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Abstract
We study revenue optimization learning algo-
rithms for repeated second-price auctions with re-
serve where a seller interacts with multiple strate-
gic bidders each of which holds a fixed private
valuation for a good and seeks to maximize his ex-
pected future cumulative discounted surplus. We
propose a novel algorithm that has strategic regret
upper bound of O(log log T ) for worst-case valu-
ations. This pricing is based on our novel transfor-
mation that upgrades an algorithm designed for
the setup with a single buyer to the multi-buyer
case. We provide theoretical guarantees on the
ability of a transformed algorithm to learn the val-
uation of a strategic buyer, which has uncertainty
about the future due to the presence of rivals.

1. Introduction
Revenue maximization is one of fundamental development
directions in major Internet companies that have their own
online advertising platforms (Gomes & Mirrokni, 2014;
Balseiro et al., 2015; Agarwal et al., 2014; Drutsa, 2017b;
Hummel, 2018). Most part of ad inventory is sold via widely
applicable second price auctions (He et al., 2013; Mohri &
Medina, 2014) and their generalizations like GSP (Varian,
2007; 2009; Varian & Harris, 2014; Sun et al., 2014). Ad-
justment of reserve prices plays a central role in revenue
optimization here: their proper setting is studied both by
game-theoretical methods (Myerson, 1981; Agrawal et al.,
2018) and by machine learning approaches (Nisan et al.,
2007; Cesa-Bianchi et al., 2013; Mohri & Medina, 2014;
Paes Leme et al., 2016).

In our work, we focus on a scenario where the seller re-
peatedly interacts through a second-price auction with M
strategic bidders (referred to as buyers as well). Each buyer

1Yandex, Moscow, Russia 2Faculty of Mechanics and Math-
ematics, Lomonosov Moscow State University, Moscow, Russia.
Correspondence to: Alexey Drutsa <adrutsa@yandex.ru>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

participates in each round of this game, holds a fixed private
valuation for a good (e.g., an ad space), and seeks to maxi-
mize his expected future discounted surplus given his beliefs
about the behaviors of other bidders. The seller applies a
deterministic online learning algorithm, which is announced
to the buyers in advance and, in each round, selects individ-
ual reserve prices based on the previous bids of the buyers.
The seller’s goal is to maximize her revenue over a finite
horizon T through regret minimization for worst-case valu-
ations of the bidders (Mohri & Munoz, 2014; Drutsa, 2018).
Thus, the seller seeks for a no-regret pricing algorithm.

To the best of our knowledge, no existing study investi-
gated worst-case regret optimizing algorithms that set re-
serve prices in repeated second-price auctions with strate-
gic bidders whose valuation is private, but fixed over all
rounds. However, our setting constitutes a natural gen-
eralization of the well-studied 1-buyer setup of repeated
posted-price auctions1 (RPPA) (Amin et al., 2013; Mohri
& Munoz, 2014) to the scenario of multiple buyers in a
second-price auction. In the RPPA setting, there are optimal
algorithms (Drutsa, 2017b; 2018) that have tight strategic
regret bound of Θ(log log T ). This bound follows from an
ability of the seller to upper bound the buyer valuation even
if he lies when rejecting a price (Drutsa, 2017b, Prop.2).
This ability strongly exploits that the buyer knows in ad-
vance the outcomes of a current and all future rounds since
he has complete information due to the absence of rivals. In
our multi-bidder scenario, this does not hold: a bidder has
incomplete information and is thus uncertain about the fu-
ture. Hence, the theoretical guarantees could not be directly
ported to our scenario when trying straightforwardly apply
the optimal 1-buyer RPPA algorithms.

In our study, we propose a novel algorithm that can be ap-
plied against our strategic buyers with regret upper bound of
O(log log T ) (Th. 1) and constitutes the main contribution
of our work. We also introduce a novel transformation of a
RPPA algorithm that maps it to a multi-buyer pricing and is
based on a simple but crucial idea of cyclic elimination of all
bidders except one in each round (Sec.3). Construction and

1In particular, when M = 1, our auction in a round reduces to
a posted-price one: the bidder has no rivals and his decision is thus
binary (to accept or to reject a currently offered price).
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analysis of the proposed algorithm and transformation have
required introduction of novel techniques, which are con-
tributed by our work as well. They include (a) the method
to locate the valuation of a strategic buyer in a played round
under his uncertainty about the future (Prop. 1); (b) the de-
composition of strategic regret into the regret of learning
the individual valuations and the deviation regret of learning
which bidder has the maximal valuation (Lemma 1); and
(c) the approach to learn the highest-valuation bidder with
deviation regret of O(1) w.r.t. T (Lemma 3).

2. Preliminaries
2.1. Setup of Repeated Second-Price Auctions

We study the following mechanism of repeated second-price
auctions. Namely, the auctioneer repeatedly proposes goods
(e.g., advertisement opportunities) to M bidders (whose set
is denoted by M := {1, . . . ,M},M ∈ N) over T rounds:
one good per round. From here on the following termi-
nology is used as well: the seller for the auctioneer, a
buyer for a bidder, and the time horizon for the number
of rounds T . Each bidder m ∈ M holds a fixed private
valuation vm ∈ [0, 1] for a good, i.e., the valuation vm is
equal for goods offered in all rounds and is unknown to the
seller. The vector of valuations of all bidders is denoted by
v := {vm}Mm=1.

In each round t∈ {1, . . . , T}, for each bidder m∈M, the
seller sets a personal reserve price pmt , and the buyer m
(knowing pmt ) submits a sealed bid of bmt . Given the re-
serve prices pt := {pmt }Mm=1 and the bids bt := {bmt }Mm=1,
the standard allocation and payment rules of a second price
auction are applied (namely, the “eager” version (Paes Leme
et al., 2016)): (a) for each bidder m∈M, we check whether
he bids over his reserve price or not, amt := I{bmt ≥pmt }

2,
obtaining the set Mt:={m∈M | amt =1} of actual bidder-
participants; (b) if Mt 6= ∅, the good is allocated to the
winning bidder mt :=argmaxm∈Mt

bmt (if a tie, choose ran-
domly) who pays pt := max{pmt

t ,maxm∈Mt\{mt} b
m
t } to

the seller. (c) if Mt =∅, the current good disappears and
no payment is transferred. Further we use the following
notations for allocation indicators, payments, and their vec-
tors: at := I{Mt 6=∅}, amt := I{Mt 6=∅&m=mt}, p

m
t := amt pt,

at := {amt }Mm=1, at := {amt }Mm=1, and pt := {pmt }Mm=1
3.

The summary on all notations is in App. C

Thus, the seller applies a (pricing) algorithm A that sets
reserve prices p1:T := {pt}Tt=1 in response to the buyers’
bids b1:T := {bt}Tt=1

4. We consider the deterministic on-
line learning case when the reserve price pmt for a bidder

2IB is the indicator: IB = 1, when B holds, and 0, otherwise.
3We use mnemonic notations: boldface for a vector over bid-

ders and bar for terms associated with auction outcomes.
4xt1:t2={xt}

t2
t=t1

denotes a part of a time series {xt}Tt=1.

m ∈ M in a round t ∈ {1, . . . , T} can depend only on
bids b1:t−1 of all bidders during the previous rounds and,
possibly, the horizon T . Let AM be the set of such algo-
rithms. Hence, given a pricing algorithm A ∈ AM , the
buyers’ bids b1:T uniquely define the corresponding price
sequence {pt}Tt=1, which, in turn, determines the seller’s
total revenue

∑T
t=1 atpt. This revenue is usually compared

to the revenue that would have been earned by offering
the highest valuation v := maxm∈M v

m if the valuations
v = {vm}Mm=1 were known in advance to the seller (Amin
et al., 2013; Drutsa, 2017b). This leads to the notion of the
regret of the algorithm A:

Reg(T,A,v,b1:T ) :=

T∑
t=1

(v − atpt).

Following a standard assumption in mechanism design that
matches the practice in ad exchanges (Mohri & Munoz,
2014; Drutsa, 2018), the seller’s pricing algorithm A is
announced to the buyers in advance. A bidder can then
act strategically against this algorithm. In contrast to the
case of one bidder (M = 1), where the buyer can get an
optimal behavior in advance, and the repeated mechanism
reduces thus to a two-stage game (Amin et al., 2013; Mohri
& Munoz, 2014; Drutsa, 2017b); in our setting, a bidder has
incomplete information since he may not know the valua-
tions and behaviors of the other bidders. Therefore, in order
to model buyer strategic behavior under this uncertainty, we
assume that, in each round t, each buyer optimizes his utility
on subgame of future rounds given the available history of
previous rounds and his beliefs about the other buyers.

Formally, in a round t, given the seller’s pricing algorithm
A, a strategic buyer m ∈ M observes a history hmt :=
(bm1:t−1, p

m
1:t, a

m
1:t−1, p

m
1:t−1) available to him and derives his

optimal bid b̊mt from a (possibly mixed) strategy σ ∈ ST
5

that maximizes his future γm-discounted surplus:

Surt:T (A, γm, vm, hmt , βm, σ) =

=E
[ T∑
s=t

γs−1m ams (vm − pms ) | hmt , σ, βm
]
,

(1)

where γm ∈ (0, 1] is the discount rate6 of the bidderm. The
expectation in Eq. (1) is taken over all possible continuations
of the history hmt w.r.t. a strategy σ ∈ ST of the buyer m
and his beliefs βm about the strategies of the other bidders

5A buyer strategy is a map σ : H1:T → R+ that maps any
history h ∈ Ht in a round t to a bid σ(h) ∈ R+, where H1:T :=
tT

t=1Ht and Ht := Rt−1
+ × Rt

+ × Zt−1
2 × Rt−1

+ . Let ST denote
the set of all possible strategies.

6Note that only buyer utilities are discounted over time, what
is motivated by real-world markets as online advertising where
sellers are far more willing to wait for revenue than buyers are
willing to wait for goods (Mohri & Munoz, 2014; Drutsa, 2018).
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M−m := M\{m}7. The buyer m assumes that the other
bidders are strategic in the sense described above as well,
what is taken into account in the beliefs βm8. When T
rounds has been played, let b̊t := {̊bmt }Mm=1 be the optimal
bids that depend on (T,A,v,γ,β), where γ = {γm}Mm=1

and β = {βm}Mm=1. We define the strategic regret of the
algorithm A that faced M strategic buyers with valuations
v∈ [0, 1]M and beliefs β over T rounds as

SReg(T,A,v,γ,β) :=Reg
(
T,A,v, b̊1:T (T,A,v,γ,β)

)
.

In our setting, following (Amin et al., 2013; Mohri & Munoz,
2014; Drutsa, 2017b; 2018), we seek for algorithms that
attain o(T ) strategic regret for the worst-case valuations
v ∈ [0, 1]M . Formally, an algorithm A is said to be a
no-regret one when supv∈[0,1]M ,β SReg(T,A,v,γ,β) =
o(T ) in our multi-buyer case. The optimization goal is
to find algorithms with the lowest possible strategic regret
upper bound O(f(T )), i.e., f(T ) has the slowest growth as
T → ∞ or, alternatively, the averaged regret has the best
rate of convergence to zero.

2.2. Background on Pricing Algorithms

To the best of our knowledge, there is no work studied worst-
case regret optimizing algorithms that set reserve prices in
repeated second-price auctions with strategic bidders whose
valuation is private, but fixed over all rounds. However, in
the case of one bidder, M = 1, the bidder has no rivals,
and, thus, the second-price auction in a round t reduces to
a posted-price auction, where the buyer decision reduces
to a binary action: to accept or to reject a currently offered
price p1t . Let ARPPA ⊂ A1 be the subclass of the 1-bidder
algorithms s.t. each reserve price p1t depends only on the
past binary decisions a11:t−1 of the buyer to get or do not get
a good for a posted reserve price. For this subclass, all our
strategic setting of repeated second-price auctions reduces
to the setup of repeated posted-price auctions (RPPA) earlier
introduced in (Amin et al., 2013).

Pricing algorithms in the strategic setup of RPPA with fixed
private valuation and worst-case regret optimization were
well studied last years (Amin et al., 2013; Mohri & Munoz,
2014; Drutsa, 2017b; 2018). It is known that, if the discount
rate γ=1, any algorithm has a linear strategic regret, i.e., the
regret has lower bound Ω(T ) (Amin et al., 2013), while, for
the other cases γ∈ (0, 1), the lower bound of Ω(log log T )
holds (Kleinberg & Leighton, 2003; Mohri & Munoz, 2014).
The first algorithm with optimal strategic regret bound of
Θ(log log T ) was found in (Drutsa, 2017b). It is Penalized

7So, σ and βm determine the future outcomes ams and pms , that
are thus random variables.

8In our setup, we do not require that the strategies actually
used by the buyers M−m match with the buyer m’s beliefs βm

(an equilibrium requirement), because our results hold without this
requirement.

Reject-Revising Fast Exploiting Search (PRRFES), which
is horizon-independent and is based on Fast Search (Klein-
berg & Leighton, 2003) modified to act against a strate-
gic buyer. The modifications include penalizations (see
Def. 1). A strategic buyer either accepts the price at the
first node or rejects this price in subsequent penalization
ones (Mohri & Munoz, 2014; Drutsa, 2017b). PRRFES is
also a right-consistent algorithm: a RPPA algorithm A1 is
right-consistent (A1∈CR) if it never offers a price lower
than the last accepted one (Drutsa, 2017b). The pricing algo-
rithm PRRFES was further modified by the transformation
pre to obtain the one that never decreases offered prices
and has a tight strategic regret bound of Θ(log log T ) as
well (Drutsa, 2018).

The workflow of a RPPA algorithm A1 is usually described
by a labeled binary tree T(A1) (Mohri & Munoz, 2014;
Drutsa, 2017b; 2018): initialize the tracking node n to the
root e(T(A1)); in each round, the label p(n) is offered as
a price; if it is accepted (rejected), move the tracking node
to the right child n := r(n) (the left child n := l(n), resp.);
and go to the next round. The left (right) subtrees rooted
at the node l(n) (r(n), resp.) are denoted by L(n) (R(n),
resp.). When trees T1 and T2 have the same node labeling,
we write T1

∼=T2.

Definition 1 ((Mohri & Munoz, 2014; Drutsa, 2017b)). For
a RPPA algorithm A1∈ARPPA, nodes n1, ..., nr ∈ T(A1)
are said to be a (r-length) penalization sequence if ni+1 =
l(ni), p(ni+1)=p(ni), and R(ni+1)∼=R(ni), i=1, .., r−1.

2.3. Overview of our Results

We cannot directly apply the optimal RPPA algo-
rithms (Drutsa, 2017b; 2018), because our bidders have
incomplete information in the game, while the proofs of op-
timality of these algorithms strongly rely on complete infor-
mation. This completely different information structure of
the multi-buyer game results in very complicated bidder be-
havior even in the absence of reserve prices (Bikhchandani,
1988). Hence, it is challenging to find, in the multi-buyer
case, a pricing algorithm that has regret upper bound of the
same asymptotic behavior as the best one in the 1-buyer
RPPA setting. Our research goal comprises closing of this
research question on the existence of such algorithms.

First, we propose a novel technique to transform a RPPA
algorithm to our setup that is based on cyclic elimination
of all bidders except one by means of high enough prices
(Sec. 3). Separate playing with each buyer removes his un-
certainty about the outcome of a current round; and, despite
remaining uncertainty about future rounds, this is enough
to construct a tool to locate his valuation (Prop. 1). Second,
we transform PRRFES in this way and show that its regret
is affected by two learning processes: the one learns bidder
valuations and the other learns which bidders have the max-
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Figure 1. An illustration of cyclic elimination of bidders by means
of a barrage price in a dividing algorithm. In this example, there are
M=3 bidders, three periods are depicted, and the reserve prices
are set independently for the bidders by a RPPA algorithm A1.

imal valuation (Sec. 4). The former learning is controlled
by the design of the source PRRFES, while the latter one
is achieved by a special stopping rule that excludes bidders
from suspected ones. A proper combination of parameters
for the source pricing and the stopping rule provides an
algorithm with strategic regret in O(log log T ), see Th. 1.

2.4. Related Work

Several studies maximized revenue of auctions in an of-
fline/batch learning fashion: either via estimating or fit-
ting of distributions of buyer valuations/bids to set reserve
prices (He et al., 2013; Sun et al., 2014; Paes Leme et al.,
2016), or via direct learning of reserve prices (Mohri &
Medina, 2014; 2015; Rudolph et al., 2016; Medina & Vassil-
vitskii, 2017). In contrast to them, we set prices in repeated
auctions by an online deterministic learning approach.

Revenue optimization for repeated auctions was mainly
concentrated on algorithmic reserve prices, that are updated
in online way over time, and was also known as dynamic
pricing (Fudenberg & Villas-Boas, 2006; den Boer, 2015).
Dynamic pricing was considered: under game-theoretic
view (Leme et al., 2012; Chen & Farias, 2015; Balseiro et al.,
2016; Ashlagi et al., 2016; Mirrokni et al., 2018; Abernethy
et al., 2019); from the bidder side (Iyer et al., 2011; Weed
et al., 2016; Heidari et al., 2016; Baltaoglu et al., 2017); in
experimental studies (List & Shogren, 1999; Carare, 2012;
Yuan et al., 2014); as bandit problems (Amin et al., 2011;
Lin et al., 2015; Cesa-Bianchi et al., 2018); and from other
aspects (Roughgarden & Wang, 2016; Feldman et al., 2016;
Chawla et al., 2016; Hummel, 2018; Deng et al., 2019b).
Repeated auctions with a contextual information about the
good in a round were considered in (Amin et al., 2014;
Cohen et al., 2016; Mao et al., 2018; Leme & Schneider,
2018; Golrezaei et al., 2019; Deng et al., 2019a; Drutsa,
2020; Zhiyanov & Drutsa, 2020). The studies (Schmidt,
1993; Hart & Tirole, 1988; Devanur et al., 2015; Immorlica
et al., 2017; Vanunts & Drutsa, 2019) elaborated on setups of
repeated posted-price auctions with a strategic buyer holding
a fixed valuation, but maximized expected revenue for a
given prior distribution of valuations, while we optimize

regret w.r.t. worst-case valuations without knowing their
distribution.

There are studies on reserve price optimization in repeated
second-price auctions, but they considered scenarios differ-
ent to ours. Non-strategic bidders are considered in (Cesa-
Bianchi et al., 2013). Kanoria et al. (Kanoria & Nazerzadeh,
2014) studied strategic buyers (similarly to our work), but
maximized expected revenue w.r.t. a prior distribution of
valuations. Our setup can be considered as a special case
of repeated Vickrey auctions in (Huang et al., 2018), but
their regret upper bound isO(Tα) in T and holds only when
selling several goods in a round. However, the most rele-
vant works to ours are (Amin et al., 2013; Mohri & Munoz,
2014; Drutsa, 2017b; 2018), where our strategic setup with
fixed private valuation is considered, but for the case of one
bidder, M = 1. The most important results of these works
are discussed in Sec. 2.2.

3.Dividing Algorithm and div-transformation
3.1. Barrage Pricing

In our setting, a pricing algorithm is able to set personal
(individual) reserve prices to each bidder and, hence, is able
to “eliminate” particular bidders from particular rounds.
Namely, in a round t, an algorithm can set a reserve price
pbar s.t. a strategic bidder m, independently of his valua-
tion, will never accept pbar, i.e., will never bid higher than
this price; such a price is referred to as a barrage reserve
price. From here on we use pbar = 1/(1− γ0), γ0 ∈ (0, 1):
accepting it once will result in a negative surplus for a buyer
with discount γm ≤ γ0. We use the phrase “the bidder m is
eliminated9 from participation in the round t” to describe
this case.

3.2. Dividing Algorithms

In this subsection, we introduce a subclass of the algorithms
AM that is denoted by Adiv

M ⊂ AM and is referred to as
the class of dividing algorithms (stands for lat. “Divide et
impera”). A dividing algorithm A ∈ Adiv

M works in periods
and tracks a feasible set of suspected bidders S aimed to
find the bidder (or bidders) with the maximal valuation v.
Namely, it starts with all bidders S1 := M at the first period
which lasts M rounds. In each period i ∈ N, the algorithm
iterates over the currently suspected bidders Si: in a current
round, it picks up m ∈ Si, sets a non-barrage reserve price
to the bidder m, sets a barrage reserve price to all other
bidders M−m, and goes to the next round within the period

9Note that, (a) formally, all bidders participate in all rounds
(see Sec. 2) and (b), if a bidder is not eliminated, it does not mean
that he is in Mt (he may bid below his reserve price which can
be a non-barrage one). So, the word “elimination” is purposely
associate with barrage pricing in order to refer to this case.
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Figure 2. An illustration of application of a stopping rule by means
of a barrage price in a dividing algorithm. In this example, there
are M=3 bidders, four periods are depicted, and the buyer 1 is no
longer considered after the k-th period (his subhorizon is I1=k).

by picking up the next buyer from Si. Thus, the algorithm
meaningfully interacts with only one bidder in each round
through elimination of all other bidders by means of barrage
pricing. After the i-th period, the algorithm A identifies
somehow which bidders from Si should be left as suspected
ones in the next period (i.e., be included in the set Si+1).
The processes of cyclic elimination and stopping rule are
illustrated in Figures 1 and 2, respectively.

When the game has been played with the dividing algorithm
A, one can split all the rounds into I periods: {1, . . . , T} =
∪Ii=1Ti. Each period i < I consists of |Ti| = |Si| rounds
(the last one of |TI | ≤ |SI |). Let tmi ∈ Ti denote the round
of a period i in which a bidder m is not eliminated by the
seller algorithm (i.e., receives a non-barrage reserve price).
Thus, Im := {tm1 , ..., tmIm} are all such rounds of the bidder
m and Im = |Im| is referred to as the subhorizon of the
bidder m (the number of periods where he participates).
Note that (a) Im and Im depend on the bids b1:T of all
buyers M; (b) the following identities hold: {1, . . . , T} =
∪Mm=1Im and Ti = {tmi | m ∈M s.t. Im ≥ i}.

So, in a round tmi , the algorithm A eliminates the bidders
M−m (i.e., sets the reserves pm

′

tmi
=pbar ∀m′∈M−m), while

the reserve price pmtmi set for the buyer m is determined only
by his bids during the previous rounds {tm1 , ..., tmi−1} where
he has not been eliminated: i.e., pmtmi = pm(bmtm1 , ..., b

m
tmi−1

).
Hence, the algorithm A’s interaction with the bidder m
in the rounds Im can be encoded by a 1-buyer algorithm
from A1, which sets prices in the rounds {tmi }I

m

i=1 instead
of {i}Imi=1. We denote this algorithm by Am and refer to it
as the subalgorithm of A against the buyer m. Let

Regm(Im,Am, vm, bm1:T ) :=

Im∑
i=1

(vm − amtmi p
m
tmi

)

be the regret of the subalgorithm Am for given bids bm1:T of
the buyer m ∈M in the rounds Im. The following lemma
holds (the trivial proof is in Appendix A.1.1 in Supp.Mat.).

Lemma 1. Let A ∈ Adiv
M be a dividing algorithm, Am ∈

A1,m ∈M, be its subalgorithms (as described above), and

b̊1:T = b̊1:T (T,A,v,γ,β) be optimal bids of the strategic
buyers M. Then, for any v ∈ [0, 1]M , γ ∈ (0, 1]M , and β,
the strategic regret of A can be decomposed into two parts

SReg(T,A,v,γ,β) = SRegind(T,A,v,γ,β)+

+ SRegdev(T,A,v,γ,β),

where

SRegind(T,A,v,γ,β) :=
∑
m∈M

Regm(Im,Am, vm, b̊m1:T )

is the individual part of the regret and

SRegdev(T,A,v,γ,β) :=
∑
m∈M

Im(v − vm)

is the deviation part of the regret.

Informally, this lemma states that the regret consists of the
individual regrets against each buyer m in his rounds Im
and the deviation of the buyer valuations v from the highest
valuation v. So, we see a clear intuition: a good algorithm
should (1) learn the valuations v of the buyers (minimizing
individual regrets) and (2) learn which buyers have the
highest valuation v (minimizing the deviation regret).

3.3. div-transformation

Let A1 ∈ ARPPA be a 1-buyer RPPA algorithm. A
M -buyer algorithm divM (A1, sr) is said to be a div-
transformation of the algorithm A1 with a stopping rule
sr : M× T(A1)M → bool when it is a dividing algorithm
from Adiv

M s.t. its subalgorithms Am are A1 and the stop-
ping rule sr determines which bidders are not suspected after
the end of each period i (i.e., which bidders do not present
in the set Si+1). Namely, first, the algorithm divM (A1, sr)
tracks the state of each buyer m ∈M in the tree T(A1) of
the RPPA algorithm A1 (see Sec. 2) by means of a personal
(individual) feasible node: for each period i and for each
round tmi ∈ Ti, the current state (i.e., the history of previous
actions) of the buyer m is encoded by the tracking node
nmi ∈ T(A). In particular, in the round tmi , the buyer m
receives the reserve price equal to the price p(nmi ) of this
node nmi (the other bidders M−m get a barrage reserve price
pbar). If a buyerm is not more suspected in a period i > Im

(i.e., m 6∈ Si), we formally set nmi := nmIm+1. Second, after
a period i, the stopping decision for a buyer m′ is based
on the past buyer binary actions that are coded by means
of the nodes {nmi+1}Mm=1 in the binary tree T(A1): if the
stopping rule sr(m′, {nmi+1}Mm=1) is true, then the buyer
m′ 6∈ Si+1. The pseudo-code of the div-transformation of a
RPPA algorithm is in Algorithm 1.

For a RPPA right-consistent algorithm A1 ∈CR with pe-
nalization rounds, let 〈A1〉 denote the transformation of
A1 s.t. it is equal to A1, but each penalization sequence
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Algorithm 1 Pseudo-code of a div-transformation
divM (A1, sr) of a RPPA algorithm A1 ∈ ARPPA.
1: Input: M ∈ N, A1 ∈ ARPPA, sr : M× T(A1)

M → bool

2: Initialize: t := 1, S := M, n[ ] := {e(T(A1))}Mm=1

3: while t ≤ T do
4: for all m ∈ S do
5: Set the price p(n[m]) as reserve to the buyer m
6: Set the price pbar as reserve to the buyers from M−m

7: b[ ]← get bids from the buyers M
8: if b[m] ≥ p(n[m]) then
9: Allocate t-th good to the buyerm for the price p(n[m])

10: n[m] := r(n[m])
11: else
12: n[m] := l(n[m])
13: end if
14: t := t+ 1
15: if t > T then
16: break
17: end if
18: end for
19: Sold := S
20: for all m ∈ Sold do
21: if sr(m, n[ ]) then
22: S := S \ {m}
23: end if
24: end for
25: end while

of nodes {nj}rj=1 ⊂ T(A1), r ≥ 2, (see Def. 1) is rein-
forced in the following way: all the prices in the nodes
{nj} ∪R(nj), j = 2, ..., r, are replaced by 1 (the maximal
valuation domain value); the sequence and the rounds are
then referred to as reinforced penalization ones. After this,
a strategic buyer will certainly either accept the price at
the node n1, or reject the prices in all the nodes {nj}rj=1

even in the case of his uncertainty about the future. Let
δln := p(n)− infm∈L(n) p(m) be the left increment (Mohri
& Munoz, 2014; Drutsa, 2017b) of a node n ∈ T(A1).

In order to obtain upper bounds on strategic regret, it is
important to have a tool that allows to locate the valua-
tion of a strategic bidder. Such a tool can be obtained for
div-transformed right-consistent RPPA algorithms with re-
inforced penalization rounds based on the following propo-
sition, which is an analogue of (Drutsa, 2017b, Prop.2) in
our case with buyer uncertainty about the future.

Proposition 1. Let γm ∈ (0, 1), A1 ∈ ARPPA ∩ CR be
a RPPA right-consistent pricing algorithm, n∈T(A1) be
a starting node in a r-length penalization sequence (see
Def. 1), r > logγm(1− γm), sr :M×T(A1)M→bool be a
stopping rule, and the div-transformation divM (〈A1〉, sr)
be used by the seller for setting reserve prices. If, in a round,
the node n is reached and the price p(n) is rejected by a
strategic buyer m∈M (i.e., he bids lower than p(n)), then
the following inequality on vmholds:

vm − p(n) < ζr,γmδ
l
n, where ζr,γ :=

γr

1− γ − γr
. (2)

Proof sketch. The full proof is in App.A.1.2. Let t be the
round in which the bidder m reaches the node n and rejects
his reserve price pmt = p(n). In particular, it is the round
where he is the non-eliminated buyer and t= tmi ∈ Ti for
some period i. Since the buyers are divided and A1 ∈
ARPPA, w.l.o.g., any strategy can be treated as a map to
binary decisions {0, 1}. Let σ̊ be the optimal strategy used
by the buyer m; hmt;a be the continuation of the current
history hmt by a binary decision amt =a, while σ̂a denote an
optimal strategy among all possible strategies in which the
binary buyer decision amt is a ∈ {0, 1}; and

Smt (σ) := Surt:T (A, γm, vm, hmt , βm, σ)

be the future expected surplus when following a strategy
σ ∈ ST . Rejection of the price pmt when following the
optimal strategy σ̊ easily implies: Smt (σ̂1) ≤ Smt (σ̂0). Let
us bound each side of this inequality. First,

Smt (σ̂1) = γt−1m (vm − p(n))+

+ Surt+1:T (A, γm, vm, hmt;1, βm, σ̂1) ≥
≥ γt−1m (vm − p(n)),

(3)

where we used the facts (i) that if the bidder accepts the price
p(n), then he necessarily gets the good since all other bid-
ders M−m are eliminated by a barrage price in this round t;
and (ii) that the expected surplus in rounds s ≥ t+ 1 is at
least non-negative, because the subalgorithm A1 ∈ CR is
right-consistent. Second,

Smt (σ̂0) = Surtmi+r:T
(A, γm, vm, hmt;0, βm, σ̂0) <

<
γt+r−1m

1− γm
(vm − p(n) + δln),

(4)

where we (i) used the fact that if the bidder rejects the price
pmt , then the future rounds {tmi+j}

r−1
j=1 will be reinforced

penalization ones (the strategic bidder will reject in all of
them); and (ii) upper bounded the surplus in remaining
rounds by assuming that only this bidder will get remaining
goods for the lowest reserve price from the left subtree L(n).
We unite these bounds on Smt (σ̂a), divide by γt−1m , and get

(vm − p(n))

(
1− γrm

1− γm

)
<

γrm
1− γm

δln, (5)

what implies Eq. (2), since r > logγm(1− γm).

We emphasize that the dividing structure of the algorithm is
crucially exploited in the proof of Prop. 1. Namely, the fact
that all other bidders M−m are eliminated by a barrage price
in the round t is used (a) to guarantee obtaining of the good
at price p(n) by the buyerm and (b) to lower bound thus the
future surplus Smt (σ̂1) in the case of acceptance in Eq. (3). If
we dealt with a non-dividing algorithm, then another bidder
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might win the good or make the payment of the bidder m
higher than his reserve price p(n); in both cases, Smt (σ̂1)
could only be lower bounded by 0 in a general situation,
what would result in an useless inequality instead of Eq. (2).

For a right-consistent algorithm A1 ∈ CR, the increment
δln is bounded by the difference between the current node’s
price p(n) and the last price q that has been accepted by
the buyer m before reaching this node. Hence, the Prop. 1
provides us with a tool to locate the valuation vm despite
the strategic buyer does not myopically report its position
(similar to (Drutsa, 2017b, Prop.2)). Namely, if the buyer
m bids no lower than p(n), then vm ≥ p(n); if he bids
lower than p(n), then q≤ v < p(n)+ζr,γm(p(n) − q) and
the closer an offered price p(n) is to the last accepted price
q the smaller the location interval of possible valuations vm

(since its length is (1 + ζr,γm)(p(n)−q)).

4. divPRRFES Algorithm
In this section, we will show that we can use an optimal
algorithm from the setting of repeated posted-price auctions
to obtain the algorithm for our multi-bidder setting with
upper bound on strategic regret with the same asymptotic.
Namely, let us div-transform PRRFES (Drutsa, 2017b), fur-
ther denoted as A1.

Since a div-transformation of PRRFES (with penalization
reinforcement) individually tracks position of each buyer
in the binary tree T(〈A1〉), we adapt the key notations of
PRRFES (Drutsa, 2017b) to our case of multiple bidders and
periods. Against a buyer m ∈M, PRRFES 〈A1〉 works in
phases initialized by the phase index l := 0, the last accepted
price before the current phase qm0 := 0, and the iteration
parameter ε0 := 1/2. At each phase l ∈ Z+, it sequentially
offers prices pml,k := qml + kεl, k ∈ N (exploration rounds),

with εl = 2−2
l

; if a price pml,k is rejected, setting Km
l :=

k − 1 ≥ 0,

1. it offers the price 1 for r − 1 reinforced penalization
rounds (if one of them is accepted, 1 will be offered in
all remaining rounds),

2. it offers the price pml,Km
l

for g(l) exploitation rounds,

3. PRRFES goes to the next phase by setting qml+1 :=
pml,Km

l
and l := l + 1. Individual tracking of bidders

by the div-transformed PRRFES implies that different
buyers can be in different phases in the same period i.

Hence, let lmi denote the current phase of a buyer m ∈M in
the round tmi of a period i ≤ Im, and let lmi := lmIm+1 in all
subsequent periods i > Im (when the buyer m is no more
suspected). In particular, qmlmi is the last accepted price by
the buyer m before the phase lmi in the period i.

We rely on the decomposition from Lemma 1 in order to
bound the strategic regret of a div-transformed PRRFES.

4.1. Upper Bound for Individual Regrets

Before specifying a particular stopping rule, let us
obtain an upper bound on individual strategic regret
Regm(Im, 〈A1〉, vm, b̊m1:T ),m ∈ M. This regret is not
equal to SReg(Im, 〈A1〉, (vm), (γm)) since, in the latter
case, the 1-bidder game does not depend on behavior of the
other bidders M−m (while, in the former case, does). In
other words, the rounds Im = {tmi }I

m

i=1 do not constitute the
Im-round 1-buyer game of the RPPA setting considered in
(Amin et al., 2013; Drutsa, 2017b), because the subhorizon
Im and exact rounds Im (they determine the used discount
factors: γt−1m , t ∈ Im) are unknown in advance and depend
on actions of the other bidders. Hence, this does not allow
to straightforwardly utilize the result on the strategic regret
for PRRFES proved in (Drutsa, 2017b, Th.5) for the setting
of RPPA. So, we have to prove the bound O(log log T ) for
our case with buyer uncertainty about the future. Let us
introduce the notation:

rγ :=
⌈

logγ
(
(1− γ)/2

)⌉
∀γ ∈ (0, 1). (6)

Lemma 2. Let γ0 ∈ (0, 1), A1 be the PRRFES algorithm
with r ≥ rγ0 and the exploitation rate g(l) = 22

l

, l ∈ Z+,
and sr : M×T(A1)M → bool be a stopping rule. Then, for
any valuation vm ∈ [0, 1], if Im ≥ 2, the individual regret
of the div-transformed PRRFES divM (〈A1〉, sr) against
the buyer m ∈M is upper bounded:

Regm(Im, 〈A1〉, vm, b̊m1:T ) ≤
≤ (rvm + 4)(log2 log2 I

m + 2) ∀γm ∈ (0, γ0]
(7)

where b̊1:T = b̊1:T (T, divM (〈A1〉, sr),v,γ,β) are opti-
mal bids of the strategic buyers M.

Proof sketch. Decompose the individual regret over the
rounds Im into the sum of the phases’ regrets:

Regm(Im, 〈A1〉, vm, b̊m1:T ) =

Lm∑
l=0

Rml ,

where Lm := lmIm is the number of phases conducted by the
algorithm against the buyer m. For l ∈ ZLm−1:

Rml =

Km
l∑

k=1

(vm − pml,k) + rvm + g(l)(vm − pml,Km
l

),

where the terms correspond to the accepted exploration
rounds, the reject-penalization ones, and the exploitation
ones. PRRFES and each rejected price pml,Km

l +1 satisfy the
conditions of Prop. 1, what implies

vm − pml,Km
l +1 < (pml,Km

l +1 − pml,Km
l

) = εl
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since ζr,γm ≤ 1 for r ≥ rγ0 and γm ≤ γ0. Hence,
vm ∈ [qml+1, q

m
l+1 + 2εl) (since qml+1 = pml,Km

l
and PRRFES

is right-consistent) and the number of exploration rounds
is thus bounded: Km

l+1 < 22
l+1. All further steps are sim-

ilar to (Drutsa, 2017b, Th.5):
∑Km

l

k=1(vm − pml,k) < 2; for
each phase l, we get that Rml ≤ rvm + 4; and the number
of phases Lm ≤ log2 log2 I

m + 1. The full proof is in
Appendix A.2.1 of Supplementary Materials.

4.2. Upper Bound for Deviation Regret

Prop. 1 provides us with the tool that locates the valuation
vm of a bidder m∈M at least in the segment [umi , w

m
i ] :=

[qmlmi
, qmlmi

+ 2εlmi −1] right after a period i− 1 (see the proof
[sketch] of Lemma 2), when r ≥ rγm . This means: if, after
playing a period i− 1, the upper bound wmi of the valuation
of a bidder m ∈ M is lower that the lower bound um̂i of
the valuation of another bidder m̂ ∈ M−m, i.e., wmi <
um̂i , then the bidder m does definitely have non-maximal
valuation (i.e., vm < v) and needs not to be suspected in
the period i and subsequent ones. Hence, based on this
observation, one can derive the following stopping rule. For
given parameters r and g(·) of the PRRFES algorithm A1,
any state n ∈ T(A1) of the algorithm can be mapped to the
current phase l(n) and the last accepted price q(n) before
the phase l(n). Thus, we define the stopping rule by

srA1
(m, {nm}Mm=1) := ρ(m, {l(nm)}Mm=1, {q(nm)}Mm=1),

where

ρ(m, l,q) := ∃m̂ ∈M−m : qm + 2εlm−1 < qm̂ (8)

for any l ∈ ZM+ and any q ∈ RM+ . The div-transformation
divM (〈A1〉, srA1

) of the PRRFES algorithm A1 with the
stopping rule srA1

defined in Eq. (8) is referred to as the
dividing Penalized Reject-Revising Fast Exploiting Search
(divPRRFES). The pseudo-code of divPRRFES is presented
in Appendix B.2 of Supplementary Materials.

Lemma 3. Let γ0 ∈ (0, 1), the discounts γ ∈ (0, γ0]M ,
and the seller use the divPRRFES pricing algorithm
divM (〈A1〉, srA1

) with the number of penalization rounds
r ≥ rγ0 , with the exploitation rate g(l) = 22

l

, l ∈ Z+, and
with the stopping rule srA1

defined in Eq. (8). Then, for a
bidder m ∈ M with non-maximal valuation, i.e., vm < v,
his subhorizon Im is bounded:

Im≤ 24

v − vm
+ r
(
1+log2 log2

4

v − vm
)
<

24 + 5r

v − vm
. (9)

Proof sketch. Let m be a buyer with the maximal valuation
v. Note that, in any period j = 1, . . . , Im, the location
intervals [qmlmj

, qmlmj
+ 2εlmj −1] and [qm

lmj
, qm
lmj

+ 2εlmj −1] must
intersect (otherwise, the stopping rule srA1 has eliminated

the buyer m before the period j, and, hence, j > Im). In
particular, in the period Im,

εL(m′,m) ≥
v − vm

4

holds for either m′ = m or (not exclusively) m′ = m,
where L(m′,m) := lm

′

Im . From the definition of the iteration
parameter εl, i.e. log2 εl = −2l, one can obtain the bound
on one of the phases:

min{L(m,m), L(m,m)} ≤ log2 log2

4

v − vm
. (10)

To bound the subhorizon Im, decompose it into the numbers
of exploration, reject-penalization, and exploitation rounds
in each phase l = 0, . . . , L(m′,m) played by a buyer m′∈
{m,m}. Applying techniques similar to the ones used in the
proof of Lemma 2 (in particular, the bound on the number
of exploration rounds: Km′

l ≤2 · 22l−1

), we get:

Im≤(L(m′,m)+1)r+2 · 3 · 22
L(m′,m)

(11)

for m′∈{m,m}. This combined with the previous inequal-
ity implies Eq. (9). The full proof is in App. A.2.2.

This lemma implies the upper bound for the deviation part
of the strategic regret of the divPRRFES pricing algorithm
A = divM (〈A1〉, srA1

) against the strategic buyers M:

SRegdev(T,A,v,γ,β)=

M∑
m=1

Im(v−vm)≤(24+5r)(M−1).

Let us denote by M := {m ∈ M | vm = v} the
set of bidders with the maximal valuation and by v :=
maxm∈M\M v

m the highest valuation among non-maximal
ones. Thus, we showed that learning of the max-valuation
bidders M converges with the rate inversely proportional
to v − v (i.e., after the period d(24 + 5r)/(v − v)e the set
of suspected bidders is always Si = M) and this learning
contributes a constant (w.r.t. the horizon T ) to the strate-
gic regret. Finally, Lemma 1, 2, and 3 trivially imply (see
Appendix A.2.3) the following theorem.

Theorem 1. Let γ0 ∈ (0, 1), A1 be the PRRFES algo-
rithm with r ≥ rγ0 from Eq. (6) and the exploitation rate
g(l) = 22

l

, l ∈ Z+, and srA1
be the stopping rule defined

in Eq.(8). Then, for T ≥2, the strategic regret of the di-
vPRRFES pricing algorithm A=divM (〈A1〉, srA1) against
the buyers M is upper bounded:

SReg(T,A,v,γ,β)≤M(rv+4)(log2 log2 T+2)+

+ (24+5r)(M−1) ∀γ∈(0,γ0]M ∀v∈[0,1]M ∀β.
(12)
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5. Discussion and Extensions of the Result
Other auction formats. The techniques and algorithms
developed in our work can be applied in repeated auctions
where another format of selling a good in a round is used.
Namely, our results hold in our repeated setting with an
auction format (within rounds) that satisfies the following:
(a) personal reserve prices are allowed; and (b) if a buyer m
is only one non-eliminated participant in a round t, then his
bidding mechanism allows him to choose between getting
the good for the reserve price pmt and rejecting it. This holds
e.g. for first(/third/..)-price auctions, for PPA with multiple
bidders, etc.

Regret dependence on M . The upper bound of the di-
vPRRFES regret in Eq. (12) linearly depends on M . We
believe that it is not an artifact of our analysis tools, but
a payment for the div-transformation. Consider the case
in which all bidders have the same valuation, i.e., all their
valuations are v. Each bidder will be always suspected by
divPRRFES (i.e., be in Si ∀i). Hence, divPRRFES will just
learn the valuation v for each of M bidders independently
and, thus, M times slower; i.e., it is natural that the regret of
divPRRFES is M times larger than the regret of PRRFES
against a single buyer. However, there might exist an algo-
rithm that do not suffer from dividing structure in this way.
So, existence of an algorithm with a more favorable regret
dependence on M is an open research question.

Improvements of divPRRFES. For practical use, there are
several places where divPRRFES can be improved. For
instance, (a) the penalization parameter r can be made adap-
tive to take into account the rounds in which a buyer is
eliminated (i.e., reduce the number of penalizations by the
number of rivals currently suspected by the seller); (b) or
the stopping rule srA1 can faster eliminate bidders, since
the lower bound umi can be updated each time the buyer m
accepts an exploration price pml,k. Despite these improve-
ments would require some additional pages in our proofs,
they do not improve the asymptotic bound of O(log log T ).
The constants in the regret bound Eq. (12) can be optimized
in a way similar to the one applied by Drutsa (2017a) for
repeated posted-price auctions.

Lower bound and optimality. For the case M = 1, there
does exist the lower bound: the strategic regret of any
pricing algorithm is Ω(log log T ) (Mohri & Munoz, 2014).
Hence, our upper bound for the algorithm divPRRFES is op-
timal in the general case of any number of bidders. Nonethe-
less, structure of the game with non-single buyer (M ≥ 2)
is much more complicated, since a buyer has to act in the
presence of rivals and under uncertainty about the future.
This is an additional opportunity that can be exploited by
a pricing algorithm. Thus, the validity of the lower bound
Ω(log log T ) for M ≥ 2 is an open research question.

Horizon independence. The algorithm divPRRFES is
horizon-independent since it is based on the horizon-
independent PRRFES A1, which induces the subalgorithm
〈A1〉 and the stopping rule srA1

. Hence, the seller is not
required to know in advance the number of rounds T of the
game, when she applies divPRRFES.

6. Conclusions
We studied the scenario of repeated second-price auctions
with reserve pricing where a seller interacts with multiple
strategic buyers. Each buyer participates in each round of
the game, holds a fixed private valuation for a good, and
seeks to maximize his expected future discounted surplus;
while the seller seeks a no-regret online learning algorithm
to set reserve prices for worst-case valuations. First, we pro-
posed the so-called dividing transformation that upgrades
an algorithm designed for the setup with a single buyer to
the multi-buyer case. Second, the transformation allowed us
to obtain a novel horizon-independent algorithm that can be
applied against strategic buyers with regret upper bound of
O(log log T ). Finally, we introduced non-trivial techniques
such as (a) the method to locate the valuation of a strategic
buyer in a played round under buyer uncertainty about the
future; (b) the decomposition of strategic regret into the
individual and deviation parts; and (c) the approach to learn
the highest-valuation bidder with deviation regret of O(1).
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