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Abstract

This paper studies the security against differential/linear
cryptanalysis and the pseudorandomness of a class of gen-
eralized Feistel scheme with SP round function called
GFSP . We consider the minimum number of active s-
boxes in four, eight and sixteen consecutive rounds of
GFSP , which provide the upper bound of the maxi-
mum differential/linear probabilities of 16-round GFSP
scheme, in order to evaluate the strength against dif-
ferential/linear cryptanalysis. Furthermore, we point
out seven rounds GFSP is not pseudorandom for non-
adaptive adversary, and prove that eight rounds GFSP
is pseudorandom for any adversaries.

Keywords: Branch number, cipher, differential cryptanal-
ysis, linear cryptanalysis, pseudorandomness, S-box.

1 Introduction

The well-known approaches to attack block cipher are dif-
ferential cryptanalysis proposed by Biham and Shamir
[1], and linear cryptanalysis introduced by Matsui [13].
Nyberg [17, 18] first formalized the notion of strength
against differential cryptanalysis. Similarly, Chabaud and
Vaudenay [2] formalized the notion of strength against
linear cryptanalysis. With those notions, we can study
how to make a cipher scheme resistant against both at-
tacks. This can be achieved by usual active s-boxes count-
ing tricks. Nyberg and Knudsen [9, 17] gave the up-
per bounds of differential /linear characteristic probabil-
ities for Feistel scheme by using the minimum numbers
of differential/linear active s-boxes. Kanda [7] showed
the minimum numbers of differential/linear active s-boxes
for Feistel scheme with SP round function. Another ap-
proach to study the security of block ciphers was intro-
duced by Luby and Rackoff [11] in 1988. They have
shown how to formalize security by pseudorandomness,
and how to prove the security of Feistel scheme—provided
that round functions are totally random. They showed
that three round Feistel scheme is pseudorandom and

four round Feistel scheme is super-pseudorandom. Mau-
rer gave a simpler proof for non-adaptive adversaries [14].
Since then, many researchers tried to improve the results
and proved the pseudorandomness of other schemes(see,
[3, 4, 5, 6, 8, 10, 12, 15, 16, 19, 20, 21, 22, 23]).
Among these papers, [23] and [15] have discussed the
pseudorandomness of a generalized Feistel scheme called
“Type-1 transformation” by Zheng-Matsumoto-Imai and
CAST256-like Feistel scheme by Moriai-Vaudenay. They
showed that seven round CAST256-like Feistel scheme is
pseudorandom. In their paper, they just supposed that
round functions are totally random and didn’t consider
the structure of the round function.

In this paper, we study the security of CAST256-like
Feistel scheme with SP round function, which is denoted
as GFSP in this paper while the linear transformation
P in the round function is fixed and s-boxes are ran-
dom functions. It is not known yet whether seven round
GFSP scheme is pseudorandom and what is the number
of rounds that make GFSP scheme pseudorandom. We
solve this problem and get the minimum number of ac-
tive s-boxes in some consecutive rounds of GFSP , i.e.,
in four, eight and sixteen consecutive rounds, which pro-
vide the upper bound of the maximum differential/linear
probabilities of 16-round GFSP scheme.

This paper is organized as follows: In Section 2, we
review the GFSP scheme and definitions. In Section
3, we estimate the upper bounds of differential /linear
characteristic probabilities for GFSP4 scheme. Section
4 presents some seven rounds distinguishers for GFSP
scheme. In Section 5, the pseudorandomness of GFSP
scheme is discussed, and Section 6 concludes the paper.

2 Preliminaries

2.1 GFSP Scheme

This paper we consider type-1 Feistel scheme with n
4 (=

ml)-bit SP round function called GFSP (see Figures 1
and 2). S-function is a non-linear transformation layer
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Figure 1: The i-th round transformation

with m parallel l-bit s-boxes. That is,

Si : ({0, 1}l)m −→ ({0, 1}l)m

xj = (xj,1, . . . , xj,m)

−→ zj = Si(xj) = (si1(xj,1), . . . , sim(xj,m)).

P -function is a linear transformation layer, which can be
defined by a matrix.

P : ({0, 1}l)m −→ ({0, 1}l)m

zj = (zj,1, . . . , zj,m)

−→ yj = P (zj) = (yj,1, . . . , yj,m).

P =









θ11 θ12 · · · θ1m

θ21 θ22 · · · θ2m

. . . . . . . . . . . . . . . . . . . . .
θm1 θm2 · · · θmm









where θij(1 ≤ i, j ≤ m) are elements in finite field GF (2l).

Finally, the ith round function can be described as fol-
lows:

Fi : ({0, 1}l)m −→ ({0, 1}l)m

xj = (xj,1, . . . , xj,m)

−→ yj = PSi(xj) = P (zj) = (yj,1, . . . , yj,m).

Let (x4i+3, x4i+2, x4i+1, x4i) denote the input of the
(i + 1)th round. The output of the (i + 1)th round of
GFSP scheme is defined as:

x4i+4 = Fi(x4i)⊕ x4i+1,

x4i+5 = x4i+2,

x4i+6 = x4i+3,

x4i+7 = x4i+1.

2.2 Definitions

We use the following definitions in this paper.

Definition 1 For any given 4x,4z, Γx, Γz ∈ {0, 1}l, the
differential and linear probabilities of each s-boxes are de-

si1 si2 sim

            P

Figure 2: The i-th round function Fi

fined as:

DP s(4x→4z)

=
|{x ∈ {0, 1}l|s(x)⊕ s(x⊕4x) = 4z}|

2l

LP s(Γz → Γx)

= (2×
|{x ∈ {0, 1}l|x · Γx = s(x) · Γz}|

2l
)2.

The maximum differential and linear probabilities of s-
boxes are defined as:

ps = max
ij

max
4x 6=0,4z

DP sij (4x→4z)

qs = max
ij

max
Γx,Γz 6=0

LP sij (Γz → Γx).

This means that ps, qs are the upper bounds of the maxi-
mum differential and linear probabilities for all s-boxes.

Definition 2 A differential active s-box is defined as an
s-box given a non-zero input difference, while a linear ac-
tive s-box is defined as an s-box given a non-zero output
mask value.

Definition 3 Let xi = (xi1, . . . , xim) ∈ ({0, 1}l)m, then
the Hamming weight of xi is denoted by

Hw(xi) = |{j|xi,j 6= 0}|.

This means that the Hamming weight of xi equals the
number of non-zero l-bit characters from {0, 1}l of xi.

Definition 4 The branch number Pd of linear transfor-
mation P : ({0, 1}l)m −→ ({0, 1}l)m is defined as:

Pd = min
z 6=0

(Hw(z) + Hw(P (z))).

2.3 Pseudorandomness

Let Fn,n denote the set of functions from {0, 1}n

to {0, 1}n, A n-bit r-round GFSP scheme
GFSP (s11,s12,...,srm) can be regarded as a random
function of Fn,n determined by rm random functions
sij ∈ Fl,l, i = 1, . . . , r, j = 1, . . . , m. We define a perfect
random function f∗ of Fn,n as a uniformly drawn
element of Fn,n. In other words, f∗ is associated with
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the uniform probability distribution over Fn,n. In proof
of pseudorandomness of scheme, we want to upper bound
the probability of any algorithm to distinguish whether a
given fixed function ϕ is an instance of a random function
f = GFSP (s11,s12,...,srm) of Fn,n or an instance of the
perfect random function f∗, using less than q queries to
ϕ.

Let A be a computationally unbounded distinguisher
with an oracle O. The oracle chooses randomly a func-
tion ϕ from GFSP (s11,s12,...,srm) or Fn,n. The aim of
the distinguisher A is to distinguish if the oracle O im-
plements GFSP (s11,s12,...,srm) or Fn,n. Let p0 denote
the probability that A outputs 1 when O implements
Fn,n, and p1 denote the probability that A outputs 1
when O implements GFSP (s11,s12,...,srm). That is p0 =
Pr(A outputs 1 | O ← Fn,n) and p1 = Pr(A outputs 1 |
O ← GFSP (s11,s12,...,srm)). Then the advantage of the
distinguisher A is defined as

AdvA(f, f∗) =| p1 − p0 | .

Assume that the distinguisher A is restricted to make
at most q queries to the oracle O, where q is some polyno-
mial in n. We say that A is a pseudorandom distinguisher
if it queries x and the oracle answers y = ϕ(x), where ϕ
is randomly chosen function by O.

Definition 5 A function h : N → R is negligible if for
any constant c > 0 and all sufficiently large n ∈ N ,
h(n) < 1

nc .

Definition 6 Let Bn be an efficiently computable func-
tion ensemble. Bn is called a pseudorandom function en-
semble if AdvA is negligible for any pseudorandom dis-
tinguisher A.

In Definition 6, a function ensemble is efficiently com-
putable if all functions in the ensemble can be computed
efficiently. The following Theorem 1, which was first
proved in [19], and equivalent versions of which can be
found in [22], is a very useful tool for establishing upper
bound on the AdvA.

Theorem 1 Let f be a random function of Fn,n, f∗ be
a perfect random function of Fn,n, q be an integer and X
denote the ({0, 1}n)q set of all x = (x1, . . . , xq) q-tuples
of pairwise distinct elements. If there exists a Y subset of
({0, 1}n)q and two positive real numbers ε1 and ε2 such
that

1) |Y| > 2qn(1 − ε1),

2) ∀x ∈ X , ∀y ∈ Y, P r[x
f
−→ y] ≥ 2−qn(1− ε2),

then for any distinguisher A using q queries

AdvA(f, f∗) ≤ ε1 + ε2.

3 Estimating the Security Against

Differential/Linear Cryptanaly-
sis

For simplification, let m = 4 in this section, denote as
GFSP4. We suppose all s-boxes {s11, s12, s13, s14,
s21, . . . } are permutations, so the round functions are
also permutations. Let (x4i+3, x4i+2, x4i+1, x4i) and
(4x4i+3,4x4i+2,4x4i+1,4x4i) denote the input and in-
put difference of the (i + 1)th round. Here we don’t con-
sider the difference value, let “1” denote the non-zero dif-
ference. Hence, non-zero input difference only have fifteen
denotations: 1 = (0001), . . . , 15 = (1111).

3.1 Four Round GFSP4

If input difference is “1”, we have the following 4-round
differential characteristics.

1 = (0001)→ (1001)→ (1101)→

{

(1111) = 15
(1110) = 14.

Because the round function is permutation, the output
difference is non-zero if the input difference is non-zero.
Hence, the first 3-round differential characteristic is clear.
For the fourth round, F (4x12) is likely to equal 4x13

when 4x12 and 4x13 are non-zero. Hence, the output
difference of the fourth round have two cases. The input
difference of four round functions are all non-zero, which
are 4x0,4x4,4x8 and 4x12. We denote the above 4-
round differential characteristic as follows:

1







4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

Similarly, we have

2
4(3)
−−−→ 15 4x44x84x12 4

4(2)
−−−→ 13 4x84x12

3



















4(1)
−−−→ 1 4x0

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

5



















4(2)
−−−→ 3 4x04x4

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

6







4(1)
−−−→ 2 4x4

4(3)
−−−→ 15 4x44x84x12

8
4(1)
−−−→ 9 4x12

7















































4(2)
−−−→ 3 4x04x4

4(3)
−−−→ 12 4x04x84x12

4(3)
−−−→ 13 4x04x84x12

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12
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9



















4(3)
−−−→ 7 4x04x44x8

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

10







4(2)
−−−→ 6 4x44x8

4(3)
−−−→ 15 4x44x84x12

12







4(1)
−−−→ 4 4x8

4(2)
−−−→ 13 4x84x12

11















































4(3)
−−−→ 7 4x04x44x8

4(2)
−−−→ 8 4x04x12

4(2)
−−−→ 9 4x04x12

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

13



















4(2)
−−−→ 5 4x04x8

4(3)
−−−→ 12 4x04x84x12

4(3)
−−−→ 13 4x04x84x12

14



















4(2)
−−−→ 6 4x44x8

4(2)
−−−→ 11 4x44x12

4(3)
−−−→ 15 4x44x84x12

15























































































4(2)
−−−→ 5 4x04x8

4(3)
−−−→ 7 4x04x44x8

4(3)
−−−→ 10 4x04x44x12

4(3)
−−−→ 11 4x04x44x12

4(3)
−−−→ 12 4x04x84x12

4(3)
−−−→ 13 4x04x84x12

4(4)
−−−→ 14 4x04x44x84x12

4(4)
−−−→ 15 4x04x44x84x12

3.2 Eight Round GFSP4

When the input difference is “1”, the 8-round differential
characteristics are the following:

1































































































































4(4)
−−−→ 14



























4(2)
−−−→ 6, 4x04x44x84x124x204x24

4(2)
−−−→ 11, 4x04x44x84x124x204x28

4(3)
−−−→ 15,

4x04x44x84x124x204x244x28

4(4)
−−−→ 15















































































4(2)
−−−→ 5, 4x04x44x84x124x164x24

4(3)
−−−→ 7,

4x04x44x84x124x164x204x24

4(3)
−−−→ 10(11),

4x04x44x84x124x164x204x24

4(3)
−−−→ 12(13),

4x04x44x84x124x164x244x28

4(4)
−−−→ 14(15),

4x04x44x84x124x164x204x244x28

We show the minimum number of differential active
s-boxes for 8-round GFSP4 is equal or lager than 2Pd+1,
which is denoted as N1(S) ≥ 2Pd + 1.

We first exemplify 1
4(4)
−−−→ 14

4(2)
−−−→ 6.

When 4y = 4x ⊕ 4z, we have Hw(4y) ≤
Hw(4x) + Hw(4z). Let 4yi = F (x) ⊕ F (x ⊕ 4xi).
From the structure of 8-round GFSP4, we have

4y0 = 4x1 ⊕4x4, 4y4 = 4x2 ⊕4x8,
4y8 = 4x3 ⊕4x12, 4y12 = 4x0 ⊕4x16,
4y16 = 4x4 ⊕4x20, 4y20 = 4x8 ⊕4x24,
4y24 = 4x12 ⊕4x28.

From the definition of branch number of Pd, we have

Hw(4yi) + Hw(4xi) ≥ Pd.

Therefore, we have

Hw(4x0) + Hw(4x1) + Hw(4x4) ≥ Pd,

Hw(4x2) + Hw(4x4) + Hw(4x8) ≥ Pd,

Hw(4x3) + Hw(4x8) + Hw(4x12) ≥ Pd,

Hw(4x0) + Hw(4x12) + Hw(4x16) ≥ Pd,

Hw(4x4) + Hw(4x16) + Hw(4x20) ≥ Pd,

Hw(4x8) + Hw(4x20) + Hw(4x24) ≥ Pd,

Hw(4x12) + Hw(4x24) + Hw(4x28) ≥ Pd.

For 1
4(4)
−−−→ 14

4(2)
−−−→ 6, Hw(4x1) = 0,

N1(S) = Hw(4x0) + Hw(4x4) + Hw(4x8)

+ Hw(4x12) + Hw(4x20) + Hw(4x24)

= [Hw(4x0) + Hw(4x1) + Hw(4x4)]

+ [Hw(4x8) + Hw(4x20) + Hw(4x24)]

+ Hw(4x12)

≥ 2Pd + 1

Similarly, we can get N2(S) ≥ 2Pd + 1, N3(S) ≥ 2Pd + 1,
N4(S) ≥ 2Pd + 1, and N8(S) ≥ 2Pd + 1. The other cases
are as follows:

5

{

N5(S) ≥ Pd + 1, 5
4(2)
−−−→ 3

4(1)
−−−→ 1, 4x44x84x16

N5(S) ≥ 2Pd + 1, else

6











N6(S) ≥ Pd + 2, 6
4(1)
−−−→ 2

4(3)
−−−→ 15,

4x44x204x244x28

N6(S) ≥ 2Pd + 1, else

7



















































N7(S) ≥ Pd + 1, 7
4(2)
−−−→ 3

4(1)
−−−→ 1,

4x04x44x16

N7(S) ≥ Pd + 2, 7
4(3)
−−−→ 12

4(1)
−−−→ 4,

4x04x84x124x24

N7(S) ≥ Pd + 3, 7
4(3)
−−−→ 12

4(2)
−−−→ 13,

4x04x84x124x244x28

N6(S) ≥ 2Pd + 1, else
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9











N9(S) ≥ Pd + 3, 9
4(3)
−−−→ 7

4(2)
−−−→ 3,

4x04x44x84x164x20

N6(S) ≥ 2Pd + 1, else

10































N10(S) ≥ Pd + 3, 10
4(2)
−−−→ 6

4(3)
−−−→ 15,

4x44x84x204x244x28

N10(S) ≥ Pd + 1, 10
4(2)
−−−→ 6

4(1)
−−−→ 2,

4x44x84x20

N6(S) ≥ 2Pd + 1, else

11































N11(S) ≥ Pd + 3, 11
4(3)
−−−→ 7

4(2)
−−−→ 3,

4x04x44x84x164x20

N11(S) ≥ Pd + 1, 11
4(2)
−−−→ 8

4(1)
−−−→ 9,

4x04x124x28

N6(S) ≥ 2Pd + 1, else

12











N12(S) ≥ Pd + 2, 12
4(1)
−−−→ 4

4(3)
−−−→ 15,

4x84x204x244x28

N6(S) ≥ 2Pd + 1, else

13



















































N13(S) ≥ Pd + 2, 13
4(2)
−−−→ 5

4(2)
−−−→ 3,

4x04x84x164x20

N13(S) ≥ Pd + 2, 13
4(3)
−−−→ 12

4(1)
−−−→ 4,

4x04x84x124x24

N13(S) ≥ Pd + 3, 13
4(3)
−−−→ 12

4(2)
−−−→ 13,

4x04x84x124x244x28

N13(S) ≥ 2Pd + 1, else

14



















































N13(S) ≥ Pd + 3, 14
4(2)
−−−→ 6

4(3)
−−−→ 15,

4x44x84x204x244x28

N14(S) ≥ Pd + 1, 14
4(2)
−−−→ 6

4(1)
−−−→ 2,

4x44x84x20

N14(S) ≥ Pd + 2, 14
4(2)
−−−→ 11

4(2)
−−−→ 8(9),

4x44x124x164x28

N13(S) ≥ 2Pd + 1, else

15



























































































N15(S) ≥ Pd + 2, 15
4(2)
−−−→ 5

4(2)
−−−→ 3,

4x04x84x164x20

N15(S) ≥ Pd + 2, 15
4(3)
−−−→ 7

4(2)
−−−→ 3,

4x04x44x84x164x20

N15(S) ≥ Pd + 3, 15
4(3)
−−−→ 11

4(2)
−−−→ 8(9),

4x04x44x124x164x28

N15(S) ≥ Pd + 2, 15
4(3)
−−−→ 12

4(1)
−−−→ 4,

4x04x84x124x24

N15(S) ≥ Pd + 3, 15
4(3)
−−−→ 12

4(2)
−−−→ 13,

4x04x84x124x244x28

N15(S) ≥ 2Pd + 1, else

From the above discussion, we get the following
Lemma.

Lemma 1 If round functions are permutations, the min-
imum number of differential active s-boxes for 8-round
GFPN4 scheme is equal or larger than Pd + 1.

3.3 Sixteen Round GFSP4

Theorem 2 If round functions are permutations, the
minimum number of differential active s-boxes for 16-
round GFPN4 scheme is equal or larger than 3Pd + 1.

Proof. We first list the 8-round differentials which
satisfy Ni(S) < 2Pd + 1.

5
4(2)
−−−→ 3

4(1)
−−−→ 1, 6

4(1)
−−−→ 2

4(3)
−−−→ 15, 7

4(2)
−−−→ 3

4(1)
−−−→ 1,

7
4(3)
−−−→ 12

4(1)
−−−→ 4, 7

4(3)
−−−→ 12

4(2)
−−−→ 13, 9

4(3)
−−−→ 7

4(2)
−−−→ 3,

10
4(2)
−−−→ 6

4(1)
−−−→ 2, 10

4(2)
−−−→ 6

4(3)
−−−→ 15, 11

4(3)
−−−→ 7

4(2)
−−−→ 3,

11
4(2)
−−−→ 8

4(1)
−−−→ 9, 12

4(1)
−−−→ 4

4(3)
−−−→ 15,

13
4(2)
−−−→ 5

4(2)
−−−→ 3, 13

4(3)
−−−→ 12

4(1)
−−−→ 4,

13
4(3)
−−−→ 12

4(2)
−−−→ 13, 14

4(2)
−−−→ 6

4(3)
−−−→ 15,

14
4(2)
−−−→ 6

4(1)
−−−→ 2, 14

4(2)
−−−→ 11

4(2)
−−−→ 8,

14
4(2)
−−−→ 11

4(2)
−−−→ 9, 15

4(2)
−−−→ 5

4(2)
−−−→ 3, 15

4(3)
−−−→ 7

4(2)
−−−→ 3,

15
4(3)
−−−→ 11

4(2)
−−−→ 8, 15

4(3)
−−−→ 11

4(2)
−−−→ 9,

15
4(3)
−−−→ 12

4(2)
−−−→ 13, 15

4(3)
−−−→ 12

4(1)
−−−→ 4.

Since N1(S) ≥ 2Pd + 1, N2(S) ≥ 2Pd + 1, N3(S) ≥
2Pd + 1, N4(S) ≥ 2Pd + 1, and N8(S) ≥ 2Pd + 1, the
16-round differential of GFSP4, whose number of active
s-boxes is less than 3Pd +1, must include in the following
differentials.

11
4(2)
−−−→ 8

4(1)
−−−→ 9

4(3)
−−−→ 7

4(2)
−−−→ 3,

15
4(3)
−−−→ 11

4(2)
−−−→ 9

4(3)
−−−→ 7

4(2)
−−−→ 3,

14
4(2)
−−−→ 11

4(2)
−−−→ 9

4(3)
−−−→ 7

4(2)
−−−→ 3,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(2)
−−−→ 5

4(2)
−−−→ 3,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(3)
−−−→ 7

4(2)
−−−→ 3,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 8,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 9,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(3)
−−−→ 12

4(2)
−−−→ 13,

6
4(1)
−−−→ 2

4(3)
−−−→ 15

4(3)
−−−→ 11

4(1)
−−−→ 4,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(2)
−−−→ 5

4(2)
−−−→ 3,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 7

4(2)
−−−→ 3,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 8,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 9,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 12

4(2)
−−−→ 13,

10
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 12

4(1)
−−−→ 4,

12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(2)
−−−→ 5

4(2)
−−−→ 3,

12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(3)
−−−→ 7

4(2)
−−−→ 3,

12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 8,

12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 9,

12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(3)
−−−→ 12

4(2)
−−−→ 13,
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12
4(1)
−−−→ 4

4(3)
−−−→ 15

4(3)
−−−→ 12

4(1)
−−−→ 4,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(2)
−−−→ 5

4(2)
−−−→ 3,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 7

4(2)
−−−→ 3,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 8,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 11

4(2)
−−−→ 9,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 12

4(2)
−−−→ 13,

14
4(2)
−−−→ 6

4(3)
−−−→ 15

4(3)
−−−→ 11

4(1)
−−−→ 4,

7
4(3)
−−−→ 12

4(2)
−−−→ 13

4(2)
−−−→ 5

4(2)
−−−→ 3,

7
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(1)
−−−→ 4,

7
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(2)
−−−→ 13,

13
4(3)
−−−→ 12

4(2)
−−−→ 13

4(2)
−−−→ 5

4(2)
−−−→ 3,

13
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(1)
−−−→ 4,

13
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(2)
−−−→ 13,

15
4(3)
−−−→ 12

4(2)
−−−→ 13

4(2)
−−−→ 5

4(2)
−−−→ 3,

15
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(1)
−−−→ 4,

15
4(3)
−−−→ 12

4(2)
−−−→ 13

4(3)
−−−→ 12

4(2)
−−−→ 13.

From the structure of 16-round GFSP4, we have

4y0 = 4x1 ⊕4x4, 4y4 = 4x2 ⊕4x8,
4y8 = 4x3 ⊕4x12, 4y12 = 4x0 ⊕4x16,
4y16 = 4x4 ⊕4x20, 4y20 = 4x8 ⊕4x24,
4y24 = 4x12 ⊕4x28, 4y28 = 4x16 ⊕4x32,
4y32 = 4x20 ⊕4x36, 4y36 = 4x24 ⊕4x40,
4y40 = 4x28 ⊕4x44, 4y44 = 4x32 ⊕4x48,
4y48 = 4x36 ⊕4x52, 4y52 = 4x40 ⊕4x56,
4y56 = 4x44 ⊕4x60, 4y60 = 4x48 ⊕4x64.

From the definition of branch number of Pd, If4xi 6= 0,
then

Hw(4yi) + Hw(4xi) ≥ Pd.

Therefore, we have

If 4x0 6= 0,

then Hw(4x0) + Hw(4x1) + Hw(4x4) ≥ Pd.

If 4x4 6= 0,

then Hw(4x2) + Hw(4x4) + Hw(4x8) ≥ Pd.

If 4x8 6= 0,

then Hw(4x3) + Hw(4x8) + Hw(4x12) ≥ Pd.

If 4x12 6= 0,

then Hw(4x0) + Hw(4x12) + Hw(4x16) ≥ Pd.

If 4x16 6= 0,

then Hw(4x4) + Hw(4x16) + Hw(4x20) ≥ Pd.

If 4x20 6= 0,

then Hw(4x8) + Hw(4x20) + Hw(4x24) ≥ Pd.

If 4x24 6= 0,

then Hw(4x12) + Hw(4x24) + Hw(4x28) ≥ Pd.

If 4x28 6= 0,

then Hw(4x16) + Hw(4x28) + Hw(4x32) ≥ Pd.

If 4x32 6= 0,

then Hw(4x20) + Hw(4x32) + Hw(4x36) ≥ Pd.

If 4x36 6= 0,

then Hw(4x24) + Hw(4x36) + Hw(4x40) ≥ Pd.

If 4x40 6= 0,

then Hw(4x28) + Hw(4x40) + Hw(4x44) ≥ Pd.

If 4x44 6= 0,

then Hw(4x32) + Hw(4x44) + Hw(4x48) ≥ Pd.

If 4x48 6= 0,

then Hw(4x36) + Hw(4x48) + Hw(4x52) ≥ Pd.

If 4x52 6= 0,

then Hw(4x40) + Hw(4x52) + Hw(4x56) ≥ Pd.

If 4x56 6= 0,

then Hw(4x44) + Hw(4x56) + Hw(4x60) ≥ Pd.

If 4x60 6= 0,

then Hw(4x48) + Hw(4x60) + Hw(4x64) ≥ Pd.

We exemplify 11
4(2)
−−−→ 8

4(1)
−−−→ 9

4(3)
−−−→ 7

4(2)
−−−→

3, whose non-zero inputs for round functions are
4x04x124x284x324x364x404x484x52, and 4x4 =
4x8 = 4x16 = 4x20 = 4x24 = 4x44 = 4x56 = 4x60 =
0. Hence, the number of active boxes is

Hw(4x0) + Hw(4x12) + Hw(4x28) + Hw(4x32)

+Hw(4x36) + Hw(4x40) + Hw(4x48) + Hw(4x52)

= [Hw(4x0) + Hw(4x12)] + Hw(4x28)

+[Hw(4x32) + Hw(4x36)] +

[Hw(4x40) + Hw(4x52)] + Hw(4x48)

≥ Pd + Pd + Pd + 2 = 3Pd + 2.

�

We can prove the other differentials similarly. There
is a kind of “duality” relation between differential crypt-
analysis and linear cryptanalysis. Hence, from Theorem
2 we have the following theorem.

Theorem 3 Let pS and qS be the maxi-
mum differential/linear probabilities of all s-
boxes{s11, s12, s13, s14, s21, . . . , s16,4}. If the round
functions are permutations, then the maximum dif-
ferential/linear characteristic probabilities of 16-round
GFSP4 scheme are bounded by (ps)

3Pd+1and (qs)
3Pd+1,

respectively.

4 7-Round Distinguishers

We discuss the pseudorandomness of n-bit r-round
GFSP scheme. GFSP (f11,f12,...,frm) hereafter, where
fij(i = 1, . . . , r, j = 1, . . . , m) are rm independent
random functions from {0, 1}l to {0, 1}l. We first present
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some 7-round distinguishers.

Choose

x3 = (x, a3,2, · · · , a3,m), x2 = (a2,1, a2,2, · · · , a2,m),
x1 = (a1,1, a1,2, · · · , a1,m), x0 = (a0,1, a0,2, · · · , a0,m).

where x take values in {0, 1}l, ai,j are constants in {0, 1}l.
Thus the input of the 4th round can be written as follows:

x15 = (a15,1, a15,2, · · · , a15,m),
x14 = (a14,1, a14,2, · · · , a14,m),
x13 = (a13,1, a13,2, · · · , a13,m),
x12 = (x ⊕ a12,1, a12,2, · · · , a12,m).

where ai,j(12 ≤ i ≤ 15, 1 ≤ j ≤ m) are entirely de-
termined by ai,j(0 ≤ i ≤ 3, 1 ≤ j ≤ m) and functions
fi,j(1 ≤ i ≤ 3, 1 ≤ j ≤ m), so ai,j(12 ≤ i ≤ 15, 1 ≤ j ≤
m) are constants when fi,j(1 ≤ i ≤ 3, 1 ≤ j ≤ m) are
fixed.

In the 4th round a transformation on x12 = (x ⊕
a12,1, a12,2, · · · , a12,m) using F4 is as follows: x12 = (x ⊕

a12,1, a12,2, · · · , a12,m)
F4−−→ (θ11y⊕b1, θ11y⊕b2, . . . , θ11y⊕

bm), where y = f41(x⊕ a12,1), bj(1 ≤ j ≤ m) are entirely
determined by a12,j(2 ≤ j ≤ m) and f4j(2 ≤ j ≤ m),
thus bj(1 ≤ j ≤ m) are constants when f4j(2 ≤ j ≤ m)
are fixed. Therefore, the input of the 5th round is

x19 = x12,
x18 = x15,
x17 = x14,
x16 = x13 ⊕ F4(x12)

= (θ11y ⊕ b1 ⊕ a13,1, . . . , θ11y ⊕ bm ⊕ a13,m).

The one block of output for 7th round is as follows:

x29 = x16 = (θ11y ⊕ b1 ⊕ a13,1, . . . , θ11y ⊕ bm ⊕ a13,m)

So we get x29,1 ⊕ x29,2 = b1 ⊕ a13,1 ⊕ b2 ⊕ a13,m is a
constant. Similarly we have the following lemma:

Lemma 2 Let P = (x3, x2, x1, x0) and P ∗ =
(x∗

3, x
∗
2, x

∗
1, x

∗
0) be two plaintexts of 7-round GFSP , C =

(x31, x30, x29, x28) and C∗ = (x∗
31, x

∗
30, x

∗
29, x

∗
28) be corre-

sponding ciphertexts, x0,i denote the i − th sub-block of
x0. If x0 = x∗

0, x1 = x∗
1, x2 = x∗

2, x3,1 6= x∗
3,1, x3,j =

x∗
3,j(2 ≤ j ≤ m), then for any subset I ⊆ {1, 2, . . . , m}, if
|I| is even, then

⊕

j∈I

x29,j =
⊕

j∈I

x∗
29,j

5 Pseudorandomness of GFSP

5.1 7-Round GFSP Is Not A Pseudoran-
dom Function

Theorem 4 Let f11, . . . , f1m, f21, . . . , f7m be 7m inde-
pendent random functions from {0, 1}l to {0, 1}l and
f∗ be the perfect random function on {0, 1}n and f =

GFSP (f11,f12,...,f7m). There exists a non-adaptive distin-
guisher A with q queries such that:

AdvA ≥ 1− 2−
n(m−1)

8 .

Proof. We consider a distinguisher A as follows.

1) A randomly chooses two plaintexts P =
(x3, x2, x1, x0) and P ∗ = (x∗

3, x
∗
2, x

∗
1, x

∗
0) such

that x0 = x∗
0, x1 = x∗

1, x2 = x∗
2, x3,1 6= x∗

3,1,
x3,j = x∗

3,j(2 ≤ j ≤ m).

2) A sends them to the oracle and receives the
ciphertexts C = (x31, x30, x29, x28) and C∗ =
(x∗

31, x
∗
30, x

∗
29, x

∗
28) from the oracle.

3) Finally, A outputs 1 if and only if for any 1 ≤ j1 <
j2 ≤ m,

x29,j1 ⊕ x29,j2 = x∗
29,j1

⊕ x∗
29,j2

Suppose that the oracle implements f∗, then it is

clear that p0 = 2−
n(m−1)

8 . Next suppose that the
oracle implements f = GFSP (f∗

11,f∗

12,...,f∗

7m). Using
Lemma 2, we get p1 = 1. Therefore, we obtained
that

AdvA(f, f∗) ≥ 1− 2−
n(m−1)

8

which is non-negligible. Hence, 7-round GFSP is not
a pseudorandom function.

�

5.2 8-Round GFSP Is A Pseudorandom
Function

Theorem 5 Let f∗
11, . . . , f

∗
1m, f∗

21, . . . , f
∗
8m be 8m inde-

pendent random functions from {0, 1}l to {0, 1}l and
f∗ be the perfect random function on {0, 1}n and f =
GFSP (f∗

11,f∗

12,...,f∗

8m). If the branch number of linear
transformation P : ({0, 1}l)m → ({0, 1}l)m is m+1, then
for any adaptive distinguisher A with q queries we have

AdvA(f, f∗) ≤ 13q22−
n
4 .

Proof. Let us first introduce some notation. We consider
a X = (X1, X2, . . . , Xq) = (xi

3, x
i
2, x

i
1, x

i
0)i∈[1,...,q] q-tuple

of n-bit f input words. We denote the corresponding q-
tuple of f output words by Z = (zi

35, x
i
34, x

i
33, x

i
32)i∈[1,...,q].

We denote the (xi
k)i∈[1,...,q] and (yi

k)i∈[1,...,q] q-

tuples of n
4 -bit words by x

[1∼q]
k and y

[1∼q]
k . Let

(x4i+3, x4i+2, x4i+1, x4i) be the input of (i + 1)th round
and the output of ith round, and xj = (xj,1, . . . , xj,m).
Let I 6=n denotes the subset of ({0, 1}n)q consisting of all
the q-tuples of pairwise distinct {0, 1}n values.

We now define X = I 6=n , Y = (Y 1, . . . , Y q) =

{(yi
3, y

i
2, y

i
1, y

i
0)i∈[1,...,q] | (y

[1∼q]
3 ∈ I 6=n

4
) ∧ (y

[1∼q]
2 ∈ I 6=n

4
) ∧

(y
[1∼q]
1 ∈ I 6=n

4
) ∧ (y

[1∼q]
0 ∈ I 6=n

4
)}. We want to establish a

lower bound on the size of Y and the Pr[X → Y ] for
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any X q-tuple in X and Y q-tuple in Y and show that
there exists ε1 and ε2 real numbers satisfying conditions
of Theorem 1.

Let us first establish a lower bound on |Y|. We have:

|Y| ≥ 2qn(1− Pr[(y
[1∼q]
3 /∈ I 6=n

4
) ∨ (y

[1∼q]
2 /∈ I 6=n

4
)

∨(y
[1∼q]
1 /∈ I 6=n

4
) ∨ (y

[1∼q]
0 /∈ I 6=n

4
)])

≥ 2qn[1−
∑

1≤i<j≤q

Pr(yi
3 = yj

3)

− · · · −
∑

1≤i<j≤q

Pr(yi
0 = yj

0)]

≥ 2qn[1− 2q(q − 1)2−
n
4 ]

So ε1 = 2q(q − 1)2−
n
4 .

Now, given any X q-tuple in X and any Y q-tuple in
Y, let us establish a lower bound on Pr[X → Y ].

Pr[X → Y ] = Pr[Y i = (yi
3, y

i
2, y

i
1, y

i
0) =

(xi
35, x

i
34, x

i
33, x

i
32), i = 1, . . . , q]

Y i = (xi
35, x

i
34, x

i
33, x

i
32) if and only if

yi
0 = xi

32 = xi
29 ⊕ F8(x

i
28),

yi
1 = xi

20 = xi
17 ⊕ F5(x

i
16),

yi
2 = xi

24 = xi
21 ⊕ F6(x

i
20),

yi
3 = xi

28 = xi
25 ⊕ F7(x

i
24).

Let Ai be the event [Y i = (xi
35, x

i
34, x

i
33, x

i
32)], A = A1 ∧

A2 ∧ · · · ∧ Aq. Let B16, B20, B24 and B28 be the event

[x
[1∼q]
16 ∈ I 6=n

4
], [x

[1∼q]
20 ∈ I 6=n

4
], [x

[1∼q]
24 ∈ I 6=n

4
] and [x

[1∼q]
28 ∈

I 6=n
4
], respectively. Let B = B16 ∧B20 ∧B24 ∧B28.

P r[X → Y ] = Pr[Y i = (yi
3, y

i
2, y

i
1, y

i
0) =

(xi
35, x

i
34, x

i
33, x

i
32), i = 1, . . . , q]

= Pr[A] ≥ Pr[A|B]Pr[B]
Because f51, . . . , f8m are independent random func-

tions, we have Pr[A|B] = (2−n)q.

P r[B] = 1− Pr[B16 ∨B20 ∨B24 ∨B28]

≥ 1− [Pr(B16) + Pr(B20) + Pr(B24) + Pr(B28)]

≥ 1− [
∑

i6=j

Pr(xi
16 = xj

16) +
∑

i6=j

Pr(xi
20 = xj

20)

+
∑

i6=j

Pr(xi
24 = xj

24) +
∑

i6=j

Pr(xi
28 = xj

28)]

Next, we estimate Pr(xi
16 = xj

16), P r(xi
20 =

xj
20), P r(xi

24 = xj
24) and Pr(xi

28 = xj
28).

Pr(xi
16 = xj

16)

= Pr(xi
16 = xj

16|x
i
12 6= xj

12)Pr(xi
12 6= xj

12)

+ Pr(xi
16 = xj

16|x
i
12 = xj

12)Pr(xi
12 = xj

12)

≤ Pr(xi
16 = xj

16|x
i
12 6= xj

12) + Pr(xi
12 = xj

12)

Let us now estimate Pr(xi
12 = xj

12).

Case 1: If (xi
2, x

i
1, x

i
0) = (xj

2, x
j
1, x

j
0), then xi

3 6= xj
3, so

that Pr(xi
12 = xj

12) = 0.

Case 2: If (xi
2, x

i
1, x

i
0) 6= (xj

2, x
j
1, x

j
0)

Pr(xi
12 = xj

12)

= Pr(xi
12 = xj

12|x
i
8 6= xj

8)Pr(xi
8 6= xj

8)

+ Pr(xi
12 = xj

12|x
i
8 = xj

8)Pr(xi
8 = xj

8)

≤ Pr(xi
12 = xj

12|x
i
8 6= xj

8) + Pr(xi
8 = xj

8)

From xi
12 = xi

9 ⊕ F3(x
i
8), the SP network of round

function and f31, f32, . . . , f3m are random functions, we
have

Pr(xi
12 = xj

12|x
i
8 6= xj

8) ≤ (2−l)m = 2−
n
4

Further, estimate Pr(xi
8 = xj

8).

Case 2.1: If (xi
1, x

i
0) = (xj

1, x
j
0), then xi

2 6= xj
2, so that

Pr(xi
8 = xj

8) = 0.

Case 2.2: If (xi
1, x

i
0) 6= (xj

1, x
j
0), then Pr(xi

4 = xj
4) =

{

0 xi
0 = xj

0

2−
n
4 xi

0 6= xj
0

Pr(xi
8 = xj

8)

= Pr(xi
8 = xj

8|x
i
4 6= xj

4)Pr(xi
4 6= xj

4)

+ Pr(xi
8 = xj

8|x
i
4 = xj

4)Pr(xi
4 = xj

4)

≤ Pr(xi
8 = xj

8|x
i
4 6= xj

4) + Pr(xi
4 = xj

4).

From xi
8 = xi

5⊕F2(x
i
4), the SP network of round func-

tion and f21, f22, . . . , f2m are random functions, we have

Pr(xi
8 = xj

8|x
i
4 6= xj

4) ≤ (2l)m = 2−
n
4

In all cases, Pr(xi
8 = xj

8) ≤ 2× 2−
n
4 , Hence we obtain

Pr(xi
12 = xj

12) ≤ 3× 2−
n
4 .

Thus

Pr(xi
16 = xj

16)

≤ Pr(xi
16 = xj

16|x
i
12 6= xj

12) + Pr(xi
12 = xj

12)

≤ 2−
n
4 + 3× 2−

n
4 = 4× 2−

n
4 .

Similarly, we have

Pr(xi
20 = xj

20) ≤ 2−
n
4 + 4× 2−

n
4 = 5× 2−

n
4 ,

P r(xi
24 = xj

24) ≤ 2−
n
4 + 5× 2−

n
4 = 6× 2−

n
4 ,

P r(xi
28 = xj

28) ≤ 2−
n
4 + 6× 2−

n
4 = 7× 2−

n
4 .

Thus

Pr[B] ≥ 1−
q(q − 1)

2
× 22× 2−

n
4 .

Hence, we have

Pr[X
f
−→ Y ] ≥ (2−

n
4 )q[1− 11q(q − 1)2−

n
4 ].
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We can notice that Pr[X
f∗

−−→ Y ] = (2−n)q, so we
can apply Theorem 1 with ε1 = 2q(q − 1)2−

n
4 and ε2 =

11q(q − 1)2−
n
4 . We have

AdvA(f, f∗) ≤ ε1 + ε2 ≤ 13q22−
n
4 .

This shows that the eight rounds GFSP is a pseudo-
random function for any adaptive adversaries. �

6 Concluding Remarks

Evaluating the security of block cipher mostly includes
two aspects, the one is to evaluate the strength against
differential/linear cryptanalysis and other attacks, the
other is to study the pseudorandomness of the cipher
scheme. In this paper we study the strength against
differential/linear cryptanalysis and pseudorandomness
of a generalized Feistel scheme with SP round function
called GFSP . We focus on the minimum number of
active s-boxes in some consecutive rounds of GFSP4,
i.e., in four, eight and sixteen consecutive rounds, since
we can determine the upper bounds of the maximum
differential/linear probabilities using the branch num-
ber of linear transformation P . As a result, we give
the upper bounds of the maximum differential/linear
probabilities of 16-round GFSP4 scheme. Furthermore,
we study the pseudorandomness of GFSP . We first
present some distinguishers of seven rounds GFSP ,
then point out seven rounds GFSP is not pseudo-
random for non-adaptive adversary. Finally, we prove
eight rounds GFSP is pseudorandom for any adversaries.
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