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Abstract

Un-trained convolutional neural networks have
emerged as highly successful tools for image re-
covery and restoration. They are capable of solv-
ing standard inverse problems such as denoising
and compressive sensing with excellent results by
simply fitting a neural network model to measure-
ments from a single image or signal without the
need for any additional training data. For some
applications, this critically requires additional reg-
ularization in the form of early stopping the op-
timization. For signal recovery from a few mea-
surements, however, un-trained convolutional net-
works have an intriguing self-regularizing prop-
erty: Even though the network can perfectly fit
any image, the network recovers a natural im-
age from few measurements when trained with
gradient descent until convergence. In this pa-
per, we provide numerical evidence for this prop-
erty and study it theoretically. We show that—
without any further regularization—an un-trained
convolutional neural network can approximately
reconstruct signals and images that are sufficiently
structured, from a near minimal number of ran-
dom measurements.

1. Introduction
Un-trained convolutional neural networks have emerged as
highly successful tools for image recovery and restoration,
for a variety of problems including denoising, compressive
sensing, and inpainting (Ulyanov et al., 2018; Jin et al.,
2019; Veen et al., 2018; Jagatap & Hegde, 2019; Heckel,
2019; Heckel & Hand, 2019; Bostan et al., 2020; Wang
et al., 2020; Hyder & Asif, 2020; Arora et al., 2020). As

1Dept. of Electrical and Computer Engineering, Technical Uni-
versity of Munich 2Dept. of Electrical and Computer Engineering,
University of Southern California. Correspondence to: Reinhard
Heckel <reinhard.heckel@tum.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

opposed to trained convolutional neural networks, that learn
an image prior from training data, un-trained convolutional
networks act as an image prior without any training and
solely based on the architecture of the network and the
optimization procedure used to fit them.

The benefit of untrained networks was first observed in
the Deep Image Prior (DIP) paper (Ulyanov et al., 2018).
The key observation of Ulyanov et al. (2018) is that fitting
a standard over-parameterized convolutional autoencoder
(specifically, the U-net (Ronneberger et al., 2015) or vari-
ations thereoff) to a single noisy/corrupted image, when
combined with early stopping, yields excellent denoising,
inpainting, and super-resolution performance. Subsequent
literature has demonstrated that many elements of the archi-
tecture of a convolutional autoencoder—such as the encoder
part—are irrelevant for this behavior to emerge. In particular
the papers (Heckel & Hand, 2019; Heckel & Soltanolkotabi,
2020) highlight the critical role of convolutions with fixed
convolutional kernels.

Un-trained convolutional networks are empirically most ef-
fective when the network is over-parametrized, meaning that
is has more parameters than image pixels. This holds even
though in this regime the neural network can in principle
fit any image perfectly, including random noise. Therefore,
further regularization is critical to performance in many ap-
plications. For instance denoising (Ulyanov et al., 2018;
Heckel & Soltanolkotabi, 2020) critically requires early
stopping, as without early stopping the noisy image is fit-
ted perfectly and no noise is removed. However, perhaps
surprisingly, for some inverse problems including inpaint-
ing (Ulyanov et al., 2018) and compressive sensing, no
further regularization is necessary! That is, a convolutional
neural network, when fitted to compressive measurements
from a single image (no other training data) can estimate
the original image well, as illustrated in Figure 1. This
phenomenon demonstrates an intriguing self-regularization
capability in the context of compressive sensing.

The overarching goal of this paper is to study compressive
sensing with un-trained convolutional generators theoret-
ically in order to explain the above phenomenon. In par-
ticular, our goal is to understand (i) why for compressive
sensing problems gradient descent can reconstruct a good
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signal estimate without any further regularization or addi-
tional training data and to (ii) prove that this is possible with
a minimal number of measurements that is proportional to
an appropriately defined notion of signal dimensionality.

1.1. Compressive sensing with un-trained neural
networks

We consider the problem of recovering an unknown signal
x∗ ∈ Rn from m� n linear measurements of the form

y = Ax∗ ∈ Rm, (1)

with A ∈ Rm×n representing the measurement matrix. This
problem formulation includes the compressive sensing prob-
lem relevant for computational imaging as well as inpainting.
To understand how un-trained networks can be utilized to
recover the unknown signal, consider an over-parameterized,
un-trained convolutional image prior G : RN → Rn map-
ping an N � n dimensional parameter vector C to an n
dimensional signal. We take G to be the deep decoder, a
simple un-trained convolutional network, defined formally
in Section 2. We emphasize that G is an un-trained neural
networks that is randomly initialized and has never seen any
training data. To reconstruct the signal from its measure-
ments we fit a compressed version of the generator output
to these measurements via randomly initialized gradient
descent on the loss

L(C) =
1

2
‖AG(C)− y‖22. (2)

Let Ĉ denote the solution found by gradient descent. The
signal estimate can then be calculated as x̂ = G(Ĉ).

A number of recent papers have shown that with the deep
image prior (a convolutional autoencoder) or the deep de-
coder (a convolutional generator) as a priorG, this approach
is rather effective (Veen et al., 2018; Jagatap & Hegde,
2019; Heckel, 2019). Most recently Arora et al. (Arora
et al., 2020) have shown that this approach significantly
improves upon classical compressive sensing methods (`1-
regularization and total-variation norm minimization) for
accelerating multi-coil magnetic resonance imaging, which
is arguably one of the most prominent real-world application
of compressive sensing.

The generator G is over-parameterized and can express any
image x∗, including unstructured noise. Nevertheless, typi-
cally no further regularization in the form of early stopping
the optimization is necessary. We demonstrate this phe-
nomenon in Figure 1. This figure shows that running gradi-
ent descent on the loss L(C) eventually yields an estimate
that is very close to the original image. This is surprising
because i) there is no additional training data and ii) even
though the generator G can fit any image, including noise,
gradient descent still finds an image close to the original
one.

1.2. Contributions

The main contribution of this paper is to show that un-
trained convolutional image priors provably enable recov-
ery of natural images from a few random linear measure-
ments. This holds by simply running gradient descent until
convergence—without any further regularization. More
specifically, we show that fitting an over-parameterized con-
volutional network with fixed convolutions (via gradient
descent) to random measurements of a smooth signal es-
sentially recovers that signal. Furthermore, the required
number of measurements is commensurate to how smooth
the signal is with more measurements required when the
signal has “high-frequency” components. In more detail:

• Suppose we have m-linear measurements y =
Ax∗,A ∈ Rm×n of an unknown signal x∗ with A
a Gaussian measurement matrix. Furthermore, assume
that the signal x∗ is p-smooth, in the sense that it can
be represented as a linear combination of the p lowest
frequency orthonormal trigonometric basis functions
w1, . . . ,wn ∈ Rn as

x∗ =

p∑
i=1

wi 〈wi,x
∗〉 .

We plot these trigonometric basis functions in Figure 2
and formally define them later on in Section 4. Note
that the smaller p, the smoother the signal x∗ is, thus p
is a measure of smoothness.

Our main result shows that the estimate C∞, obtained
by running gradient descent on the loss (2) until con-
vergence, yields an output G(C∞) which is very close
to x∗, i.e., G(C∞) ≈ x∗. This holds as soon as
the number of measurements exceeds the degrees of
smoothness present in the signal (p). Since natural
images are approximately smooth, this results provides
a theoretical explanation why compressive sensing on
natural images with over-parameterized convolutional
generators works so well (see (Veen et al., 2018; Ja-
gatap & Hegde, 2019; Heckel, 2019; Arora et al., 2020)
for corresponding empirical results).

• In a nutshell, our main insight is that the behavior of
large over-parameterized neural networks is dictated
by the spectral properties of their Jacobian mapping.
For the convolutional generators considered in this
paper, the associated Jacobian matrix has singular vec-
tors that can be well approximated by the orthonormal
trigonometric basis function and singular values that
decay very quickly from the low-frequency to the high-
frequency trigonometric basis functions. Specifically,
the associated singular values decay approximately ge-
ometrically.
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Figure 1. Compressive sensing of two different images x∗ displayed on the right with a random matrix A ∈ Rm×n,m = n/4, from
the measurement y = Ax∗. Panel (a) shows the loss at iteration t, i.e., 1

2
‖AG(Ct)− y‖22, and panel (b) is the loss with respect to the

original image, i.e., ‖G(Ct)− x∗‖22. Here, G is a 5-layer deep decoder (Heckel & Hand, 2019); a convolutional network with fixed
convolutional filters. The figure looks qualitatively the same if we take G as the deep image prior (Ulyanov et al., 2018), a U-net like
convolutional autoencoder. It can be seen that early stopping is not required: gradient descent converges to a good solution, and early
stopping does not improve performance for this example. Moreover, the simple and smooth image (blue) achieves a smaller loss with the
same number of measurements than the non-smooth grass texture (red). Both features are captured by our theory.

To prove our result, we first characterize the least-
squares solution of a randomly sketched least-squares
problem with a design matrix with a decaying spec-
trum. To prove the result for convolutional generators
we show that this non-linear learning problem behaves
like an associated linear model with the above spec-
tral characteristics. We then conclude the proof for
the corresponding convolutional generator, by showing
that the solutions obtained by running gradient descent
on the non-linear problem is close to that obtained by
running gradient descent on the linear problem.

• In order to develop a better understanding of com-
pressive sensing with untrained priors, we also carry
out compressive sensing experiments for accelerating
magnetic resonance imaging (MRI). Our experiments
corroborate our theoretical finding that simply iterating
until convergence is effective. This also suggests that
there is little or no benefit to additional regularization.

Our paper is organized as follows: We start by stating the
convolutional architecture considered in this paper in Sec-
tion 2. In Section 3 we study the reconstruction of a signal
from few a measurements with a linear over-parameterized
generator to form intuition. In Section 4 we state our main
results for signal recovery with convolutional generators.
Section 5 contains our numerical result for MRI imaging.
We conclude the paper with related work and a brief proof
sketch, all formal proofs are deferred to the Appendix.

1 2

6 21

Figure 2. The 1st, 2nd, 6th, and 21st trigonometric basis functions
in dimension n = 300.

2. Convolutional generators
A convolutional generator generates an image through con-
volutional operations and applications of non-linearities. In
this paper, we study a two-layer convolutional generator
G : Rnk×n → Rn theoretically. The generator has the form

G(C) = ReLU(UC)v. (3)

Here, v = [1, . . . , 1,−1, . . . ,−1]/
√
k are the fixed weights

of the output layer, of which half are positive and the other
half are negative, and C ∈ Rn×k is the coefficient matrix
of the generator, corresponding to the weights in the first
layer of the network. Critical for the performance of the
generator is the convolutional operation with a fixed kernel
u, implemented through multiplication with the circulant
matrix U ∈ Rn×n.

This architecture is a two-dimensional version of the deep
decoder (Heckel & Hand, 2019). The deep decoder in turn
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is a sub-set of the deep image prior (Ulyanov et al., 2018)
and the U-net (Ronneberger et al., 2015), as commented on
below.

The deep decoder with d layers (typically, d = 4, 5, 6) is
defined as

G(C) = ReLU(UBdCd)v, (4)

where

Bi+1 = cn(ReLU(UiBiCi)), i = 0, . . . , d− 1.

Here cn(·) is a channel normalization operation, which
normalizes each channel/column of the volume/matrix
ReLU(UiBiCi) ∈ Rni×k individually and can be viewed
as a special case of the batch normalization operation. Note
that if the signal to be generated is an image and thus two-
dimensional (ni ∈ Z2), then Bi is a three-dimensional ten-
sor consisting of k many channels, and if the signal is one-
dimensional (ni ∈ Z), those tensors are two-dimensional
and can be viewed as matrices consisting of k many columns
(or channels). Moreover, B0 is a fixed input tensor, which
we assume to have full row rank. The parameters of the deep
decoder are the weight matrices C1, . . . ,Cd ∈ Rk×k. Mul-
tiplication with those weight matrices is performing linear
combinations of the channels, which in turn is equivalent to
performing 1x1-convolutions.

For d = 2, the deep decoder reduces to the two-dimensional
version in (3). To see this, note that for d = 2, because B0

has full column rank, optimizing over B0C0 ∈ Rn×k is
equivalent to optimizing over C ∈ Rn×k instead.

Finally, as mentioned before, the deep decoder can be
viewed as the relevant part of a convolutional generator to
function as an image prior. It can be deduced from a convo-
lutional autoencoder (such as the deep image prior (Ulyanov
et al., 2018) and the U-net (Ronneberger et al., 2015)) by
removing the encoder part, any skip connections, and most
surprisingly, the trainable convolutional filters of spatial
extent larger than one. As demonstrated in (Heckel &
Soltanolkotabi, 2020), the critical aspect for an un-trained
deep image prior are the convolutions with fixed convolu-
tional kernels, implemented here by the operator U.

3. Signal recovery with over-parameterized
linear generators

Consider an over-parameterized linear generator G̃(c) =
Jc defined by a wide, full-rank, generator matrix J ∈
Rn×N , N ≥ n, and an arbitrary and unknown signal
x∗ ∈ Rn. Because J has full rank, the signal can be ex-
pressed as x∗ = Jc∗. However, the coefficient vector c∗

in this representation is non-unique, as J is a wide matrix
containing more columns than rows. We observe m linear

measurements of the unknown signal of the form

y = Ax∗,

where A ∈ Rm×n is a wide (m < n) Gaussian measure-
ment matrix, with iid N (0, 1/m) entries. We note that with
this variance, norms are approximately preserved (i.e., for a
fixed z, with high probability ‖z‖2 ≈ ‖Az‖2).

Our goal is to estimate the signal x∗ based on the measure-
ment y. We estimate the signal x∗ by first computing a
coefficient estimate ĉ by minimizing the loss

L(c) =
1

2
‖AJc− y‖22,

via running gradient descent with sufficiently small step
size until convergence. We then estimate the signal via
x̂ = Jĉ. Since gradient descent applied on a least-squares
problem yields the minimum-norm solution, the estimate ĉ
can equivalently be expressed as

ĉ = arg min
c
‖c‖22 subject to AJc = y. (5)

In closed form, ĉ is given as

ĉ = (AJ)
†
AJc∗ = PJTAT c∗,

where (AJ)
† is the pseudo-inverse of AJ, and PJTAT is

a orthogonal projection operator onto the range of (AJ)
T .

Thus, the signal estimation error is

x̂− x∗ = J(ĉ− c∗) = J(I−PJTAT )c∗. (6)

The following theorem characterizes this signal estimation
error.

Theorem 1. Let A ∈ Rm×n be a random Gaussian ma-
trix with m ≥ 12, and let w1, . . . ,wn be the left singular
vectors of J with associated singular values σ1 ≥ . . . ≥
σn. Then, for any x∗ ∈ Rn, with probability at least
1 − 3e−1/2m, the signal estimate x̂ = Jĉ based on the
measurement y = Ax∗, with the coefficient estimate ĉ(y)
defined in (5), obeys

‖x̂− x∗‖22 ≤ C

(
n∑
i=1

1

σ2
i

〈wi,x
∗〉2
) ∑
i>2m/3

σ2
i . (7)

Here, C is a fixed numerical constant.

The proof, given in the appendix, relies on arguments
from (Halko et al., 2011, Sec. 8 and Sec. 9) developed for
approximating low-rank matrices through random sampling.

The theorem guarantees that the error in estimating the
signal x∗ from compressive measurements y = Ax∗ is
small provided that two conditions are satisfied:
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(i) The signal x∗ lies (approximately) in the span of the
leading O(m) singular vectors of J, where m is the
number of linear measurements.

(ii) The singular values of the generator matrix J decay
sufficiently fast (for example geometrically).

To see this, let us consider a concrete example. Suppose
the singular values decay geometrically, i.e., σ2

i = γi for
some γ ∈ (0, 1). Moreover, suppose that the signal x∗ lies
in the span of the leading m/3 singular values of J, i.e.,
x∗ ∈ span(w1, . . . ,wm/3). Then, Theorem 1 guarantees
that the estimate x̂ based on m random linear measurements
obeys

‖x̂− x∗‖22 ≤ C
γm/3

1− γ
‖x∗‖22. (8)

Here, we used that the first term in the right-hand-side of (1)
is bounded by 1/σ2

m/3‖x
∗‖22, using that x∗ is in the span of

the leading singular vectors, and that
∑
i>2m/3 σ

2
i ≤

γ2m/3

1−γ ,
by the formula for a geometric series. The bound (8) is very
small provided that γ is slightly below one (since γm/3

decays exponentially)—thus guaranteeing almost perfect
recovery of a signal that is aligned with the leading singular
vectors of J.

4. Main results for compressive sensing with
convolutional generators

We are now ready to state our main results for compressive
sensing with convolutional generators. We consider the
non-linear least-squares objective

L(C) =
1

2
‖AG(C)− y‖22,

where A ∈ Rm×n,m ≤ n, is a Gaussian random ma-
trix with iid N (0, 1/m) entries and G(C) is the two-layer
decoder network defined in section 2. We minimize this
objective by running gradient descent with a constant step-
size η, starting from a random initialization C0, with entries
drawn iid from a Gaussian distribution N (0, ω2), and with
variance ω2 specified later. The coefficients at iterations
t = 1, 2, . . . are given by

Ct+1 = Ct − η∇L(Ct). (9)

In the previous section we studied a linear generator with
generator matrix J with quickly decaying spectrum. In this
section we extend the insights from the previous section to
the non-linear case by replacing the role of the generator
matrix J with the Jacobian of the non-linear generator G,
defined as [J (C)]ij = ∂

∂ci
[G(C)]j . In contrast to the linear

case, however, the Jacobian changes across iterations of

gradient descent. Nevertheless, we can account for these
changes in the Jacobian in our analysis.

As found in (Heckel & Soltanolkotabi, 2020), for the two-
layer deep decoder that we consider, the left singular vectors
of the Jacobian can be well approximated by the trigono-
metric basis function w1, . . . ,wn ∈ Rn plotted in Figure 2,
and defined as

[wi]j =
1√
n


1 i = 0√

2 cos(2πji/n) i = 1, . . . , n/2− 1

(−1)j i = n/2√
2 sin(2πji/n) i = n/2 + 1, . . . , n− 1

.

(10)

Moreover, the singular values of the Jacobian throughout
the iterates can be well approximated by associated values
that only depend on the convolution kernel u associated
with the convolution operator U. Those values σ ∈ Rn are
given by

σ = ‖u‖2

√√√√∣∣∣∣∣Fg
(

u ~ u

‖u‖22

)∣∣∣∣∣ (11)

with

g(z) =
1

2

(
1− cos−1 (z)

π

)
z.

Here, for two vectors u,v ∈ Rn, u ~ v denotes their circu-
lar convolution, F is the discrete Fourier transform matrix,
and the scalar non-linearity g is applied entrywise. As a
concrete relevant example, in Figure 3 we depict the triangu-
lar kernel that is used in the original deep decoder network.
The most important observation from this plot is that the as-
sociated weights σ = [σ1, . . . , σn] decay very fast, namely
geometrically.

With those definition, we are now ready to state our main
result.

Theorem 2. Let A ∈ Rm×n be a random Gaussian ma-
trix with m ≥ 12 and suppose we are given a linear mea-
surement y = Ax∗ of an arbitrary signal x∗ ∈ Rn. Con-
sider a two layer generator networkG(C) = ReLU(UC)v,
C ∈ Rn×k, with

k ≥ Cu
m

ξ8
, (12)

channels and with convolutional kernel u of the convolu-
tional operator U and associated weights σ = [σ1, . . . , σn].
Here, ξ ≤ 1 is arbitrary and Cu is a constant that only de-
pends on the convolutional kernel u. In order to estimate
the signal, we fit the convolutional generator to the signal
by running gradient descent starting from a random ini-
tialization C0 with i.i.d. N (0, ω2), entries, ω ∝ ‖y‖2√

n
, and
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Figure 3. Triangular kernels and the weights associated to low-
frequency trigonometric functions they induce, for a generator
network of output dimension n = 300. The wider the kernel is,
the more the weights are concentrated towards the low-frequency
components of the signal. Note that the lower singular values
decay geometrically (as evident from the straight line in the log-
log plot)—as the singular values in our example in Section 3.

sufficiently small stepsize to the loss 1
2‖AG(C)− y‖22 until

convergence. Then, with high probability, the reconstruction
error with parameters C∞ at convergence obeys

‖G(C∞)− x∗‖22 ≤C

(
n∑
i=1

1

σ2
i

〈wi,x
∗〉2
) ∑
i>2m/3

σ2
i + ξ2‖x∗‖22.

(13)

Here, C is a fixed numerical constant.

Theorem 2 establishes that a convolutional generator en-
ables the reconstruction of a natural signal from a few linear
measurements. To see this, note that a good model for
a natural image is a smooth signal, i.e., a signal that can
be well-approximated by few leading trigonometric basis
functions. More concretely, Figure 4 in (Simoncelli & Ol-
shausen, 2001) shows that the power spectrum of a natural
image (i.e., the energy distribution by frequency) decays
rapidly from low frequencies to high frequencies.

Thus it is reasonably to assume that the signal x∗ can be
represented with few of the trigonometric basis function; for
concreteness say that x∗ lies in the span of w1, . . . ,wm/3.
Next, recall from Figure 3 that the weights associated with
a triangular kernel decay geometrically (i.e., σ2

i = γi for
some γ ∈ (0, 1)). Thus, from the same argument as used
for (8), the bound (13) established by the theorem yields
that the reconstruction error is bounded by

‖G(C∞)− x∗‖22 ≤ C
γm/3

1− γ
‖x∗‖22 + ξ2‖x∗‖22.

Thus our theorem guarantees the recovery of a sufficiently
smooth signal by optimizing over the range of the generator.
In particular if the signal is p-smooth, i.e., lies in the span
of w1, . . . ,wp, then O(p) measurements are sufficient to
provide an accurate estimate.

100 101 102
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at t = 50

at t = 3500

Figure 4. The singular value distribution of the Jacobian of a four-
layer deep decoder at different iterations of gradient descent; the
spectrum changes only slightly, and the singular values decay
slightly faster than geometrically.

4.1. Beyond two layer networks

Our main theorem from the previous section relies on two
critical ingredients:

(i) The finding from (Heckel & Soltanolkotabi, 2020) that
the leading singular vectors of the Jacobian of a two-
layer deep decoder are approximately the trigonomet-
ric basis function throughout all iterations of gradient
descent.

(ii) The weights σ1, . . . , σn associated with the trigono-
metric basis functions decaying sufficiently fast, specif-
ically approximately geometric. That is required for
gradient descent applied to fitting m compressive mea-
surements until convergence to (approximately) only
fit the signal to the leading O(m) trigonometric basis
functions.

Those results extend to deeper networks as follows. First, as
shown numerically in (Heckel & Soltanolkotabi, 2020), the
leading singular vectors of the Jacobian of a four-layer deep
decoder are also close to the trigonometric basis functions,
and change only little across iterations. Second, as shown
in Figure 4, the singular values of a four-layer deep decoder
also decay (at least) geometrically, and the spectrum changes
only little across iterations. Thus, the implications of our
theory continue to apply for deeper deep decoders.

5. Numerical experiments for magnetic
resonance imaging

In the final part of our paper we consider accelerating mag-
netic resonance imaging (MRI), one of the major application
of compressive sensing. MRI is a medical imaging tech-
nique where measurements of an object can only be taken
in the Fourier domain, referred to as k-space. If the full
k-space measurement is collected, an image of the object
can be computed almost perfectly (up the noise inherent in
the measurement process). In order to accelerate the imag-
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ing process, it is common to only collect a small part of
the k-space, which corresponds to taking few linear Fourier
measurements; or in the notation of our paper, a measure-
ment matrix A with subsampled rows of the Fourier matrix.

In order to understand whether our main finding—that sig-
nal reconstruction from compressive measurements without
further regularization is possible—applies in practice, we
consider the problem of reconstructing an image from few
k-space measurements. We consider reconstruction of an
image from 8-fold undersampled k-space measurements
from the fastMRI dataset, recently released by facebook and
NYU (Zbontar et al., 2018). We reconstruct with a d = 5
layer and highly over-parameterized deep decoder. Figure 5
shows the corresponding loss curves. It can be seen that
early stopping at the optimal early stopping point gives only
marginally better performance than when optimizing un-
til convergence, and in addition the optimal early stopping
point is unknown in practice (because we do not have access
to a reconstruction from a full measurement).

6. Related literature
In this paper we focus on un-trained neural network for solv-
ing inverse problems. In contrast a large body of recent re-
sult concentrates on using trained deep convolutional neural
networks for image recovery and reconstruction. Training
based deep learning methods for solving inverse problems
are either trained end-to-end for tasks like denoising (Burger
et al., 2012; Zhang et al., 2017), or are based on learning
a generative image model (by training an autoencoder or
GAN (Hinton & Salakhutdinov, 2006; Goodfellow et al.,
2014)) and then using the resulting image models to reg-
ularize problems such as compressed sensing (Bora et al.,
2017; Hand & Voroninski, 2018; Huang et al., 2018), de-
noising (Heckel et al., 2020), or phase retrieval (Hand et al.,
2018; Shamshad & Ahmed, 2018). In contrast to un-trained
network, where optimization is over the weights of the un-
trained generator, in the aformentioned papers it is over the
input of the (trained) network.

Our proof relies on relating the dynamics of gradient descent
on an over-parameterized network to that of gradient descent
on an associated linear network. This proof technique has
been used in a variety of recent publication (Soltanolkotabi
et al., 2018; Venturi et al., 2019; Du et al., 2018; Oymak &
Soltanolkotabi, 2019a;b; Arora et al., 2019; Oymak et al.,
2019; Basri et al., 2019; Li et al., 2019). Most related to our
work is the recent paper (Heckel & Soltanolkotabi, 2020)
that shows that the deep decoder enables denoising. Neither
of the publications, however, addresses compressive sensing
or reconstruction from randomly sketched data, and most of
our technical results are specific to this setup.

Finally note that regularizing linear models with gradient

descent via early stopping has a rich history in the signal
processing community. In the 50s, Landweber proposed
to recover a signal from linear measurements via gradient
descent (Landweber, 1951) which became known as the
Landweber algorithm in the inverse problems community.
Subsequent work in this literature proposed to early-stop
the Landweber iterations (i.e., gradient descent) in order to
regularize ill-posed inverse problems (Trussell & Civanlar,
1985).

7. Proof sketch
In this section we provide a sketch of our argument. Our
statement and formal proof pertains to the two-layer case,
in this section we provide the sketch for the general case
where G(θ) is a generic network with a N -dimensional
parameter vector θ, and then comment on how this general
proof strategy is particularized to the two layer case.

Given a measurement y, we characterize the solution of run-
ning gradient descent with fixed step size η on the nonlinear
least-squares objective

L(θ) =
1

2
‖f(θ)− y‖22, f(θ) = AG(θ),

starting from an initial point θ0. The updates take the form

θt+1 = θt − η∇L(θt), ∇L(θ) = J T (θ)(f(θ)− y),
(14)

where J (θ) is the Jacobian of f at θ. We start gradient
descent from a random initialization θ0 with iid N (0, ω)
entries. Central to our analysis are the following objects.
Let JG(θ) ∈ Rn×N be the Jacobian of G(θ) and define
JG as a reference generator Jacobian that we set to a matrix
that is very close to the generator Jacobian at initialization,
i.e., JG ≈ JG(θ0). For the two-layer network for which
we state a precise result, this matrix only depends on the
convolutional operator U.

Relevant for the dynamics of gradient descent, however, are
the corresponding sketched original and reference Jacobians,
defined as

J (θ) = AJG(θ) ∈ Rm×N and J = AJG ∈ Rm×N .

Since we chose JG ≈ JG(θ0), we also have J ≈ J (θ0).

7.1. Closeness to an associated linear problem

To characterized the behavior of the gradient descent up-
dates in (22), we relate the non-linear least squares problem
to a linearized one in a ball around the initialization θ0.
This general strategy has been utilized in a number of recent
publications (Soltanolkotabi et al., 2018; Du et al., 2018;
Heckel & Soltanolkotabi, 2020; Arora et al., 2019; Oymak
& Soltanolkotabi, 2019b; Oymak et al., 2019).
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Figure 5. Compressive sensing MRI: MSE of reconstructing an image from 8-fold undersampled k-space MRI measurements. While
early stopping is not absolutely necessary, stopping at about 2000 iterations slightly improves performance relative to optimizing until
convergence.

We define the associated linearized least-squares problem as

Llin(θ) =
1

2
‖f(θ0) + J(θ − θ0)− y‖22. (15)

Code
Code to reproduce the experiments is available at https:
//github.com/MLI-lab/cs_deep_decoder.
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