the number of points in the interval. So
the overall space taken is O(n log n).

Br(u)

Bl(u)

left child(u)

right child(u)

node u

Bridge

Figure 3: Different parameters stored at each node. The
neighbors of Bl(u) and Br(u) are marked green.

Note that we are not storing the urc-hull, as it is,
in each node. However, given indices, i and j, we can
report the points in the urc-hull from i to j in O(log n+
j − i + 1) time as shown in section 5.

4 Preprocessing

The primary tree is constructed as a standard one di-
mensional range tree based on x coordinates. We pro-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

cess the primary tree from top to bottom to obtain the
secondary trees (contracted trees) at each primary tree
node. The interval at the root node includes all the
points in P , so the template tree, Ty, is stored as it is.
Note that the interval corresponding to a non-root pri-
mary node is a subset of the interval corresponding to
its parent. For each child, we replicate the tree present
in its parent and then contract it with respect to the
points in the interval of the node. A tree can be con-
tracted with respect to a set of points by removing all
leaves not present in the child and then updating the
parents of the removed leaves as required. Each node
in the tree is processed a constant number of times, so
the time taken for this stage is O(n log n).

Once the tree structure is completed, we start stor-
ing the required information from bottom to top start-
ing from the leaves. Except the common bridge, all the
other parameters of the node can be easily found in con-
stant time. The bridges can be computed as follows: At
each node, discard the points of the child hulls which do
not form part of the parent hull. Since each each point
is discarded atmost once, it takes amortized constant
time per point. So the time taken for preprocessing is
O(n log n) and the space usage is O(n log n).

5 Query Algorithm

Given an orthogonal query [xlow, xhigh] × [ylow, yhigh],
we can identify O(log n) canonical nodes correspond-
ing to the y range, [ylow, yhigh] in the template tree Ty.
We will also identify the O(log n) canonical nodes cor-
responding to the x range in the primary tree. We then
find out the nodes corresponding to the Ty nodes in each
of the primary tree nodes. There are three cases here:

1. The node present in Ty exists in the contracted tree
as it is. In this case, we simply use that node.

2. The node was removed because both its children
were removed. This means that the node was
empty, so this node does not contribute any point
to the urc-hull.

3. The node was removed because it was the only
child of its parent. In this case, we check the node
present in its place to get the required information,
if any.

So an orthogonal range query gets split into O(log n)×
O(log n) secondary tree nodes, which are well aligned as
shown in figure 1. These cases can be identified while
doing a normal one dimensional range tree query on the
secondary nodes.

Lemma 1 The upper right convex hull of the orthogo-
nal range can be computed in O(log2 n) time.

Proof. We define the region covered by each of the
O(log n) × O(log n) secondary tree nodes as a block.
Start by identifying the non empty blocks. If a block
is non empty, then no block which is to its left and
bottom can contribute points to the urc-hull. A block
is called a candidate block if it is non-empty and all
blocks to the right and top of its top right corner are
empty. See figure 4. Based on this observation, the
candidate blocks can be identified as follows: start from
the bottommost non-empty block in the rightmost col-
umn. This is a candidate block. If there exists at least
one non empty block above it in the same column, move
to the next (non-empty) block in the upwards direction.
Otherwise, move one block to the left. Continue this till
we reach the top left block. Every block visited in this
process is a candidate block. Since we are moving only
up or left, we will move in the left direction at most
O(log n) times and in the up direction at most O(log n)
times. So the total number of candidate blocks is at
most O(log n).

Figure 4: Example of a query. The candidate blocks
have been darkened.

Now process the candidate blocks in the order they
were visited. The individual urc-hulls of each node can
be merged together to form the complete urc-hull in
a manner similar to Graham’s scan. This method has
been used before, e.g. see [5]. Maintain the urc-hull up
to the current block in a stack, H. Each block, con-
tributes atmost one continuous range to the urc-hull.
Each element of the stack contains a pointer to a can-
didate block, H(u) and the indices of the start and end
points of this range, Hs(u) and He(u). First, push the
right bottom block. Process each subsequent block, v as
follows: Compute the common tangent between the cur-
rent block, v and the urc-hull on the top of the stack,
top(H). If this tangent does not intersect top(H) be-
tween the range top(Hs) and top(He), then the current
top does not contribute to the urc-hull anymore. So
pop out top from the stack and compute the tangent
with the new top of the stack. Continue this till the
top of the stack is not popped out. Now push the cur-
rent block to the top of the stack and update the ranges
appropriately based on the tangent information.

25th Canadian Conference on Computational Geometry, 2013

The time taken is mostly for computing the tangents.
This has to be done exactly once for each time a urc-
hull is pushed or popped. Each tangent computation us-
ing the method of Overmars and van Leeuwen [7] takes
O(log n) time. This method compares a point on each
of the hulls and discards either the portion before it
or the portion after it in the corresponding hull. This
is where we use the neighbors of the bridges stored in
each secondary tree node. This tangent computation is
done O(log n) times. So the overall time complexity is
O(log2 n). �

The above merging algorithm returns a stack of the
secondary tree nodes and the indices of the range that
each of these nodes contribute to the urc-hull. The
line segment connecting the end points of two adjacent
nodes in this stack gives the bridge connecting them.
Using this structure, we can report all the points on the
urc-hull in O(log n + h) time as shown in algorithm 1.

Input: Tree node u, Indices i and j
Output: Points on the urc-hull corresponding to u

from indices i to j, inclusive
if u is a leaf node then

Report the point if i = j = 1
else

if Indexl(u) > i then
Report points in the range of the left
subtree which forms part of the range [i, j]
in the parent hull

end
if i ≤ Indexl(u) ≤ j then

Report Bl(u)
end
if i ≤ Indexl(u) + 1 ≤ j then

Report Br(u)
end
if Indexl(u) + 1 < j then

Report points in the range of the right
subtree which forms part of the range [i, j]
in the parent hull

end

end
Algorithm 1: Algorithm to report the points on the
urc-hull of a node from given indices i to j, inclusive

5.1 Other Problems

We now explain how to solve the extreme point query,
line stabbing query and tangent query problems using
the stack obtained above without constructing the en-
tire convex hull. Recall that the convex hull was divided
into four parts based on the extreme points. For the
problems discussed in this section, the answer could be
in any of these four parts. It is easy to identify the exact

part(s) by comparing the extreme points with the query
parameter.

The basic idea is the following: By comparing an edge
of the hull with a query parameter, we can discard, in
constant time, either the part before the edge or the
part after the edge. We proceed as follows: Compare
each bridge connecting adjacent elements in the stack
with the query parameter. If the required output lies
on one of the bridges, then we report the answer and
stop. Otherwise, this will help in identifying the exact
node which contains the required output. This takes
time proportional to the number of bridges, which is
O(log n). Once the node is identified, by comparing the
bridge at the root of the node with the query parameter,
we can decide whether we should take the root, or go to
the left or right subtree. This takes time proportional
to the height of the tree which is also O(log n). So the
overall time taken is O(log n).

For line stabbing query, there are at most two points
to be reported. We have to query for each of them
separately. Otherwise, it will not be possible to discard
a half at each stage in the above algorithm.

6 Future Work

It might be possible to improve the bounds given in this
paper. A more interesting problem is to make the set of
points dynamic by allowing insertions and/or deletions.
The problem is also open in higher dimensions.

The modified range tree approach can be used to im-
prove various range query problems like reporting the
smallest enclosing disk or the width of the points in a
query rectangle.

References

[1] M. A. Abam, M. de. Berg and B. Speckmann, Ki-
netic kd-Trees and Longest-Side kd-Trees. In SICOMP
39:1219-1232, 2009.

[2] P. Brass, C. Knauer, C. S. Shin, M. Schmid and I.
Vigan. Range-Aggregate Queries for Geometric Extent
Problems. In Proc. 19th Computing: Australasian The-
ory Sympos. CATS 141:3-10, 2013.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Proc. 43rd IEEE Sympos. Found. Comput.
Sci., pages 617-626, 2002.

[4] T. M. Chan. Dynamic planar convex hull operations in
near-logarithmic amortized time. In J. ACM, 48:1-12,
2001.

[5] T. M. Chan. and E. Y. Chen, Multi-Pass Geometric
Algorithms. In Discrete and Comput. Geom.,37(1): 79-
102, 2007.

[6] T. M. Chan. Three Problems about Dynamic Convex
Hulls. In Proc. 27th ACM Sympos. Comput. Geom.
27-36, 2011.

[7] M. H. Overmars and J. van Leeuwen. Maintenance of
Configurations in the Plane. In J. Comput. Syst. Sci.
23:166-204, 1981.

