
International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 179

Distributed Cryptographic Computing on Grid

Zhonghua Jiang12, Dongdai Lin1, Lin Xu12, and Lei Lin12

(Corresponding author: Zhonghua Jiang)

State Key Laboratory Information Security, Institute of Software, Chinese Academy of Sciences1

Beijing 100080, P.R.China (Email: {jzh, ddlin, xulin, rockylin}@is.iscas.ac.cn)

Graduate School of the Chinese Academy of Sciences, Beijing 100039, P.R.China2

(Received Oct. 26, 2005; revised and accepted Dec. 10, 2005)

Abstract

Distributed cryptographic computing system plays an im-
portant role in cryptographic research since cryptographic
computing is extremely computation sensitive. There are
many research results done in this aspect, but no gen-
eral cryptographic computing environment is available for
cryptographic researchers and engineers. Grid technology
can give an efficient computational support for crypto-
graphic applications. Therefor, we put forward a gen-
eral grid-based computing environment called DisCrypto
for distributed cryptographic computing. In this paper,
we simply describe the architecture of DisCrypto at first.
The policy of task division adapted in DisCrypto is then
analyzed. The method to manage subtask is further dis-
cussed in detail. Furthermore, the building and execution
process of an execution plan is revealed. Finally, the de-
tails of DisCrypto implementation under Globus Toolkit
4 are illustrated.

Keywords: Computational Grid, cryptography, distributed
cryptographic computing, task dividing

1 Introduction

A general-purpose cryptographic computing system plays
an important role in cryptographic research and becomes
a hot topic step by step. In 1987, Lenstra [10] devel-
oped a distributed factoring system which made use of
electronic mail for the distribution of the programs and
for inter-processor communication. Several 100 digit in-
tegers were factored within one month over it. In 1999,
Selkirk [13] developed a system to solve ECCp-97 (a 109-
bit elliptic curve challenge). The system connected over
1200 machines from at least 16 countries solved the chal-
lenge within 53 days. These machines communicated
with TCP/IP connection or electronic mail. In 2000, As-
brink [1] developed another factoring system, in which
Quadratic Sieve algorithm [2] is implemented and the par-
allelism is achieved using the Message Passing Interface
(MPI) [9]. Due to the complexity of cryptographic com-

Globus Services

MDS RLS RFT GSI WS GRAM OGSA-DAI

GMRCPR

Replica Service

Divider Service

Dispatcher Service

Manager Service

Calculator Service

Collector Service

D
is

C
ry

pt
o

Core layer

High-level layer

C
D

E
D

S
Se

rv
ic

e

R
A

M
S

Se
rv

ic
e

Figure 1: DisCrypto architecture

puting and insufficient technology, all of these systems
are not general-purpose but special to solve one kind of
cryptographic computations.

Computational grid is an infrastructure that en-
ables the integrated use of remote high-end computers,
databases, scientific instruments, networks and other re-
sources by communities (“virtual organizations”) [5, 8].
Similar to electric power grid, computational grid can
supply end users with general computational power which
is geographically and device independent. Grid has been
widely applied to many fields, such as highenergy physics,
material science, business and engineering applications.
Essentially all major grid projects are currently built on
protocols and services provided by the Globus Toolkit [4].
New-generation grid technologies are evolving toward an
Open Grid Services Architecture (OGSA) [6, 14] and Web
Services Resource Framework (WSRF) [7] in which a grid
provides an extensible set of services that virtual organiza-
tions can aggregate in various ways. The Globus Toolkit
4.0 (GT4) is based on the OGSA and WSRF concepts.
However, to our best knowledge, till today, no relevant
effort has been devoted to applying Grid techniques to
perform efficient cryptographic computing in large dis-
tributed computing sites.

We have initiated a research effort to design and im-

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 180

plement a novel infrastructure called DisCrypto for gen-
erally cryptographic computations on grid. DisCrypto is
a general, open, scalable and high-performance crypto-
graphic computing environment. We organize this paper
as follows. The architecture and its main components is
outlined in Section 2. The policy for task division is dis-
cussed in Section 3. The management of subtask dividing
and collecting is introduced in Section 4. The building
and execution process of an execution plan is revealed in
Section 5. The implementation details under GT4 are in-
troduced in Section 6. We briefly conclude the paper in
Section 7.

2 Architecture

DisCrypto, defined on top of grid toolkits and ser-
vices, aims to conduct cryptographic computing. So
it should be general-purpose, open, scalable and high-
performance. There concerns problems in DisCrypto in-
cluding task-division, result-collection, task-calculation,
execution management, fault-tolerant and resource man-
agement (computational engines, code and data), which
are solved by the collaboration of several basic and special
grid services.

2.1 Grid Services

The grid services of DisCrypto are special to crypto-
graphic computing, which are organized in two layers:
core layer and high-level layer. The former refers to ser-
vices directly implemented on the top of generic grid ser-
vices and takes charge of resource management, the latter
is used to describe, control and execute parallel and dis-
tributed cryptographic computational task, and also of-
fers services to conveniently replicate datasets and codes
among grid nodes, which services are Replica, Divider,
Collector, Manager, Dispatcher and Calculator.

Figure 1 shows layers as implemented on the top of
Globus services as well as the grid data and metadata
repositories.

2.2 Core Layer

The main goals of the Core layer are the management of
all metadata which describe the features of data sources
(large datasets), third-party computing engines (tools),
and cryptographic computing codes. Moreover, this layer
coordinates the application execution by attempting to
fulfill the application requirements and the available grid
resources. This layer comprises two main services.

CDEDS service extends the basic Globus MDS4 ser-
vice. It is responsible for maintaining a description of all
computational code, data and engines used in the Dis-
Crypto. The metadata, managed by the CDEDS, include
the following kinds of objects: computing tasks and corre-
sponding results; computational code used to divide, col-

lect and calculate subtasks; computational engines used
to calculate subtasks.

The metadata are represented by XML documents and
stored in a Metadata Repository (GMR). The CDEDS
service is then used to search and access computational
data, also to find previously registered codes and comput-
ing engines.

RAMS service is used to automatically find the best
mapping between a dynamic execution plan and available
resources. The Cryptographic Plan Repository backups
these dynamic execution plan. The mapping of allocating
resources has to be effectively obtained. After the execu-
tion plan activation, this layer manages and coordinates
the execution of the computation.

2.3 High-level Layer

Divider and Collector services are used to automati-
cally load and use dividing and collecting algorithms for
task-subdividing and result-collecting. They both can
serve multiple dividable subtasks at one time. A cryp-
tographic job can be divided into many subtasks using
task-subdividing algorithms.

Manager service manages (e.g., create, invoke and
destroy) all the Divider and Collector instances.

Calculator service is responsible for atomic subtask’s
calculating. After accepting a calculation request, the
Calculator parses the atomic subtask data, then decides
proper tools or codes. If the site lacks corresponding Plug-
in, the Calculator will invoke the Replica to replicate cor-
responding tools or code from some remote site. Then
Calculator starts to calculate the atomic subtask, further
invoking Dynamic Libraries by Java JNI or start comput-
ing engine by GT4 WS-GRAM service. Lastly, it returns
the calculation result to the source Dispatcher.

Replica service is used to replicate implemented algo-
rithms, engines or large datasets between a remote site
and the local system. This service is based on the core
CDEDS service. On the basis of the requirements and
constraints of the Dispatcher service, the Replica auto-
mates the searching and finding of objects and securely
transferring them by RFT service, which is included in
GT4.

Dispatcher service functions as a subtask dispatcher
and control the interactions among DisCrypto nodes. The
core service RAMS decides proper nodes by their avail-
able resources and the resource demands of subtasks by
execution plan.

3 Task Subdividing and Calculat-

ing

To achieve generality, flexibility and openness, DisCrypto
requires a unified mechanism to divide, express, transfer
subtasks and collect corresponding results of subtasks. A

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 181

submitted job called root task can be divided into sub-
tasks. These subtasks fall into two categories, atomic and
dividable. Atomic task can’t be further subdivided while
a dividable task need be subdivided recursively by corre-
sponding dividing algorithms at potentially different grid
nodes. Through the recursive process of task division, a
task division tree TDT finally comes into being, in which
the root task is root, the dividable tasks are branches,
and the atomic tasks are leaves. In our implementation,
an XML document is used to describe a subtask.

Task-subdividing and result-collecting are two key con-
cerns to perform distributed, especially general, crypto-
graphic computing. It is impossible to design a generic
dividing, collecting or calculating algorithm because of
diversity of cryptographic computing problems.

An atomic subtask requires a task-calculation algo-
rithm; a dividable subtask requires a task-division and
a task-collect algorithm. For many computing tasks,
the codes of their task-calculation, task-dividing or task-
collecting algorithms have been available. To utilize ex-
isting algorithms and to make use of new algorithms, we
extract the metadata of an implemented algorithm and
represent in XML documents, and save to GMR. The
metadata for a task-division algorithm with the imple-
mented algorithm is call a Meta-divider. Similarly, Meta-
collector and Meta-calculator are used for implemented
task-collecting and task-calculating algorithms.

To divide a subtask, Divider instance must find a Meta-
divider which should match the subtask’s problemName
attribute. The attribute decides the task type of subtask
and Meta-divider. Lacking a Meta-divider, Manager ser-
vice will invoke the Replica to search and duplicate one
from some remote node. For a new computing problem,
metadata of its Meta-divider, Meta-collector and Meta-
calculator should be registered to GMR through the CD-
EDS service.

4 Task Management

How to well manage subtasks dynamically created by di-
vider instances is critical in a large scale cryptographic
computing environment. There are two factors that must
be considered. One is to achieve maximum parallel de-
gree for a cryptographic computing job. The other is to
avoid overload of a grid node due to too many subtasks
which are being processed. In order to satisfy these re-
quirements, we need make effort to control the growth of
corresponding TDT.

A divider instance is called an atomic divider (Da) if
all subtasks divided by the divider are atomic. A divider
instance is called a dividable divider (Dd) if all subtasks
come from the divider are dividable. Note that we confine
that all subtasks from Da are parallel while these subtasks
from Dd may be either parallel or sequential. If a divid-
able task can be divided into both parallel and sequential
subtasks, more than one divider algorithm are required

Hc

Da

STd

Dpd

Dsd Dpd

Dsd Dpd Dpd

C1

C4

C8

C3

C6

C2

Key1

Key4

Key8

Key3

Key6

Key2

C7

C5

Key7

Key5

Figure 2: A structure for subtask management

Algorithm getDividableDivider

Input: S is the root of STd

Output: A new subtask whose divider in Td

while(S!=NULL)
if(S.divider.isAtomic()||S.getState()=“FINISHED”

||S.getState()=“WAIT”)
S ← S.InOrderNext()

else
return S.getNewSubtask()

return NULL

Figure 3: Generating a subtask whose divider is a Dd

for the dividable task.

No matter what type of divider instance is used by a
dividable task, we need’t further classify its corresponding
collector instance since we can easily manage all collectors
for a job. During computing, these subtasks on the TDT
are distributed over different grid nodes; all atomic tasks
are maintained by calculator instances; dividable tasks
are managed by manager services.

A hash table is called a Collector Hash Table (Hc)
which stores all working collector instances for a job in a
special grid node. In Hc, the key is a 2-tuple (TaskType,
TaskName) of a dividable subtask, and the correspond-
ing value refers to corresponding collector instance. To
rapidly collect and assemble, all active collector instances
are put into a Hc which is managed by the manager ser-
vice of a grid node.

A tree is called a Dividable Divider Tree (Td) if all
working dividable divider instances {Dd} for a job are
hold in the tree. In general, the Td of a job is distributed
on multiple grid nodes where each node maintains a sub-
tree of Td. A subtree of Td is denoted by STd

.

Now we discuss the working process of Manager ser-
vice. In a grid node, Manager service maintains a 3-tuple
(STd

, Hc, Da) for a cryptographic computing job. Figure
2 shows an example of the structure. Da is the only work-
ing atomic divider instance which creates atomic subtasks
for Calculator Services. Hc is used to rapidly collect re-
sults of its subtasks. Newly created Dd for a dividable
subtask is automatically added on STd

, and a finished Dd

is removed dynamically from STd
. When a new divider

instance is created and added on STd
, the corresponding

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 182

Algorithm getAtomicDivider

Input: S is the root of the subtree
Output: A new subtask whose divider is atomic

while(S!=NULL)
if(S.divider.isAtomic() && S.getState()=“OK”)

return S.getNewSubtask()
else if(S.getState()=“FINISHED” or “WAIT”)

S ← S.InOrderNext()
else

task ← S.getNewSubtask()
while(isDividable(task))

divider ← new Divider(task)
S.insert(divider)
S ← divider
H.put(new Collector(task))
task ← S.getNewSubtask()

return task
return NULL

Figure 4: Generating a subtask whose divider is a Da

Algorithm putSubresult

Input: key=(taskType, taskName, parentHash)
result=taskResult

Output: A state or global result
collector=H.get(Key)
if(collector=NULL) return “FINISHED”
state=collector.put(result)
if(state=“FINISHED”)

result=collector.getResult()
H.remove(key)
divider=S.search(key)
if(divider!=NULL)

for(each skey in S.traverseSubtree(divider))
H.remove(skey)

S.removeSubtree(divider)
if(S=NULL) return result

return “OK”

Figure 5: Assemble a subresult

collector instance is put into Hc at same time. When a
Dd or Da is completed, the Dd will be firstly removed
from STd

, the Dd or Da then will be destroyed. Note that
when a Dd or Da is destroyed, the corresponding collector
instance is till working for subresult collecting. However,
if the result of a dividable subtask is gotten, then the cor-
responding collector instance will removed from the Hc

and destroyed; its corresponding dividable instances and
all of its lower-level divider and collector instances will
also be recursively removed and destroyed from STd

.

In Figure 2, Dpd denotes a parallel Dd while Dsd de-
notes a sequential Dd. In our implementation, a STd

is
converted into a binary tree for convenience of traverse.
To avoid expansion of STd

, we traverse a STd
in inorder

when searching a Dd. Figure 3 shows how to get a subtask
whose divider is a Dd; Figure 4 shows how to get a subtask

NU NB

NA

NS

DisCrypto

Cluster1

N1

Nn1

...

Cluster2

Nn1+1

Nn2

...

Clusterk

Nn-nk+1

Nn

...

Figure 6: A cryptographic computing example

whose divider is a Da; Figure 5 shows how to assemble a
subresult. The method for subtask management shown in
Figure 2 and corresponding algorithms shown in Figures
3, 4 and 5 assure that the parallel degree of subtasks is
maximized and that the load of subtask management is
minimized.

5 Task Building and Execution

Process

We suppose that a grid user (GU) needs to perform cryp-
tographic computing by corresponding implemented al-
gorithms. The task could be performed as described in
Figure 6.

Step 1: the GU starts the search of computational re-
sources for executing the cryptographic computing
task from his/her grid node (NU). The search, per-
formed by means of the CDEDS, locates the com-
putational resources needed to execute the comput-
ing process, respectively by the Cluster1, Cluster2,
. . ., Clusterk Globus Nodes, on which comput-
ing process will be performed in parallel. The
search process compares the meta-data (about Meta-
Dividers, Meta-Collectors, Meta-Calculators, mem-
ory, libraries, etc.) against the features of Clusters
and NS, NA and NB nodes.

Step 2: the GU builds an execution plan for the cryp-
tographic computing task, specifying strategies for
tools, code and code movement, and for algorithm
execution. The execution plan is built by the Dis-
patcher and is stored into the local CPR.

Step 3: the GU starts the computation by submitting
the executing plan to the RAMS. The following steps

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 183

CDEDS

CDEDS tools

Execution
Plan

CDEDS
Results

CDEDS
Results

CDEDS
Results TRC

CPR

Dispatcher

Broker Adapter

Java JNI
BA

Globus
BA

...

RAMS

Engines JVM
JNI

interface

GRAM
RSL

Script

globusrun

Resource
Monitor

... GMRS...

...

...

Figure 7: Task building and execution process

are then executed.

a. From NS, Dividers and Collectors of the job are
staged on NS, NA and NB, and Calculators is
staged on each cluster node. The staging pro-
cess (i.e., code movement and eventual installa-
tion on a target node) is executed by the Replica
service on NS.

b. On NA, Dividers divide the job into subtasks
T1, . . ., Tl. If Ti ∈ Ta, Ti will be moved
into Clusterj to computing in parallel; while
if Ti ∈ Td, Ti will be moved into NS, NA or
NB to conduct further division and collection.

c. NS, NA and NB collaborate on dividing divid-
able subtasks and collecting corresponding re-
sults. Clusteri calculates atomic subtasks in
parallel till the job is finished.

Step 4: the final result of computation is transferred to
NU and visualized. The result is also stored in CPR
by the means of the local CDEDS.

The task building and execution process is shown in
Figure 7. The Task Composer (TC), an internal Dis-
patcher module, assists the user in building the execution
plan. It presents to the user a set of graphic objects rep-
resents of resources (e.g., Meta-dividers, Meta-collectors,
Meta-calculators, computing engines and computational
nodes), which metadata were previously stored into the
Task Resource Cache (TRC). These metadata, contain-
ing information about resources selected to perform the
computation, are extracted from local or remote CPRs
as result of RAMS queries. Therefore, the user can com-
pose these objects using common visual facilities (e.g.,
drag and drop), to form a graphic representation of the
application data flow. The composition is validated its

<EPlan>
 ...
 <Stage label="replica1" type=" replica" >
 <From location="NS" MetaData=" dc_a.xml" desc=" DesDiff DC on NS" />
 <To location="NA" MetaData=" dc_aa.xml" replicakind="optional"/>
 </Stage>
 <Stage label="replica2" type="replica" >
 <From location="NS" MetaData="dc_b.xml" desc="DesExh DC on NS" />
 <To location="NB" MetaData="dc_bb.xml" replicakind="optional" />
 </Stage>
 <Stage label="replica3" type="replica" >
 <From location="NS" MetaData="dc_c.xml" desc="DesDiff Cal on NS" />
 <To location="HC1 HC2 HC3" MetaData="dc_cc.xml" replicakind="optional" />
 </Stage>
 <Stage label="replica4" type="replica" >
 <From location="NS" MetaData=" dc_d.xml" desc="DesExh Cal on NS" />
 <To location="HC1 HC5 HC7" MetaData="dc_dd.xml" replicakind="upgrade" />
 </Stage>
 <Stage label="computation0" type="computation" >
 <Program problem="DiffExhCombiner" type="divide collect" desc="Root Task on NS" />
 <Param InputRef="root.xml" to="NA NB" subtaskPrefix="descom" />
 </Stage>
 <Stage label="computation1" type="computation" >
 <Program problem="DesDiff" type="divide collect" desc="Dividing and Collecting on NA" />
 <Param InputRef="NS:descom_a.xml" to="C1 HC2 HC3" subtaskPrefix="DesDiffrential" />
 </Stage>
 <Stage label="computation2" type="computation">
 <Program problem="DesExh" type="divide collect" desc="Dividing and Collecting on NB" />
 <Param InputRef="NS:descom_b.xml" to="HC1 HC5 HC7" subtaskPrefix="DesExhaust" />
 </Stage>
 <Stage label="computation3" type="computation">
 <Program problem="DesDiff" type="calculate" desc="Calculting on HC1/2/3" />
 <Param InputPrefixRef="NA:DesDiffrential" to="NA" subresultPrefix="DesDiffrentialRes" />
 </Stage>
 <Stage label="computation4" type="computation">
 <Program problem="DesExh" type="calculate" desc="Calculting on HC1/5/7" />
 <Param InputPrefixRef="NB:DesExhaust" to="NB" subresultPrefix="DesexhaustRes" />
 </Stage>
 <Computation Startpoint="computation0">
 <StageLink From="replica1" To="computation1"/>
 <StageLink From="replica2" To="computation2"/>
 <StageLink From="replica3" To="computation3"/>
 <StageLink From="replica4" To="computation4"/>
 <Computation>
 ...
</EPlan>

Figure 8: A fragment of execution plan

logical consistency, and hence its XML representation is
generated, that is the execution plan.

As an example, the execution plan in Figure 8 describes
the cryptographic computation at high level, not contain-
ing physical information about resources (which are iden-
tified by metadata references), nor about status and cur-
rent availability of such resources.

In fact, specific information about the involved re-
sources will be included in the next phase, when the ex-
ecution plan is translated in the particular broker lan-
guage. The label attribute for the cryptographic example
described above. The execution plan gives a list of stages
and stage links, which are specified using respectively the
XML tags Stage and StageLink. The label attribute for
Stage element identifies each basic Stage in the execution
plan, and is used in linking various basic tasks to form the
overall task flow. Each Stage element contains a stage-
specific sub-element, which indicates the parameters of
the particular represented stage. For instance, the stage
identified by the replica1 label contains a Replica element,
indicating that it is an implemented algorithm replica-
tion task. The From and To elements specify source and
destination positions of the transfer. The MetaData at-
tributes of such elements specify the detail location of
metadata about source and destination objects. In this
example, metadata about source of the implemented al-
gorithm transfer in the replica1 stage are provided by

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 184

the dc-a.xml file, whereas metadata about destination
are provided by the dc-aa.xml file. The dc-a.xml doc-
ument provides metadata about the Meta-divider and
Meta-collector stored on NodeS, whereas the dc-aa.xml
document provides metadata about the Meta-divider and
Meta-collector when stored, after data transfer, on NA.
Both dc-a.xml and dc-aa.xml files are stored in the lo-
cal TRC. The StageLink elements represent the relations
among the tasks of execution plan. For instance, the first
StageLink specified in Figure 8 indicates that the stage
flow proceeds from the stage replica1 to the stage compu-
tation1, as specified by its From and To attributes.

The Broker Adapter (BA) maps the generic execution
plan, represented by an XML document, into a specified
Globus RSL script, which can be directly executed by
means of the globusrun program. The mapping process
performed by BA is based on the Resource Monitor (RM)
tool, which provides physical information of resources ref-
erenced in the execution plan. Static information (e.g.,
CPU speed, memory size, etc.) is provided by the RM
directly accessing metadata stored in the CDEDS (a lo-
cal cache in DisCrypto), while dynamic information (e.g.,
current CPU load and network latency) is provided by
means of specified testing tools, for instance based on
standard Unix or TCP/IP utilities.

6 Implementation

As discussed in Section 2, the architecture is composed of
two hierarchic layers: the Core layer and the High-level
layer. To deploy cryptographic computing applications we
have implemented the High-level services (Divider, Col-
lector, Manager, Replica, and Dispatcher Grid services)
which are useful to start cryptographic computing Grid
application. Moreover, we have also implemented the for-
mer layer on top of the GT4 services, which include CD-
EDS, RAMS and some basic tools allowing a user to pub-
lish metadata of the cryptographic computing Grid ob-
jects (Meta-divider, Meta-collector, Meta-calculator and
computing engines).

6.1 Metadata Management

Each grid node declares the availability of DisCrypto ob-
jects (resources, components and services) by publishing
specific entries into the Directory Information Tree (DIT)
maintained by a LDAP server such as Grid Resources In-
formation Services (GRIS) provided by Globus Toolkit.

Metadata are implemented by XML documents, on the
basis of a set of specific information for the discovery and
the use of resources. For instance, metadata about cryp-
tographic computing tools provide information about the
implemented task (e.g., dividing, collecting and calculat-
ing), complexity of the used algorithm, location of exe-
cutables and manuals, syntax for running the program,
format of input data and results, etc.

6.2 CDEDS Service

The discovery of interesting resources over the grid is ac-
complished in two steps: the metadata repositories are
first located, searching LDAP directories for specific en-
tries. Then the relevant XML metadata are downloaded
from the specified GMR and stored in the local GMR
or directly in the local file system. The collected XML
metadata are then analyzed to find more specific infor-
mation. We implemented the basic tools to find, retrieve
and select metadata about grid resources (e.g., computa-
tional data, implemented algorithms and computational
engines), on the basis of different search parameters. The
useful metadata are then stored in the TRC, a local cache
which contains information about resources (nodes, algo-
rithms) selected to perform a computation.

6.3 RAMS Service

This component of the Core layer is responsible to start
and manage the execution of a cryptographic computing
task. Currently, we implemented the Broker Adapter that
maps the execution plan, represented by an XML docu-
ment, into a specific Globus RSL script, which can be
directly executed by means of the globusrun program. In
this way the DisCrypto application can be started as a
Globus application by using its basic allocation services.
The RAMS module will be completed by implementing
dynamic monitoring and management functions for sub-
mitted applications.

6.4 Implemented Algorithms

For test purpose, distributed DES Exhaustive Key Search
algorithm [12] (Ex-DES), Parallel Collision Search algo-
rithm [11] (PCS) for elliptic curve and DES Differential
Cryptanalysis algorithm [12, 3] (Dif-DES) have been im-
plemented and integrated into DisCrypto. We separately
implements three algorithms with size of 56KB, 51KB and
53KB for dividing, collecting and calculating of Ex-DES.
Dif-DES includes two stage, differential analysis and ex-
haust search. So we implement three algorithms for di-
viding and collecting and two algorithms for calculating;
the largest size of them is 58KB; the size of task data is
about 2.3MB. PCS has also three algorithms for divid-
ing, collecting and calculating, of which the largest size is
65KB.

We have carried out several experiments in LAN envi-
ronment, which utilized these implemented cryptographic
algorithms (i.e., Meta-dividers, Meta-collectors and Meta-
calculators). Results show the speedups are nearly linear
as the number of grid nodes increases.

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 185

7 Conclusion

The Grid infrastructure is growing up very quickly and is
going to be more and more complete and complex both
in the number of tools and in the variety of supported
applications. DisCrypto is a kind of grid application
dedicated for cryptographic computing. A general task-
dividing mechanism is given. A management mode for
subtask management maximizes parallel degree and mini-
mizes load of subtask management. An execution plan for
a job will be mapped to the most proper grid resources by
RAMS service. In short, DisCrypto is a grid based cryp-
tographic environment, which is general-purpose, open,
scalable and high-performance.

Acknowledgement

This paper is supported by the National Grand
Fundamental Research 973 Program of China (No.
2004CB318004), the National Natural Science Founda-
tion of China (NSFC90204016), and the National High
Technology Development Program of China under Grant
(863, No. 2003AA144030).

References

[1] O. Asbrink, and J. Brynielsson, Factoring Large In-
tegers using Parallel Quadratic Sieve, Royal Institute
of technology, Sweden, 2000.

[2] D. Atkins, M. Graft, A. K. Lenstra, and P. C. Ley-
land, “The magic words are squeamish ossifrage,” in
Advances in Cryptography – ASIACRYPT’94, LNCS
917, pp. 263-277, Springer-Verlag, 1995.

[3] E. Biham, and A. Shamir, “Differential cryptanalysis
of the full 16-round DES,” Advances in Cryptography
– CRYPRO’92, LNCS 740, pp. 487-496, Springer-
Verlag, 1993.

[4] I. Foster, and C. Kesselman, “Globus: A metacom-
puting infrastructure toolkit,” International Journal
Supercomputer Application, vol. 11, no. 2, pp. 115-
128, 1997.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the grid: enabling scalable virtual organi-
zation,” International Journal of High Performance
Computing Applications, vol. 15, no. 3, pp. 200-222,
2001.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke,
“Grid services for distributed system integration,”
IEEE Computer, vol. 35, no. 6, pp. 37-46, 2002.

[7] I. Foster, J. Frey, S. Graham, et.al., Modeling State-
ful Resources with Web Services Version 1.1. Global
Grid Forum Draft Recommendation, 2004.

[8] I. Foster, and C. Kesselman, The grid 2: Blueprint
for a New Computing Infrastructure, USA: Elsevier
Inc, 2004.

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-
Passing Interface, Scientific and engineering compu-
tation, Cambridge: MIT Press, USA, 1994.

[10] A. Lenstra, and M. Manasse, “Factoring by elec-
tronic mail,” in Advances in Cryptography – EURO-
CRYPT’89, LNCS 434, pp. 355-371, Springer-Verlag,
1990.

[11] P. C. V. Oorschot, and M. J. Wiener, “Parallel colli-
sion search with cryptanalytic applications,” Journal
of Cryptology, vol. 12, pp. 1-28, 1999.

[12] B. Schneier, Applied Cryptography. John Wiley &
Sons, Inc., 2nd edition, 1996.

[13] A. P. L. Selkirk, and A. E. Escott, “Distributed com-
puting attacks on cryptographic systems,” BT Tech-
nology Journal, vol. 17, no. 2, pp. 69-73, 1999.

[14] S. Tuecke, K. Czajkowski, I. Foster, et al., Open Grid
Services Infrastructure (OGSI) Version 1.0, Global
Grid Forum Draft Recommendation, 2003.

Zhonghua Jiang received his M.E.
degree in Computer Science from
Xi’an University of Technology (P.R.
China) in 2003. Currently he is a
Ph.D. candidate at the State Key
Laboratory of Information Security,
Institute of Software of the Chinese
Academy of Sciences. His research in-

terests include cryptography, networks security and grid
computing. E-mail address: jzh@is.iscas.ac.cn.

Dongdai Lin is a full time research
professor and deputy director of State
Key Laboratory of Information Secu-
rity, Institute of Software of the Chi-
nese Academy of Sciences. He received
his B.S. degree in mathematics from
Shandong University in 1984, and the
M.S. degree and Ph. D degree in cod-

ing theory and cryptology at Institute of Systems Science
of the Chinese Academy of Sciences in 1987 and 1990 re-
spectively. His current research interests include cryptol-
ogy, information security, grid computing, mathematics
mechanization and symbolic computations. E-mail ad-
dress: ddlin@is.iscas.ac.cn.

Lin Xu received his B.S. degree in
Computer Science in 2003 from Uni-
versity of Science and Technology of
China(P.R. China). Currently he
is a Ph.D. candidate at the State
Key Laboratory of Information Se-
curity, Institute of Software, Chinese
Academy of Sciences. His research

interests include theoretical cryptography, provable se-
curity and cryptography algorithms. E-mail address:

International Journal of Network Security, Vol.4, No.2, PP.179–186, Mar. 2007 186

xulin@is.iscas.ac.cn.

Lei Lin received his Bachelor degree
in School of Software Engineering in
University of Science and Technology
of China (USTC) in 2004. and cur-
rently (2005) a Master candidate at
the State Key Laboratory of Infor-
mation Security(SKLOIS), Institute of
Software of the Chinese Academy of

Sciences. His interests are Networks Security, Cryptog-
raphy, Distributed Computing, Bible Study and football.
Email address: rockylin@is.iscas.ac.cn.

