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Abstract

This paper considers the problem of subspace
clustering under noise. Specifically, we s-
tudy the behavior of Sparse Subspace Clus-
tering (SSC) when either adversarial or ran-
dom noise is added to the unlabelled input
data points, which are assumed to lie in a u-
nion of low-dimensional subspaces. We show
that a modified version of SSC is provably ef-
fective in correctly identifying the underlying
subspaces, even with noisy data. This ex-
tends theoretical guarantee of this algorithm
to the practical setting and provides justifi-
cation to the success of SSC in a class of real
applications.

1. Introduction

Subspace clustering is a problem motivated by many
real applications. It is now widely known that
many high dimensional data including motion trajec-
tories (Costeira & Kanade, 1998), face images (Basri
& Jacobs, 2003), network hop counts (Eriksson et al.,
2012), movie ratings (Zhang et al., 2012) and social
graphs (Jalali et al., 2011) can be modelled as samples
drawn from the union of multiple low-dimensional sub-
spaces (illustrated in Figure 1). Subspace clustering,
arguably the most crucial step to understand such da-
ta, refers to the task of clustering the data into their
original subspaces and uncovers the underlying struc-
ture of the data. The partitions correspond to different
rigid objects for motion trajectories, different people
for face data, subnets for network data, like-minded
users in movie database and latent communities for
social graph.

Subspace clustering has drawn significant attention in
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Figure 1. Exact (a) and noisy (b) data in union-of-subspace

the last decade and a great number of algorithms have
been proposed, including K-plane (Bradley & Man-
gasarian, 2000), GPCA (Vidal et al., 2005), Spectral
Curvature Clustering (Chen & Lerman, 2009), Low
Rank Representation (LRR) (Liu et al., 2013) and S-
parse Subspace Clustering (SSC) (Elhamifar & Vidal,
2009). Among them, SSC is known to enjoy superb
empirical performance, even for noisy data. For ex-
ample, it is the state-of-the-art algorithm for motion
segmentation on Hopkins155 benchmark (Tron & Vi-
dal, 2007). For a comprehensive survey and compar-
isons, we refer the readers to the tutorial(Vidal, 2011).

Effort has been made to explain the practical success
of SSC. Elhamifar & Vidal (2010) show that under cer-
tain conditions, disjoint subspaces (i.e., they are not
overlapping) can be exactly recovered. Similar guar-
antee, under stronger “independent subspace” condi-
tion, was provided for LRR in a much earlier anal-
ysis(Kanatani, 2001). The recent geometric analysis
of SSC (Soltanolkotabi & Candes, 2012) broadens the
scope of the results significantly to the case when sub-
spaces can be overlapping. However, while these anal-
yses advanced our understanding of SSC, one common
drawback is that data points are assumed to be lying
ezactly in the subspace. This assumption can hardly
be satisfied in practice. For example, motion trajec-
tories data are only approximately rank-4 due to per-
spective distortion of camera.
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In this paper, we address this problem and provide the
first theoretical analysis of SSC with noisy or corrupt-
ed data. Our main result shows that a modified version
of SSC (see (2.2)) when the magnitude of noise does
not exceed a threshold determined by a geometric gap
between inradius and subspace incoherence (see below
for precise definitions). This complements the result of
Soltanolkotabi & Candes (2012) that shows the same
geometric gap determines whether SSC succeeds for
the noiseless case. Indeed, our results reduce to the
noiseless results of Soltanolkotabi & Candes when the
noise magnitude diminishes.

While our analysis is based upon the geometric analy-
sis of Soltanolkotabi & Candes (2012), the analysis is
much more involved: In SSC, sample points are used as
the dictionary for sparse recovery, and therefore noisy
SSC requires analyzing noisy dictionary. This is a hard
problem and we are not aware of any previous study
that proposed guarantee in the case of noisy dictio-
nary except Loh & Wainwright (2012) in the high-
dimensional regression problem. We also remark that
our results on noisy SSC are ezact, i.e., as long as the
noise magnitude is smaller than the threshold, the ob-
tained subspace recovery is correct. This is in sharp
contrast to the majority of previous work on structure
recovery for noisy data where stability /perturbation
bounds are given — i.e., the obtained solution is ap-
proximately correct, and the approximation gap goes
to zero only when the noise diminishes.

2. Problem setup

Notations: We denote the uncorrupted data matrix
by Y € R"*N_ where each column of Y (normalized
to unit vector) belongs to a union of L subspaces

STUSU...UST.

Each subspace Sy is of dimension d; and contains Ny
data samples with Ny + Ny + ... + N, = N. We ob-
serve the noisy data matrix X =Y + Z, where Z is
some arbitrary noise matrix. Let Y (©) € R"*N¢ denote
the selection of columns in Y that belongs to Sy, and
let the corresponding columns in X and Z be denot-
ed by X® and Z®). Without loss of generality, let
X =[XW x®@  X©)] be ordered. In addition, we
use subscript “—i” to represent a matrix that excludes
column ¢, e.g., X(_L;) = [acgz), ...733515_)1,:3521, ,xs\%] Cal-
ligraphic letters such as X, ), represent the set con-
taining all columns of the corresponding matrix (e.g.,
X and Y9),

For any matrix X, P(X) represents the symmetrized
convex hull of its columns, i.e., P(X) = conv(+X).

Also let P(fi) = P(X(fi)) and Q(fz = P(YE?) for short.

Ps and Projs denote respectively the projection ma-
trix and projection operator (acting on a set) to sub-

space §. Throughout the paper, || - || represents 2-
norm for vectors and operator norm for matrices; other
norms will be explicitly specified (e.g., || - [|1,]] - lloo)-

Method: Original SSC solves the linear program

min ||¢ll1 st oz =X_i¢
Cq

(2.1)

for each data point x;. Solutions are arranged into
matrix C' = [cq, ..., cn], then spectral clustering tech-
niques such as Ng et al. (2002) are applied on the affin-
ity matrix W = |C| + |C|T. Note that when Z # 0,
this method breaks down: indeed (2.1) may even be
infeasible.

To handle noisy X, a natural extension is to relax the
equality constraint in (2.1) and solve the following un-
constrained minimization problem instead (Elhamifar
& Vidal, 2012):

. A
min il + 5 llzi — X _ici][> (2.2)

We will focus on Formulation (2.2) in this paper. No-
tice that (2.2) coincide with standard LASSO. Yet,
since our task is subspace clustering, the analysis of
LASSO (mainly for the task of support recovery) does
not extend to SSC. In particular, existing literature
for LASSO to succeed requires the dictionary X_; to
satisfy RIP (Candes, 2008) or the Null-space proper-
ty (Donoho et al., 2006), but neither of them is satis-
fied in the subspace clustering setup.’

In the subspace clustering task, there is no single
“ground-truth” C' to compare the solution against.
Instead, the algorithm succeeds if each sample is ex-
pressed as a linear combination of samples belonging
to the same subspace, as the following definition states.

Definition 1 (LASSO Subspace Detection Property).
We say subspaces {Sg}lzzl and noisy sample points X
from these subspaces obey LASSO subspace detection
property with A, if and only if it holds that for all i, the
optimal solution c¢; to (2.2) with parameter A satisfies:
(1) ¢; is not a zero vector, (2) Nonzero entries of ¢;
correspond to only columns of X sampled from the
same subspace as x;.

This property ensures that output matrix C' and (nat-
urally) affinity matrix W are exactly block diagonal
with each subspace cluster represented by a disjoint

'There may exist two identical columns in X_;, hence
violate RIP for 2-sparse signal and has maximum incoher-
ence pu(X_;) =1.
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Detection

LASSO-Subspace
Property/Self-Expressiveness Property. Left: SEP holds.
Right: SEP is violated even though spectral clustering is
likely to cluster this affinity graph perfectly into 5 blocks.

Figure 2. lllustration of

block.2 The property is illustrated in Figure 2. For
convenience, we will refer to the second requirement
alone as “Self-Expressiveness Property” (SEP), as de-
fined in Elhamifar & Vidal (2012).

Models of analysis: Our objective here is to pro-
vide sufficient conditions upon which the LASSO sub-
space detection properties hold in the following four
models. Precise definition of the noise models will be
given in Section 3.

e fully deterministic model

e deterministic data+random noise
e semi-random data4random noise
e fully random model.

3. Main results

3.1. Deterministic model

We start by defining two concepts adapted from
Soltanolkotabi & Candes’s original proposal.

Definition 2 (Projected Dual Direction®). Let v be
the optimal solution to

1
max (z,v) — —v v, subject to: || X Vs < 1;
v

2\

and S is a low-dimensional subspace.
dual direction v is defined as

The projected

Pgl/
'U(x,X,S7>\) £ W

Definition 3 (Projected Subspace Incoherence Prop-
erty). Compactly denote projected dual direction UZ(Z) =

v(x@),X(z) Se,\) and VO = [vy)’---,v%z]-

i 2, We say
2Note that this is a very strong condition. In general,
spectral clustering does not require the exact block diago-
nal structure for perfect classifications (check Figure 8 in
our simulation section for details).
3This definition relate to (4.3), the dual problem of
(2.2), which we will define in the proof.

_xl

Figure 3. llustration of inradius and data distribution.

that vector set Xy is p-incoherent to other points if

T
> u(Xy) := max [|[V© 0
p= () = max VO]

Here, ;1 measures the incoherence between corrupted
subspace samples X, and clean data points in other
subspaces. As |ly|| = 1 by definition, the range of u
is [0,1]. In case of random subspaces in high dimen-
sion, p is close to zero. Moreover, as we will see later,
for deterministic subspaces and random data points,
1 is proportional to their expected angular distance
(measured by cosine of canonical angles).

Definition 2 and 3 are different from their original ver-
sions proposed in Soltanolkotabi & Candes (2012) in
that we require a projection to a particular subspace
to cater to the analysis of the noise case.

Definition 4 (inradius). The inradius of a convex
body P, denoted by r(P), is defined as the radius of
the largest Euclidean ball inscribed in P.

The inradius of a Q(_ZZ describes the distribution of
the data points. Well-dispersed data lead to larger in-
radius and skewed/concentrated distribution of data
have small inradius. An illustration is given in Fig-
ure 3.

Definition 5 (Deterministic noise model). Consid-
er arbitrary additive noise Z to'Y, each column z; is
characterized by the three quantities below:

§ :=max |z 91 :=max|Ps,z;| d2:=max|Pg.zl
% il @0 £

Theorem 1. Under deterministic noise model, com-
pactly denote

pe = pu(Xe), 1= {i:gie%}r(Q(_eg), r= Z:r{l,i'% Ty
If pe < rg for each £ =1, ..., L, furthermore

§ < min gw—ud
£=1,....L 37 + 8r¢ + 2
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{y+zlyeYs,|z| <6}
L)

{y+zlyeYs, |2|<8}

/9
//(y+z|era,|z|<6)

Figure 4. Geometric interpretation and comparison of the
noiseless SSC (Left) and noisy Lasso-SSC (Right).

then LASSO subspace detection property holds for all
weighting parameter X\ in the range

1
(r—81)(1 —38) — 36 — 262’
2r v min T — g — 201
82(r+1) =1, 6(14+0)(3+2ry — 261)’

A>

A<

which is guaranteed to be non-empty.

Remark 1 (Noiseless case). When 6 = 0, i.e., there
is mo noise, the condition reduces to g < ry, precisely
the form in Soltanolkotabi & Candes (2012). Howev-
er, the latter only works for the the exact LP formula-
tion (2.1), our result works for the (more robust) un-
constrained LASSO formulation (2.2) for any A > %

Remark 2 (Signal-to-Noise Ratio). Condition § <
#gff}ﬂ can be interpreted as the breaking point under
increasing magnitude of attack. This suggests that SS-
C by (2.2) is provably robust to arbitrary noise having

signal-to-noise ratio (SNR) greater than @(ﬁ)
(Notice that 0 < r < 1, we have 3r? +8r +2 = ©(1).)

Remark 3 (Geometric Interpretation). The geomet-
ric interpretation of our results is give in Figure 4.
On the left, Theorem 2.5 of Soltanolkotabi € Candes
(2012) suggests that the projection of external data
points must fall inside the solid blue polygon, which
is the intersection of halfspaces defined by dual direc-
tions (blue dots) that are tangent planes of the red in-
scribing sphere. On the right, the guarantee of The-
orem 1 means that the whole red sphere (analogous
to uncertainty set in Robust Optimization (Ben-Tal &
Nemirovski, 1998; Bertsimas & Sim, 2004)) of each
external data point must fall inside the dashed red poly-
gon, which is smaller than the blue polygon by a factor
related to the noise level.

Remark 4 (Matrix version of the algorithm). The
theorem suggests there’s a single A that works for all
i, X_; in (2.2). This makes it possible to extend the

results to the compact matriz algorithm below

. A 9
min HC||1+§||X_XCiHF (3.1)

s.t. diag(C) =0,

which can be solved numerically using alternating di-
rection method of multipliers (ADMM) (Boyd et al.,
2011). See the supplementary material for the details
of the algorithm.

3.2. Randomized models

We analyze three randomized models with increasing
level of randomness.

e Determinitic+Random Noise. Subspaces and
samples in subspace are fixed; noise is random.

¢ Semi-random+Random Noise. Subspace is de-
terministic, but samples in each subspace are
drawn uniformly at random, noise is random.

e Fully random. Both subspace and samples are
drawn uniformly at random; noise is also random.

Definition 6 (Random noise model). Our random
noise model is defined to be any additive Z that is
(1) columnwise iid; (2) spherical symmetric; and (3)
lz:|l < & with high probability.

Example 1 (Gaussian noise). A good example of our

random mnoise model is iid Gaussian noise. Let each
entry Zij ~ N(0,0/y/n). It is known that

6log N
o
n

§:=max |z <1/14+

with probability at least 1 —C/N? for some constant C
(by Lemma B.2).

Theorem 2 (Deterministic+Random Noise). Under
random noise model, compactly denote ry, v and iy as
in Theorem 1, furthermore let

\/610gN+ 2 log maxy dp < C'log(N)
€:= .
n — maxy dy - Vn

If r > 3¢/(1 — 6¢€) and pe < 1¢ for all £ = 1,...,k,
furthermore

. Te— e
min ,
¢=1,...,.L 3’)”‘[ +6
then with probability at least 1—7/N, LASSO subspace
detection property holds for all weighting parameter A
in the range

0 <

1

A
7 =601 —=38) =35 — 202’

< 2r y . r¢ — g — 20€
—_— min
82(r+1)  e=1,...L €6(1+ 0)(3 + 2rp — 20¢)’

which is guaranteed to be non-empty.

A
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Remark 5 (Margin of error). Compared to Theo-
rem 1, Theorem 2 considers a more benign noise which
leads to a much stronger result. Observe that in the
random noise case, the magnitude of noise that SSC
can tolerate is proportional to vy — py — the difference
of inradius and incoherence — which is the fundamental
geometric gap that appears in the noiseless guarantee
of Soltanolkotabi & Candes (2012). We call this gap
the Margin of error.

We now analyze this margin of error. We start from
the semi-random model, where the distance between
two subspaces is measured as follows.

Definition 7. The affinity between two subspaces is
defined by:

aff(Sg, Sp) = \/COS2 91(;3) + ...+ cos? elg‘z’in(dk’d”)7

where 9,(:2 is the i canonical angle between the two
subspaces. Let Uy and Uy be a set of orthonormal bases
of each subspace, then aff(Sk,Se) = | UL U 5.

When data points are randomly sampled from each
subspace, the geometric entity u(Xy) can be expressed
using this (more intuitive) subspace affinity, which
leads to the following theorem.

Theorem 3 (Semi-random+random noise). Suppose
Ny = kedp+1 data points are randomly chosen on each
Si, 1 <€ < L. Usee€ as in Theorem 2 and let c(k)
be a positive constant that takes value 1/\/§ when K 1s
greater than some numerical constant k.. If

aff (Sk, Se)

log Ky
A > c(ke)4/ —5

(3.2)
and c(ke)y/logke/2dy > 3e/(1 — Ge) for each £, fur-
thermore

] <1min clre) viog e
9 ¢ 2d,

E}@%t log [LNy(Ny, + 1)]

aff(Sk,Sg)
- ﬂaﬁtlog [LNe(Nik + 1)l — == ¢,

Vdidy

then LASSO subspace detection proper-
ty holds for some A* with probability at
least 1 — L — Zle Nyexp(—+/de(Ng— 1)) —
77 ke Ny eXP(—t/4).

Remark 6 (Overlapping subspaces). Similar to
Soltanolkotabi & Candes (2012), SSC can handle over-
lapping subspaces with noisy samples, as subspace
affinity can take small positive value while still keeping
the margin of error positive.

“The X here (and that in Theorem 4) has a fixed non-
empty range as in Theorem 1 and 2, which we omit due to
space constraints.

Application Cluster rank
3D motion segmentation rank =4
(Costeira & Kanade, 1998)

Face clustering (with shadow) rank =9
(Basri & Jacobs, 2003)

Diffuse  photometric  face rank =3
(Zhou et al., 2007)

Network topology discovery rank = 2
(Eriksson et al., 2012)

Hand writing digits (Hastie & rank = 12
Simard, 1998)

Social graph clustering (Jalali rank =1
et al., 2011)

Table 1. Rank of real subspace clustering problems

Theorem 4 (Fully random model). Suppose there are
L subspaces each with dimension d, chosen indepen-
dently and uniformly at random. For each subspace,
there are kd + 1 points chosen independently and uni-
formly at random. Furthermore, each measurements
are corrupted by iid Gaussian noise ~ N(0,0/y/n).
Then for some absolute constant C, the LASSO sub-
space detection property holds for some A with proba-

bility at least 1 — % — Ne~VHd 4f
i< (k) logk
12log N

and

1 log K 6log N
U<18<c(n)\/2d \/ - )
Remark 7 (Trade-off between d and the margin of
error). Theorem 4 extends our results to the paradigm
where the subspace dimension grows linearly with the
ambient dimension. Interestingly, it shows that the
margin of error scales ©(\/1/d), implying a tradeoff
between d and robustness to noise. Fortunately, most
interesting applications indeed have very low subspace-

rank, as summarized in Table 1.

Remark 8 (Robustness in the many-cluster setting).
Another interesting observation is that the margin of
error scales logarithmically with respect to L, the num-
ber of clusters (in both logk and log N since N =
L(kd +1)). This suggests that SSC is robust even if
there are many clusters, and Ld > n.

Remark 9 (Range of valid A in the random setting).
Substitute the bound of inradius v and subspace inco-
herence p of fully random setting into the \’s range of
Theorem 3, we have the the valid range of X is

Civd

C.
\/17</\< 2n
og K

o+/dlog(dL)’

(3.3)
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for some constant C1, Cy. This again illustrates that
the robustness is sensitive to d but not L.

4. Roadmap of the Proof

In this section, we lay out the roadmap of the proof
for Theorem 1 to 4. Instead of analyzing (2.2) direct-
ly, we consider an equivalent constrained version by
introducing slack variables:

. A
Po:  min [|c;[1 + S lei?
Ciseq 2

(4.1)
s.t. xz@ =X_;c; +e;.

The constraint can be rewritten as

yl@ + Zi(e) =Y_i+Z_5)ci + e (4.2)
The dual program of (4.1) is:
D (i) = o
: max (x;,V) — —V 'V

0 p 2\ (4.3)

st [(X_) vl < 1.

Recall that we want to establish the conditions on
noise magnitude 0, structure of the data (u and r in
deterministic model and affinity in semi-random mod-
el) and ranges of valid X such that by Definition 1, the
solution ¢; is non-trivial and has support indices inside
the column set X(_ZB (i.e., satisfies SEP).

We focus on the proof of Theorem 1 and 2 and briefly
explain the randomized models. Indeed, Theorem 3
and 4 follow directly by plugging to Theorem 2 the
bound of r and p from Soltanolkotabi & Candes
(2012) (with some modifications). The proof of Theo-
rem 1 and 2 constitutes three main steps: (1) proving
SEP, (2) proving non-trivialness, and (3) showing ex-
istence of proper A.

4.1. Self-Expressiveness Property

We prove SEP by duality. First we establish a set of
conditions on the optimal dual variable of Dy corre-
sponding to all primal solutions satisfying SEP. Then
we construct such a dual variable v as a certificate of
proof.

4.1.1. OPTIMALITY CONDITION

Define general convex optimization:

A
min |c||; + §He||2 st. z=Ac+e (4.4)
We state Lemma 1, which extends Lemma 7.1 in
Soltanolkotabi & Candes (2012). The proof is deferred

to the supplementary material.

Lemma 1. Consider a vector y € R? and a matriz
A € RN [If there exists a triplet (c,e,v) obeying
y = Ac+ e and ¢ has support S C T, furthermore the
dual certificate vector v satisfies

v =J\e,
AT v < 1,

AZTZ/ = sgn(cg),

[ATAsevlloo <1,
then any optimal solution (c*,e*) to (4.4) obeys ¢ =
0.
The next step is to apply Lemma 1 with x = xgz) and
A = X_; and then construct a triplet (c,e,v) such
that dual certificate v satisfying all conditions and ¢
satisfies SEP. Then we can conclude that all optimal
solutions of (4.1) satisfy SEP.

4.1.2. CONSTRUCTION OF DUAL CERTIFICATE

To construct the dual certificate, we consider the fol-
lowing fictitious optimization problem that explicitly
requires that all feasible solutions satisfy SEP® (note
that one can not solve such problem in practice with-
out knowing the subspace clusters).

Pui i e+ Glel?
s.t. yzm + zi(l) = (Y_(? + Z(_Ei))cge) + e;.
(4.5)
This problem is feasible. Moreover, it turns out that
the dual solution of this fictitious problem v is a good
candidate as our dual certificate. Observe that v au-
tomatically satisfies the first three conditions in Lem-
ma 1 and we are left to show that for all data point
rE X\ XY
[{(x,v)| < 1. (4.6)
Let v and v5 be the projection of v to subspace S
and its complement respectively. The strategy is to
provide an upper bound of |(x,v)| then impose the
inequality on the upper bound.

(@, )| =[{y + 2, )| < [{y, v)| + [y, v2) | + (2, )]
<p(Xo) Il + Nyl cos(£(y, v2))
2l cos( £z, 0) -

(4.7
To complete the proof, we need to bound |v] and
l2|| and the two cosine terms (for random noise mod-
el). The proof makes use of the geometric properties of
symmetric convex polytope and optimality of solution.

See the supplementary material for the details.

°To be precise, it’s the corresponding
[0,...,0, ()70, ...,0]” that satisfies SEP.

k3

C; =
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4.2. Non-trivialness and existence of A\

The idea is that when A is large enough, trivial solution
cr=0,¢e" = xy) can never occur. This is formalized
by setting

¢ 1 A
OptVal(Do) = (21", v) = - llvl]* < Flle” >, (4.8)

Notice that (4.8) essentially requires that A > A and
(4.7) requires A < B for some A and B. Hence, ex-
istence of a valid A requires A < B, which leads to
the condition on the error magnitude § < C' and com-
pletes the proof. While conceptually straightforward,
the details of the proof are involved and left in the
supplementary material due to space constraints.

4.3. Randomization

Our randomized results consider two types of random-
ization: random noise and random data.

Random noise model improves the deterministic guar-
antee by exploiting the fact that the directions of the
noise are random. By the well-known bound on the
area of spherical cap (Lemma B.1), the cosine terms
in (4.7) diminishes when the ambient dimension grows.
Similar advantage also appears in the bound of ||v||
and ||v2]| and the existence of \.

Randomization of data provides probabilistic bound-
s of inradius r and incoherence p. The lower bound
of inradius r follows from a lemma in the study of
isotropy constant of symmetric convex body (Alonso-
Gutiérrez, 2008). The upper bound of u(XZ.)) requires
more effort. It involves showing that projected dual di-
rections vl@ (see Definition 2) distributes uniformly on
the subspace projection of the unit n-sphere, then ap-
plying the spherical cap lemma for all pairs of (%@, Y).
We defer the full proof in the supplementary material.

5. Numerical simulation

To demonstrate the practical implications of our ro-
bustness guarantee for LASSO-SSC, we conduct three
numerical experiments to test the effects of noise mag-
nitude 4, subspace rank d and number of subspace L.
To make it invariant to parameter, we scan through
an exponential grid of A ranging from /n x 1072
to y/n x 103, In all experiments, ambient dimension
n = 100, relative sampling x = 5, subspace and data
are drawn uniformly at random from unit sphere and
then corrupted by Gaussian noise Z;; ~ N(0,0/y/n).
We measure the success of the algorithm by the rela-
tive violation of Self-Expressiveness Property defined

below.

 TagemClig
Z(i,j)e/\/l |C|i,j

where M is the ground truth mask containing al-
1 (i,7) such that z;,2; € X for some ¢. Note that
RelViolation (C, M) = 0 implies that SEP is satisfied.
We also check that there is no all-zero columns in C,
and the solution is considered trivial otherwise.

RelViolation (C, M)

The simulation results confirm our theoretical findings.
In particular, Figure 5 shows that LASSO subspace de-
tection property is possible for a very large range of A
and the dependence on noise magnitude is roughly 1/o
as remarked in (3.3). In addition, the sharp contrast of
Figure 6 and 7 demonstrates precisely our observations
on the sensitivity of d and L in Remark 7 and 8.

A remark on numerical algorithms: For fast com-
putation, we use ADMM implementation of LASSO
solver®. It has complexity proportional to problem
size and convergence guarantee (Boyd et al., 2011).
We also implement a simple solver for the matrix ver-
sion SSC (3.1) which is consistently faster than the
column-by-column LASSO version. Details of the al-
gorithm and its favorable empirical comparisons are
given in the supplementary materials.

Gaussian noise: o
04 0.6 0.8

log;o(A/y/n)

Figure 5. Exact recovery under noise. Simulated with n =
100,d = 4,L = 3,k = 5 with increasing Gaussian noise
N(0,0/y/n).  Black: trivial solution (C' = 0); Gray:
RelViolation > 0.1; White: RelViolation = 0.

6. Conclusion and future directions

We presented the first theoretical analysis for noisy
subspace segmentation problem that is of great prac-
tical interests. We showed that the popular SSC al-
gorithm ezactly (not approximately) succeeds even in

5Freely available at:

http://www.stanford.edu/ boyd/papers/admm/
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Rank of subspace: d
10 20 30 40 50 60

log;(A/y/1)

Figure 6. Effects of cluster rank d. Simulated with n =
100, L = 3,k = 5,0 = 0.2 with increasing d. Black: triv-
ial solution (C' = 0); Gray: RelViolation > 0.1; White:
RelViolation = 0. Observe that beyond a point, subspace
detection property is not possible for any .

# of subspace: L
40 60 80

log;o(A/y/n)

Figure 7. Effects of number of subspace L. Simulated with
n = 100,d = 2,k = 5,0 = 0.2 with increasing L. Black:
trivial solution (C' = 0); Gray: RelViolation > 0.1;
White: RelViolation = 0. Note that even at the point
when dL = 200(subspaces are highly dependent), subspace
detection property holds for a large range of A.

the noisy case, which justified its empirical success on
real problems. In addition, we discovered a funda-
mental trade-off between robustness to noise and the
subspace dimension, and we found that robustness is
insensitivity to the number of subspaces. Our analysis
hence reveals fundamental relationships of robustness,
number of samples and dimension of the subspace.
These results lead to new theoretical understanding
of SSC, as well as provides guidelines for practition-
ers and application-level researchers to judge whether
SSC could possibly work well for their respective ap-
plications.

Open problems for subspace clustering include the
graph connectivity problem raised by Nasihatkon &
Hartley (2011), missing data problem (a first attempt

Gaussian noise: ¢
0.2 0.4 0.6 0.8

Figure 8. Spectral clustering accuracy for the experiment
in Figure 5. The rate of accurate classification is represent-
ed in grayscale. White region means perfect classification.
It is clear that exact subspace detection property (Defini-
tion 1) is not necessary for perfect classification.

by Eriksson et al. (2012), but requires an unrealistic
number of data), sparse corruptions on data and oth-
ers. One direction closely related to this paper is to
introduce a more practical metric of success. As we
illustrated in the paper, subspace detection property
is not necessary for perfect clustering. In fact from a
pragmatic point of view, even perfect clustering is not
necessary. Typical applications allow for a small num-
ber of misclassifications. It would be interesting to see
whether stronger robustness results can be obtained
for a more practical metric of success.
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