Relative Positional Encoding for Transformers with Linear Complexity

Supplementary Material

Introduction

This document comprises additional information that could
not be included in the paper due to space constraints. It
is structured as follows. In appendix A, we provide some
further theoretical developments. In appendix B, we de-
tail the experimental setup on the Long Range Arena. In
appendix C, we detail our music generation experiments.
Finally, we provide additional results in appendix D.

Our source code is available at:
https://github.com/aliutkus/spe/

See also the companion website:

https://cifkao.github.io/spe/

A. Theory
A.1. Convolutional SPE Leads to Vanishing Attention

m>n n
I

Figure 1. If @? and ®X have length P, Q, and K 4 for convolu-
tional SPE depend on the noise Z4 over the intervals [m — P : m)]
and [n — P : n], respectively. Their correlation depends only on
the shaded area, due to whiteness of Z4. Whenever |m — n| > P,
the two signals are uncorrelated.

In the main document, we claim that the convolutional vari-
ant leads to vanishing attention. We shortly prove this claim
here. For ease of notation, the proof is given in the 1D case,
but extends trivially to higher dimensions. The core idea is
illustrated in Figure 1. Convolutional SPE yields:

P

Qulm.r) =" Za(m — p,1)63 (p),
p=0

fd(nv T) = Z Zd(n - D T)d)é{(p)a
p=0

where Z; is a white Gaussian noise process, i.e.
E[Zi(m,r)Za(m',7)] = Smms. Omitting the dependency
on 7 for notational convenience (all realizations are indepen-
dent), we can compute the positional attention as:

where only the (p, 7) values such that n—p = m —7 remain,
all other cross terms E[Z4(m)Z;(m’ # m)] disappearing
due to whiteness of Z,;. Filters are taken as 0-valued outside
of [0 : P]. As can be seen, whenever |m — n| > P, we get
Pa(m,n) = 0, because X (p + (m —n)) = 0. O

A.2. Complexity

In this section, we detail the additional complexity caused
by the proposed SPE method.

* Sinusoidal SPE first requires the computation of the
modulation matrices 2 for each feature dimension d =
1...D, which has a O(2NK) complexity. Then, this
matrix must be multiplied by the noise matrix Z, with
shape 2K x R, leading to an overall complexity of
O(DRNK?). Since K is typically very small in our
experiments, SineSPE can be seen as quite light in terms
of both time and space complexity.

* Convolutional SPE involves drawing a new noise signal
Zq,. of length N for each d and r, and convolving it with
the filters qbg and (],’)fl(, whose length is written P.

In the 1D case, this leads to an overall time complexity of
O(DRN P), which can be replaced by O(DRN log N)

https://github.com/aliutkus/spe/
https://cifkao.github.io/spe/

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

when operating the convolutions in the frequency domain,
which is advantageous for long filters.
In higher dimensions, say 2D, this becomes
O(DRN;N3PP,) in the original domain and
O(DRN;Nslog N1log Ny) in the frequency domain,
where (N1, No) and (Py, P») are the shapes of noise and
filters, respectively.

* The bottleneck of gating is the generation of random
noise €4, which has complexity O(DR).

Note that this complexities of course must be multiplied by
the number of heads considered, up to 8 in our experiments.

As can be seen, the complexities of the sinusoidal and con-
volutional variants are similar, depending on the length P
of the filters and the number K of sinusoids.

Still, other aspects come into the play. First, the convolu-
tional version requires generating noise whose size scales
as IV, while the sinusoidal version requires much smaller
2K -large noise matrices. Second, only a very small number
of sinusoids was required in our experiments, whereas the
convolutional version required longer contexts, so that we
often had 2K < P in practice. Finally, although this may
change in the near future, deep learning frameworks like Py-
Torch do not easily integrate convolutions in the frequency
domain.

Sample-wise noise sharing. In practice, SPEs do not need
to be drawn anew for each example. The most straightfor-
ward trick to reduce memory and computational footprint of
the method is to share Q and K among all examples in each
mini-batch, as we do in all our experiments. This can bring
significant memory savings when SPE is used as a drop-in
addition to networks trained with large batch sizes.

B. Experimental Setup: Long-Range Arena

An overview of the Long-Range Arena (Tay et al., 2021)
tasks is given in Table 1. We do not include Pathfinder
(a synthetic image classification task) or its harder variant
Pathfinder-X in this paper as we were unable to reproduce
the results of Tay et al. on this task. All the datasets are
described in detail in Tay et al. and available from the official
LRA repository.'

In all LRA experiments, we employ gated SPE with R €
{32,64}. We consistently use K = 10 for sinusoidal (peri-
odic) SPE and filters of length 128 for convolutional SPE.
For convolutional SPE, we share 6 and K across all layers
(but not across attention heads); for sinusoidal SPE, Q and
K are unique to each layer and head; in both cases, layer-
specific gating is employed. Baseline experiments employ
the same absolute positional encodings as Tay et al. (learn-

"https://github.com/google-research/
long-range—arena

able APE for Image and sinusoidal APE for the remaining
tasks). In models employing SPE, APE is removed.

The numbers of parameters of the models presented in the
main document are shown in Table 2. We can see that
SPE-based models have at most 3.1 % more parameters than
the baselines. In the Image column, the numbers for SPE-
based models are about 50 % lower due to the fact that the
baselines on this task employ learnable APE.

We use code from the official LRA repository, including
the authors’ Transformer implementation, modified as nec-
essary to incorporate SPE. We keep the same training con-
figuration as provided by the LRA authors, but decrease
the batch sizes (from 256 to 96 for Image and from 32 to 8
for the rest) and learning rates so as to fit within 16 GB of
GPU memory. Our modified code and configuration files
are available in our source code repository.

B.1. Resource usage

The typical training times of the LRA models are displayed
in Table 3. Note that the times may not be comparable
across models or tasks due to evaluation (which may be
time-consuming) being done more frequently in some runs
than others.

The total training time was 1405 h (189 runs in total), out of
which 273 h (61 runs) were spent on attempts to reproduce
the results of Tay et al. (2021) using Performer-softmax,
Linear Transformer-ReLU and vanilla Transformer. Some
of these preliminary experiments were distributed over 1-3
Tesla V100 GPUs with 32 GB of memory each. The final
models were all trained on a single Tesla V100 or P100
GPU with 16 GB of memory.

C. Experimental Setup: Music Generation

Our music Performers are implemented using the
pytorch-fast-transformers package,” modified
as necessary to incorporate SPE. The modified code and
configuration files are available in our code repository.

All models have 24 layers with model dimension 512, 8
attention heads and 2 048 feed-forward units, which amount
to ~80 million trainable parameters. In models that use SPE,
Q and K are shared across all layers (but not across attention
heads); layer-specific gating is employed for models trained
with gated SPE.

The models are trained with the Adam optimizer. We sched-
ule the learning rate with linear warmup, followed by cosine
decay. Full details of hyperparameters can be found in the
provided configuration files.

https://github.com/idiap/
fast-transformers

https://github.com/google-research/long-range-arena
https://github.com/google-research/long-range-arena
https://github.com/idiap/fast-transformers
https://github.com/idiap/fast-transformers

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Table 1. Long-Range Arena classification tasks used in this paper.

Name Dataset Input Length Goal # classes
ListOps ListOps expression with operations on lists of digits 2k evaluate expression 10
Text IMDB movie review as byte string 8k classify sentiment 2
Retrieval AAN pair of articles as byte strings 2 x4k detect citation link 2
Image CIFAR10 8-bit gray-scale 32 x 32 image as byte string 1k recognize object 10

Table 2. Numbers of parameters of LRA models, identical for both Performer-softmax and Linear Transformer-ReLU.

ListOps Text Retrieval Image
Baseline (APE) 19982858 3486722 1087618 248458
+ sineSPE 20078090 3518466 1103490 119242
+ convSPE 20117002 3553282 1120898 133706

C.1. Pop Piano Music Generation

Training data. The pop piano MIDI dataset we use is
derived from the one provided in Hsiao et al. (2021), open-
sourced on GitHub.? It consists of 1,747 pure piano per-
formances of various Japanese, Korean, and Western pop
songs, amounting to a total duration of ~100 hours. All the
songs are in 4/4 time signature, namely four beats per bar
(measure). We leave 5% (87 songs) as the validation set.

According to Hsiao et al. (2021), the piano performances
are originally collected from the Internet in the MP3 (audio)
format. Hsiao et al. further employed Onsets and Frames
piano transcription (Hawthorne et al., 2018), madmom beat
tracking tool (Bock et al., 2016), and chorder rule-based
chord detection* to transcribe the audio into MIDI format
with tempo, beat, and chord information.

Data representation. The representation adopted here is
largely identical to the Revamped MIDI-derived (REMI)
encoding by Huang & Yang (2020), except that an extended
set of chord tokens (described below) is used. REMI
encodes a piano piece into a sequence composed of two
types, metrical and note, of tokens. The metrical tokens are:

* bar: Marks the start of a musical bar.

* subbeat: Marks the musical timing within a bar. A bar
is divided into 16 subbeats, which is equivalent to 4
beats. This symbolic timing provides an explicit time grid
for sequence models to model music.

* tempo: Determines the pace (in beats per minute, or
bpm) at which the piece is played, varied per bar. The
range of tempo tokens is [32,224] bpm, in steps of 3
bpm for quantization.

Shttps://github.com/YatingMusic/
compound-word-transformer

*https://github.com/joshuachang2311/
chorder

The note tokens are:

* pitch: Marks a note played. The 88 pitch-es corre-
spond to each key on the piano.

* duration: Denotes the length of a played note, ranging
from 1/2 to 16 subbeats, in steps of 1/2 subbeat.

* volume (or, velocity): Denotes how loud a note is played.
A total of 24 volume levels are considered.

* chord: Marks a change on the accompanying chord.
Each chord is described by its root note and quality,
e.g., C-Maj7, E-min. A total of 133 distinct chord
tokens are found in the dataset.

Please note that a single note played is represented by a co-
occurring triple of (pitch, duration, volume). The
aforementioned tokens constitute a vocabulary of size ~340
for our REMI encoding. On average, we need a sequence
with 5300 tokens to represent a song.

Training and inference. In each training epoch, we ran-
domly crop a segment of length 2 048 from each sample,
and shift the pitches of the entire segment by —6 to 6 semi-
tones randomly (this is called transposition in music) as
data augmentation. We use batch size = 4, and set the learn-
ing rate to 0.0001 for APE and 0.0002 for all SPE models.
For sineSPE, we choose the number of sines KX = 5; for
convSPE, the convolutional filter size is set to be 128, 512
for the gated and ungated variants respectively.

Detailed resource usage of each model is shown in Table 4.

During inference, we employ nucleus sampling (Holtzman
et al., 2019) with p = 0.9 and softmax temperature ¢ = 1.2.
No post-processing on enforcing the grammatical correct-
ness of the generated sequence is done.

Validation loss of the models trained on this task is listed in
Table 5. On this metric, our convSPE variant performs the

https://github.com/YatingMusic/compound-word-transformer
https://github.com/YatingMusic/compound-word-transformer
https://github.com/joshuachang2311/chorder
https://github.com/joshuachang2311/chorder

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Table 3. Training times for LRA models (hours). Numbers in parentheses are from Tesla P100 GPUs, the rest from Tesla V100 GPUs.

ListOps Text Retrieval Image
Performer-softmax 1.1 4.8 1.2 4.8
Performer-softmax + sineSPE “4.2) 11.7 2.9 5.0
Performer-softmax + convSPE 8.9 232 21.9 53
Linear Transformer-ReLU 0.6 (3.2 0.7 4.8
Linear Transformer-ReLU + sineSPE 2.0 6.8 2.1 5.0
Linear Transformer-ReLLU + convSPE 15.0 18.6 19.0 5.3

Table 4. Resource usage of models trained on pop piano music
generation, on a Tesla V100 GPU with 32GB of memory. # of
epochs and time to the checkpoint with the lowest validation loss
are displayed. (ug: trained without SPE gating.)

epochs Time Memory
APE 72 9.74h 14.34GB
sineSPE 78 17.92h 29.80GB
sineSPE (ug) 78 16.31h 18.29GB
convSPE 80 28.02h 30.01GB
convSPE (ug) 68 24.76h 18.99GB

Table 5. Validation cross-entropy for models trained for pop piano
music generation (mean and standard deviation) over all sequences.
(ug: trained without SPE gating). Trained: pos < 2048, Extrapo-
lation: 2048 < pos < 3072.

Positions Trained Extrapolation
APE 1.721 +£0.148 3.215 +0.200
sineSPE 1.694 + 0.148 2.396 + 0.359
sineSPE (ug) 1.754 +0.146 1.965 + 0.170
convSPE 1.685 + 0.151 1.932 +0.225
convSPE (ug) 1.733 £0.145 1.805 £+ 0.163

best both within the trained positions and on extrapolation.

C.2. Groove Continuation

Training data. The Groove2Groove MIDI dataset’ con-
sists of accompaniments generated by the Band-in-a-Box
software (BIAB).® We only use the training section of the
Groove2Groove MIDI dataset and perform a custom train-
ing/validation/test split such that each section contains a
unique set of BIAB styles (2761 for training and 50 each
for validation and testing). The code necessary to download,
pre-process and split the dataset is included in the repository.

We convert each accompaniment to a trio consisting of bass,

‘http://doi.org/10.5281/zenodo.3958000
*https://www.pgmusic.com/

drums and another randomly selected accompaniment track
(e.g. piano, guitar). We then perform random data augmenta-
tion by skipping measures at the beginning, dropping some
of the instruments, and transposition (pitch-shifting by —5
to +5 semitones). All randomization is done anew in each
epoch.

Data representation. We use a representation similar to
the one proposed by Cifka et al. (2020), but adapted to
a multi-track (multi-instrument) setting. Specifically, we
encode a piece of music as a sequence of the following types
of event tokens, each with two integer arguments:

* note_on (track, pitch): Beginsanew note at the
given pitch (0-127).

* note_off (track, pitch): Ends the note at the
given pitch (0-127).

e time_shift (beats, offset): Advances current
time by a given number of beats and then sets the offset
within the beat, given as the number of ticks from its
beginning (0—11). Maximum possible shiftis (2, 0).

The track numbers range from 1 to 3, where 1 is always bass
and 2 is always drums. The vocabulary of the model then
consists of 794 tokens (3 x 128 note-ons, 3 x 128 note-offs,
24 time shifts, and 2 beginning-/end-of-sequence markers).

The main differences to the representation described in Sec-
tion C.1 are a more compact encoding of timing, no repre-
sentation of musical dynamics (for simplicity), and support
for multiple tracks (not originally proposed by Cifka et al.,
2020 but introduced here inspired by Donahue et al., 2019).

Training and inference. During training, each example
is pre-processed and encoded as described above and the
resulting token sequence is truncated to a length of 512. We
train each model for a total of 24 epochs.

At test time, we sample with a softmax temperature of 0.6.
We disallow sampling tokens that would result in invalid
sequences (i.e. spurious note-offs, backward time shifts) in
order to ensure that the generated sequence can be correctly
decoded.

http://doi.org/10.5281/zenodo.3958000
https://www.pgmusic.com/

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Various training details. Hyperparameter tuning was
mostly performed in preliminary experiments (~100 runs);
these were mostly done on other variants of the dataset and
with different sequence lengths (ranging from 256 to 20k);
this includes experiments discarded due to bugs discovered
during or after training. Learning rates between 0.0001 and
0.0008 and batch sizes between 1 and 24 were considered.
For SPE, we considered both the gated and ungated vari-
ants with as many realizations as fit in memory (between
16 and 64). Model selection was based on validation loss
and informal perceptual evaluation. Only a minimal attempt
at further learning rate tuning was made for the final set of
models with length 512, which did not appear to be particu-
larly sensitive to it, and we chose to keep the initial learning
rate 0.0004, which was found to perform well in all cases.

The models included in the main document — APE,
sineSPE and convSPE — all use a batch size of 10 and
finished training in about 3 h, 5 h and 6 h, respectively, using
9.7GB, 14.4GB and 14.8 GB of GPU memory. The total
training time including all preliminary experiments was 852
hours.

Evaluation metrics. We use the objective metrics pro-
posed by Cifka et al. (2019; 2020) to measure the style
similarity between the generated continuation and the file
from which the prompt was extracted. Given two pieces
of music, each metric gathers musical event statistics of
the two pieces in histograms called style profiles, and then
computes the cosine similarity between them.

The two metrics used here, onset-duration and time-pitch,
differ in what kind of events they use to construct the style
profile:

» The onset-duration profile is defined as a 2D histogram
relating note onset positions to note durations. More
precisely, for all notes a in a piece of music, it records a
tuple of the form

(start(a) mod 4, end(a) — start(a)) € [0,4) x [0, 2),

where start(a) and end(a) refer to the onset and offset
time of a in beats. The expression start(a) mod 4 then
represents the position of the note onset relative to the
current bar, since all examples in the dataset are in a 4-
beat meter. These tuples are gathered in 24 x 12 histogram
bins (24 for onset time and 12 for duration).

* The time-pitch profile is also obtained as a 2D histogram,
this time capturing time differences and pitch differences
(intervals) between notes. The tuples it considers have the
form

(start(b) — start(a), pitch(b) — pitch(a))
€ [0,4) x {—20,-19,...,20}, a £ b,

where a, b is a pair of notes and pitch(-) represents the
pitch of a note as its MIDI note number (the number of
semitones from C_;). The histogram has 24 x 41 bins
(24 for time lags between 0 and 4 beats and 41 bins for
intervals between —20 and 20 semitones).

In both cases, the 2D histograms are flattened to vectors
before computing cosine similarities.

D. Additional Results

D.1. Attention Visualization: Music Generation

In this section, we display attention patterns produced by
our pop piano music generation models.

Learned positional templates. We share the SPE mod-
ules across all layers of the Performer, but not across the
attention heads, resulting in 512 learned positional kernels
‘Pa) (number of heads x key dimensions per head. In Figure
2, we display 16 randomly picked resulting templates P for
both sineSPE and convSPE, trained with gating. Details
of the two variants are:

¢ sineSPE: We set the number of sines X = 5.
e convSPE: We use filters of size 128.

In accordance with the definition, all of the visualizations
are plotted with the equation P; = GdeT, which we never
need to explicitly compute for linear transformers. From
Figure 2, we can observe that sineSPE learns to exploit a
wide range of frequencies, and that convSPE is effective
within small query-key offsets corresponding to the filter
size, as expected.

Full Attention. Although the full attention matrix A is
not computed in linear transformers, we can still obtain
it offline by multiplying queries and keys through either
A = exp(QK' /v/D) (in the case of APE, where D is the

. . ~sT .
key dimensions per head), or A = exp(QK /v R) (in the
case of SPEs); then apply row-wise softmax operation on A
as normalization.

Here, we present the (softmax-ed) attention matrices in the
1st, 3rd, 12th, 20th, and 24th (last) layers of all the five
models trained on pop piano music generation in Figures
3-7. These are computed from one of each model’s random
from-scratch music generations. To examine the models’
extrapolation ability, we let them generate a sequence of
length 3072, while the training sequence length is only
2048. The attention matrices are lower-triangular due to
causal masking. For better visualization, the color of each
pixel is adjusted through min{1, a,,,%*/0.02°4} in the
plots, where a,,,, € [0, 1] is the softmax-ed attention score.

Figure 3 reveals a major drawback of APE: the attention of

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Head 1, Dim 3 Head 3, Dim 24 Head 5, Dim 41 Head 7, Dim 7 Head 1, Dim 13 Head 3, Dim 51 Head 5, Dim 24 Head 7, Dim 39

RN RN RS

Head 3, Dim 50 Dim 4 Head 7, Dim 4 Head 1, Dim 60 Head 3, Dim 54 Head 5, Dim 46 Head 7, Dim 53

NN N

Head 4, Dim 4 Head 6, Dim 22 Head 2, Dim 13

&

Head 2, Dim 47 Head 4, Dim 29 Head 6, Dim 49 Head 8, Dim 44 Head 2, Dim 28 Head 4, Dim 60 Head 6, Dim 43

\§

(a) sineSPE (b) convSPE

Head 1, Dim 22

Head 8, Dim 7

Head 8, Dim 50

Figure 2. Examples of P, learned by SPE. X- and Y-axes are key and query positions respectively. Max position = 2 048.

Head 2, Dim 33

Head 4, Dim 5 Head 6, Dim 22

Z

%

_
7.
7

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8
Layer 3, Head 1

Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7

.m

Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5

Layer 12, Head 6

Layer 12, Head 8

Layer 12, Head 1 Layer 12, Head 7

N I
< Q
5 <
=]
S w
P T
= o
o [
a o
N N

Layer 20, Head 1 Layer 20, Head 2

Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2

Figure 3. Full attention matrices of APE (baseline). X- and Y-axes are key and query positions respectively. Max position = 3 072.

Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7 Layer 24, Head 8

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Layer 1, Head 1

Layer 3, Head 1

Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7

Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 20, Head 7

Layer 1, Head 8

Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4

Layer 20, Head 1

Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 8

’

\

Layer 24, Head 7

Figure 4. Full attention matrices of sineSPE (with gated SPE). Max token position = 3 072.

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 6

Layer 1, Head 1

Layer 3, Head 1

Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 8

Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7

Layer 3, Head 7

Layer 1, Head 8

Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 8

|
Layer 12, Head 7

Layer 20, Head 7

Layer 12, Head 1 Layer 12, Head 3 Layer 12, Head 5

Layer 12, Head 6

Layer 12, Head 2 Layer 12, Head 4 Layer 12, Head 8
N \ N

N

Layer 20, Head 1

N

Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 5 Layer 20, Head 6

/

AN

Layer 24, Head 4

n

Layer 24, Head 7

Figure 5. Full attention matrices of sineSPE (without SPE gating). Max token position = 3 072.

Layer 24, Head 1 Layer 24, Head 3 Layer 24, Head 6

Layer 24, Head 2 Layer 24, Head 5 Layer 24, Head 8

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4

Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8
N) s

Layer 20, Head 7

Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8

Layer 3, Head 1

NN

Layer 20, Head 4 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 7

Figure 6. Full attention matrices of convSPE (with SPE gating, conv filter size = 128). Max token position = 3 072.

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 6

Layer 20, Head 5
4

Layer 24, Head 6 Layer 24, Head 8

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5

Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 7

NN N

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 1, Head 6 Layer 1, Head 7

Layer 1, Head 8

Layer 3, Head 1 Layer 3, Head 6 Layer 3, Head 8

N

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8
" ™, i \

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7

Figure 7. Full attention matrices of convSPE (without SPE gating, conv filter size = 512). Max token position = 3 072.

Layer 24, Head 8

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

tokens beyond position 2 048 (the training sequence length)
seems to concentrate around 2 048 in earlier layers, rather
than paying global or local attention. Such behavior is not
seen in any of our SPE models. This potentially explains
APE’s poor generalization to long sequences suggested by
the stark increase in validation loss after position 2 048 (see
Figure 3 in the main paper, and Table 5 here).

Next, comparing Figures 4 and 35, it is obvious that gated
SPE gives the model the freedom to switch off PE in some
heads to achieve global attention (see Figure 4), whereas
the attention of ungated sineSPE (Figure 5) largely stays
periodic, which might not be always desirable. The same
can be said for convSPE (Figures 6 and 7). The gated
convSPE is able to look much further back in the middle
layers than its ungated counterpart.

D.2. Attention Visualization: CIFAR10

Figure 8 displays attention maps extracted from models
trained on the LRA CIFARI10 task. Note that these are one-
layer networks, and classification is done by prepending
a special CLS token to the sequence of pixel values and
using the output at this first position as input to a feed-
forward classifier. Consequently, only the attention map
at this single position (which is the one we display here)
matters. (The model is therefore de facto not using self-
attention, but rather attention with a single query and many
keys. This removes the distinction between relative and
absolute positions, which might explain why trainable APE
performs better than SPE on this task.)

D.3. Evaluation of Desired PE Properties

We employ identical word probing and the associated met-
rics introduced in Wang et al. (2021) to compare the trans-
lation invariance and monotonicity properties of APE and
our SPEs. The other properties mentioned in that work,
namely symmetry and direction balance, are not evaluated
here since the attention is uni-directional in our case. The
models are also trained on pop piano music generation.

The metrics are calculated from attention matrices of each
head in the 1st layer, averaged over all possible identical-
token sequences (i.e., a sequence composed of repeated,
same tokens; there are ~340 of them for our REMI vo-
cabulary). To eliminate the impact of applying row-wise
softmax with causal masking on the translation invariance
property, we compute the metrics on the unnormalized at-
tention matrices, i.e., A = exp(QK' /+/D) for APE, and

AT
A = exp(QK /v/R) for SPEs. Various combinations of
query positions and query-key offsets are considered to ex-
amine whether the PE properties stay consistent when we
extrapolate to longer sequences, as well as to look into their
behavior in local and long-range attention spans.

We report the scores of the best-performing (i.e., lowest-
scoring) head of each model in Table 6. From the table,
we can notice that the PE properties of APE often deterio-
rate drastically in cases of extrapolation. On the contrary,
the scores of ungated SPE models, i.e., models in which
we enforce the incorporation of positional information in
every layer, remain remarkably consistent throughout the
positions. The evaluation here provides additional evidence
for the extrapolation capability of SPEs.

D.4. Impact of the Number R of Realizations

In the main document, we discussed how SPE asymptoti-
cally leads to the desired cross-covariance structure as R
grows to infinity. In this section, we empirically study how
performance is affected by that parameter in practice. A
first thing to highlight is that each training batch yields a
new set of realizations for the noise Z 4, so that the network
sees the right attention pattern on average.

However, we may wonder whether how the number of real-
izations IR impacts training and test performance. One can
indeed notice that R may totally be set differently during
training and inference, since it has no impact on the shape
of the actual parameters/structure of the model. For this
reason, we performed an ablation study where we use differ-
ent values for Ry, at training time, resulting in a trained
model, and then evaluate its performance using a possibly
different value 5. The results are displayed in Figure 9.

We can notice that the result achieved with Ry = Rirain
(highlighted in bold) is consistently close to the best result
for the same Ry, and conversely, choosing Rieg # Rirain
often leads to a poor result. In other words, training and test-
ing with the same R appears to be favorable for consistently
good performance.

Another remarkable fact is that a higher R does not seem to
imply better performance, even when Rt = Ryain. On the
contrary, convSPE achieved by far the highest accuracy
with R = 4. This unexpected result seems contradictory
to the fact that it means noisier attention patterns. Further
investigation is required to explain this phenomenon, but we
conjecture that this additional noise in the attention patterns
leads to increased robustness of the trained model, helping
generalization.

References

Bock, S., Korzeniowski, F., Schliiter, J., Krebs, F., and
Widmer, G. Madmom: A new Python audio and music
signal processing library. In Proc. ACM International
Multimedia Conf., pp. 1174-1178, 2016.

Cifka, O., Simsekli, U., and Richard, G. Supervised sym-
bolic music style translation using synthetic data. In

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

F0:014
r0.010
- 0.008
- 0.006
- 0.004
- 0.002
- 0.000

Figure 8. CIFAR10 attention maps for 3 variants of Linear Transformer-ReLU: learnable APE (top), sineSPE (middle), and convSPE
(bottom). Each row displays the input image, followed by attention weights of the 8 respective heads for each pixel, with the special CLS
token as the query.

Supplementary Material: Relative Positional Encoding for Transformers with Linear Complexity

Table 6. Evaluation of PEs metrics. T : translation invariance, M: monotonicity (lower is better). ug: models trained without SPE gating.

Query positions 0 < pos < 1024 1024 < pos < 2048 2048 < pos < 2 560 (extrapolation)
Query-key offset <128 <512 <1024 <128 <512 <1024 <128 <512 <1024
. T: 04335 T: 0.2063 T:0.1845 T: 09142 T: 0.6953 T:0.6458 T:0.9599 T: 0.8959 T: 05886
M: 0.0152 M: 0.0625 M: 0.0616 M: 0.0193 M: 0.0413 M: 0.0713 M: 0.3974 M: 0.2429 M: 0.1637
e inosen T: 0.1660 T: 03078 T: 0.3527 T: 0.1337 T: 0.2504 T: 0.3228 T: 02167 T: 0.3599 T: 04147
M: 0.2893 M: 0.4406 M: 0.4283 M: 0.2826 M: 0.4063 M: 04167 M: 03253 M: 0.4060 M: 0.3913
+ineSPE (ug) T: 0.0141 T: 0.0242 T: 0.0231 T: 0.0135 T: 0.0206 T: 0.0190 T: 0.0105 T: 0.0196 T: 0.0163
M: 0.6295 M: 0.1844 M: 0.1582 M: 0.6238 M: 0.1623 M: 0.1061 M: 0.6189 M: 0.1609 M: 0.0994
T: 0.3422 T: 0.5637 T: 0.6389 T: 0.3209 T: 0.6239 T: 0.7648 T: 0.3462 T: 0.6135 T: 0.7025
convSPE M: 0.1781 M: 0.2242 M: 0.2189 M: 0.1735 M: 0.3624 M: 0.4192 M: 0.1486 M: 0.3247 M: 0.2740
T: 02828 T: 0.0192 T: 0.0107 T: 03334 T: 0.0188 T: 0.0109 T: 0.2207 T: 0.0171 T: 0.0106
convSPE (ug) M: 0.1234 M: 0.0249 M: 0.0620 M: 0.1505 M: 0.0253 M: 0.1254 M: 0.1342 M: 0.0217 M: 0.0989

PR 59.79 | kil

s 57.3057,24 225 ﬂﬁ w221 6176
vﬂ 54.32 pHLW 56.52 | 55.63 | 59.30 | 53.66
1 2 a 8 16 32 64 128

Rtest

62.01 ESLH EERZ 61.10 EEENICE 62.99

Rtram

(a) sineSPE

Rtraln

[57.86 | 57.34 | 55.91 | 56.34 | 56.22 | 58.61 | 54.82 | 57.66
-
| k4 57.20 | 55.85 58.32 57.73 | 59.86 | 58.01

< - 61.03 . CPH1:H 58.68 | 58.31 59.98 | 59.71
1 a 8 16 64 128

1 2

Rtest

(b) convSPE

Figure 9. Accuracy of Performer-softmax with SPE on the LRA Text task, with different numbers of realizations R during training/testing.
Each value is the result of a single run. Highlighted in bold are values obtained with Riest = Riin. Higher (brighter) is better.

Proc. International Society for Music Information Re-
trieval Conf., pp. 588-595, 2019. doi: 10.5281/zenodo.
3527878. URL https://doi.org/10.5281/
zenodo.3527878.

Cifka, O., Simsekli, U., and Richard, G. Groove2Groove:
One-shot music style transfer with supervision from syn-
thetic data. IEEE/ACM Transactions on Audio, Speech
and Language Processing, 28:2638-2650, 2020. doi:
10.1109/TASLP.2020.3019642. URL https://hal.
archives—-ouvertes.fr/hal-02923548.

Donahue, C., Mao, H. H., Li, Y. E., Cottrell, G. W., and
McAuley, J. Lakhnes: Improving multi-instrumental mu-
sic generation with cross-domain pre-training. In ISMIR,
2019.

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, 1.,
Raffel, C., Engel, J., Oore, S., and Eck, D. Onsets and
Frames: Dual-objective piano transcription. In Proc. Int.
Society for Music Information Retrieval Conf., 2018.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The curious case of neural text degeneration. In Proc.

International Conference on Learning Representations,
2019.

Hsiao, W.-Y,, Liu, J.-Y., Yeh, Y.-C., and Yang, Y.-H. Com-
pound Word Transformer: Learning to compose full-song

music over dynamic directed hypergraphs. In Proc. AAAI
Conf. Artificial Intelligence, 2021.

Huang, Y.-S. and Yang, Y.-H. Pop Music Transformer:
Generating music with rthythm and harmony. In Proc.
ACM International Multimedia Conf., 2020.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D.,
Pham, P, Rao, J., Yang, L., Ruder, S., and Metzler, D.
Long Range Arena: A benchmark for efficient Trans-
formers. In Proc. Int. Conf. Learning Representations,
2021. URL https://openreview.net/forum?
id=gqVyeW-grC2k.

Wang, B., Shang, L., Lioma, C., Jiang, X., Yang, H., Liu,
Q., and Simonsen, J. G. On position embeddings in
BERT. In Proc. Int. Conf. Learning Representations,
2021. URL https://openreview.net/forum?
id=onxoVAIF xMw.

https://doi.org/10.5281/zenodo.3527878
https://doi.org/10.5281/zenodo.3527878
https://hal.archives-ouvertes.fr/hal-02923548
https://hal.archives-ouvertes.fr/hal-02923548
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=onxoVA9FxMw
https://openreview.net/forum?id=onxoVA9FxMw

