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Abstract
In this paper, we present a novel two-stage metric
learning algorithm. We first map each learning
instance to a probability distribution by comput-
ing its similarities to a set of fixed anchor points.
Then, we define the distance in the input data
space as the Fisher information distance on the
associated statistical manifold. This induces in
the input data space a new family of distance
metric with unique properties. Unlike kernelized
metric learning, we do not require the similarity
measure to be positive semi-definite. Moreover,
it can also be interpreted as a local metric learn-
ing algorithm with well defined distance approx-
imation. We evaluate its performance on a num-
ber of datasets. It outperforms significantly other
metric learning methods and SVM.

1. Introduction
Distance measures play a crucial role in many machine
learning tasks and algorithms. Standard distance metrics,
e.g. Euclidean, cannot address in a satisfactory manner the
multitude of learning problems, a fact that led to the devel-
opment of metric learning methods which learn problem-
specific distance measure directly from the data (Wein-
berger & Saul, 2009; Wang et al., 2012; Jain et al., 2010).
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Over the last years various metric learning algorithms have
been shown to perform well in different learning problems,
however, each comes with its own set of limitations.

Learning the distance metric with one global linear trans-
formation is called single metric learning (Weinberger &
Saul, 2009; Davis et al., 2007). In this approach the dis-
tance computation is equivalent to applying on the learn-
ing instances a learned linear transformation followed by
a standard distance metric computation in the projected
space. Since the discriminatory power of the input fea-
tures might vary locally, this approach is often not flexible
enough to fit well the distance in different regions.

Local metric learning addresses this limitation by learn-
ing in each neighborhood one local metric (Noh et al.,
2009; Wang et al., 2012). When the local metrics vary
smoothly in the feature space, learning local metrics is
equivalent to learning the Riemannian metric on the data
manifold (Hauberg et al., 2012). The main challenge here
is that the geodesic distance endowed by the Riemannian
metric is often computationally very expensive. In practice,
it is approximated by assuming that the geodesic curves
are formed by straight lines and the local metric does not
change along these lines (Noh et al., 2009; Wang et al.,
2012). Unfortunately, the approximation does not satisfy
the symmetric property and therefore the result is a non-
metric distance.

Kernelized Metric Learning (KML) achieves flexibility in
a different way (Jain et al., 2010; Wang et al., 2011).
In KML learning instances are first mapped into the
Reproducing-Kernel Hilbert Space (RKHS) by a kernel
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function and then a global Mahalanobis metric is learned in
the RKHS space. By defining the distance in the input fea-
ture space as the Mahalanobis distance in the RKHS space,
KML is equivalent to learning a flexible non-linear distance
in the input space. However, its main limitation is that the
kernel matrix induced by the kernel function must be Posi-
tive Semi-Definite (PSD). Although Non-PSD kernel could
be transformed into PSD kernel (Chen & Ye, 2008; Ying
et al., 2009), the new PSD kernel nevertheless cannot keep
all original similarity information.

In this paper, we propose a novel two-stage metric learn-
ing algorithm, Similarity-Based Fisher Information Metric
Learning (SBFIML). It first maps instances from the data
manifold into finite discrete distributions by computing
their similarities to a number of predefined anchor points
in the data space. Then, the Fisher information distance on
the statistical manifold is used as the distance in the input
feature space. This induces a new family of Riemannian
distance metric in the input data space with two important
properties. First, the new Riemannian metric is robust to
density variation in the original data space. Without such
robustness, an objective function can be easily biased to-
wards data regions the density of which is low and thus
dominates learning of the objective function. Second, the
new Riemannian metric has largest distance discrimination
on the manifold of anchor points and no distance in the di-
rections being orthogonal to the manifold. So, the effect of
locally irrelevant dimensions of anchor points is removed.
To the best of our knowledge, this is the first metric learn-
ing algorithm that has these two important properties.

SBFIML is flexible and general; it can be applied to dif-
ferent types of data spaces with various non-negative sim-
ilarity functions. Comparing to KML, SBFIML does not
require the similarity measure to form a PSD matrix. More-
over, SBFIML can be interpreted as a local metric learning
algorithm. Compared to the previous local metric learn-
ing algorithms which produce a non-metric distance (Noh
et al., 2009; Wang et al., 2012), the distance approxima-
tion in SBFIML is a well defined distance function with a
closed form expression. We evaluate SBFIML on a num-
ber of datasets. The experimental results show that it out-
performs in a statistically significant manner both metric
learning methods and SVM.

2. Preliminaries
We are given a number of learning instances {x1, . . . ,xn},
where each instance xTi ∈ X is a d-dimensional vector,
and a vector of associated class labels y = (y1, . . . , yn)T ,
yi ∈ {1, . . . , c}. We assume that the input feature space X
is a smooth manifold. Different learning problems can have
very different types of data manifolds with possibly differ-
ent dimensionality. The most commonly used manifold in

metric learning is the Euclidean space Rd (Weinberger &
Saul, 2009). The probability simplex space Pd−1 has also
been explored (Lebanon, 2006; Cuturi & Avis, 2011; Ke-
dem et al., 2012).

We propose a general two-stage metric learning algorithm
which can learn a flexible distance in different types of X
data manifolds, e.g. Euclidean, probability simplex, hyper-
sphere, etc. Concretely, we first map instances fromX onto
the statistical manifold S through a similarity-based differ-
ential map, which computes their non-negative similarities
to a number of predefined anchor points. Then we define
the Fisher information distance as the distance on X . We
have chosen to do so, since this induces a new family of
Riemannian distance metric which enjoys interesting prop-
erties: 1) The new Riemannian metric is robust to density
variations in the original data space, which can be produced
for example by different intrinsic variabilities of the learn-
ing instances in the different categories. Distance learning
over this new metric is hence robust to density variation.
2) The new Riemannian distance metric has largest dis-
tance discrimination on the manifold of the anchor points
and has no distance in the directions being orthogonal to
that manifold. So, the new distance metric can remove the
effect of locally irrelevant dimensions of the anchor point
manifold, see Figure 1 for more detials. In the remainder
of this section, we will briefly introduce the necessary ter-
minology and concepts. More details can be found in the
monographs (Lee, 2002; Amari & Nagaoka, 2007).

Statistical Manifold. We denote byMn a n-dimensional
smooth manifold. For each point p on Mn, there exists
at least one smooth coordinate chart (U , ϕ) which defines
a coordinate system to points on U , where U is an open
subset ofMn containing p and ϕ : U −→ Θ is a smooth
coordinate map ϕ(p) = θ ∈ Θ ⊂ Rn. θ is the coordinate
of p defined by ϕ.

A statistical manifold is a smooth manifold whose points
are probability distributions. Given a n-dimensional statis-
tical manifold Sn, we denote by p(ξ|θ) a probability dis-
tribution in Sn, where θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn is the
coordinate of p(ξ|θ) under some coordinate map ϕ and ξ is
the random variable of the p(ξ|θ) distribution taking values
from some set Ξ. Note that, all the probability distributions
in Sn share the same set Ξ.

In this paper, we are particularly interested in the n-
dimensional statistical manifoldPn, whose points are finite
discrete distributions, denoted by

Pn = {p(ξ|θ = (θ1, . . . , θn)) :

n∑
i=1

θi < 1,∀i, θi > 0} (1)

where ξ is the discrete random variable taking values in
the set Ξ = {1, . . . , n + 1} and θ ∈ Θ ⊂ Rn is called
the m-affine coordinate (Amari & Nagaoka, 2007). The
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probability mass of p(ξ|θ) is p(ξ = i) = θi if i 6= n + 1,
otherwise p(ξ = n+ 1) = 1−

∑n
k=1 θk.

Fisher Information Metric. The Fisher information met-
ric is a Riemannian metric defined on statistical mani-
folds and endows a distance between probability distribu-
tions (Radhakrishna Rao, 1945). The explicit form of the
Fisher information metric at p(ξ|θ) is a n × n positive
definite symmetric matrix GFIM (θ), the (i, j) element of
which is defined by:

Gij
FIM (θ) =

∫
Ξ

∂ log p(ξ|θ)

∂θi

∂ log p(ξ|θ)

∂θj
p(ξ|θ)dξ (2)

where the above integral is replaced with a sum if Ξ is dis-
crete. The following lemma gives the explicit form of the
Fisher information metric on Pn.

Lemma 1. On the statistical manifold Pn, the Fisher in-
formation metric GFIM (θ) at p(ξ|θ) with coordinate θ is

Gij
FIM (θ) =

1

θi
δij +

1

1−
∑n
k=1 θk

,∀i, j ∈ {1, . . . , n} (3)

where δij = 1 if i = j, otherwise δij = 0.

Properties of Fisher Information Metric. The Fisher
information metric enjoys a number of interesting prop-
erties. First, the Fisher information metric is the unique
Riemannian metric induced by all f -divergence measures,
such as the Kullback-Leibler (KL) divergence and the χ2

divergence (Amari & Cichocki, 2010). All these diver-
gences converge to the Fisher information distance as the
two probability distributions are approaching each other.
Another important property of the Fisher information met-
ric from a metric learning perspective is that the distance
it endows can be approximated by the Hellinger distance,
the cosine distance and all f -divergence measures (Kass &
Vos, 2011). More importantly, when Sn is the statistical
manifold of finite discrete distributions, e.g. Pn, the cosine
distance is exactly equivalent to the Fisher information dis-
tance (Lebanon, 2006; Lee et al., 2007).

Pullback Metric. LetMn and Nm be two smooth mani-
folds and TpMn be the tangent space ofMn at p ∈ Mn.
Given a differential map f : Mn −→ Nm and a Rieman-
nian metric G on Nm, the differential map f induces a
pullback metric G∗ at each point p onMn defined by:

〈v1,v2〉G∗(p) = 〈Dpf(v1), Dpf(v2)〉G(f(p)) (4)

where Dpf : TpMn −→ Tf(p)Nm is the differential of f
at point p ∈ Mn, which maps tangent vectors v ∈ TpMn

to tangent vectors Dpf(v) ∈ Tf(p)Nm.

Given the coordinate systems Θ and Γ of U ⊂ Mn and
U ′ ⊂ Nm respectively, defined by some smooth coordinate
maps ϕU and ϕU ′ respectively, then the explicit form of

the pullback metric at point p ∈ U ⊂ Mn with coordinate
θ = ϕU (p) is:

G∗(θ) = JTG(γ)J (5)

where γ = ϕU ′(f(p)) is the coordinate of the f(p) ∈ U ′ ⊂
Nm and J is the Jacobian matrix of the function ϕU ′ ◦ f ◦
ϕ−1
U : Θ −→ Γ at point θ. Since G is a Riemannian metric,

the pullback metric G∗ is in general at least a PSD metric.

The following lemma gives the relation between the
geodesic distances onMn and Nm.
Lemma 2. Let G∗ be the pullback metric of a Riemannian
metric G induced by a differential map f :Mn −→ Nm,
dG∗(p

′, p) be the geodesic distance on Mn endowed by
G∗ and dG(f(p′), f(p)) the geodesic distance on Nm en-
dowed by G, then, it holds limp′→p

dG(f(p′),f(p))
dG∗ (p′,p) = 1

The proof of Lemma 2 is provided in the appendix. In ad-
dition to approximating dG∗(p′, p) directly onMn by as-
suming that the geodesic curve is formed by straight lines
as previous local metric learning algorithms do (Noh et al.,
2009; Wang et al., 2012), Lemma 2 allows us to also ap-
proximate it with dG(f(p′), f(p)) on Nm. Note that, both
approximations have the same asymptotic convergence re-
sult.

3. Similarity-Based Fisher Information
Metric Learning

We will now present our two-stage metric learning algo-
rithm, SBFIML. In the following, we will first present how
to define the similarity-based differential map f : X −→ P
and then how to learn the Fisher information distance.

3.1. Similarity-Based Differential Map

Given a number of anchor points {z1, . . . ,zn}, zi ∈ X ,
we denote by s = (s1, . . . , sn) : X −→ R+n the differen-
tiable similarity function. Each sk : X −→ R+ component
is a differentiable function the output of which is a non-
negative similarity between some input instance xi and the
anchor point zk. Based on the similarity function s we de-
fine the similarity-based differential map f as:

f(xi) = p(ξ|( s1(xi)∑n
k=1 sk(xi)

, . . . ,
sn−1(xi)∑n
k=1 sk(xi)

))(6)

= (s̄1(xi), . . . , s̄n−1(xi))

where f(xi) is a finite discrete distribution on manifold
Pn−1. From now on, for simplicity, we will denote f(xi)
by pi(ξ). The probability mass of the kth outcome is given
by: pi(ξ = k) = s̄k(xi) = sk(xi)∑n

k=1 sk(xi)
. In order for f to

be a valid differential map, the similarity function s must
satisfy

∑
k sk(xi) > 0, ∀xi ∈ X . This family of differen-

tial maps is very general and can be applied to any X space
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where a non-negative differentiable similarity function s
can be defined. The finite discrete distribution representa-
tion, pi(ξ), of learning instance, xi, can be intuitively seen
as an encoding of its neighborhood structure defined by the
similarity function s. Note that, the idea of mapping in-
stances onto the statistical manifold P has been previously
studied in manifold learning, e.g. SNE (Hinton & Roweis,
2002) and t-SNE (Van der Maaten & Hinton, 2008).

Akin to the appropriate choice of the kernel function in a
kernel-based method, the choice of an appropriate similar-
ity function s is also crucial for SBFIML. In principle, an
appropriate similarity function s should be a good match
for the geometrical structure of the X data manifold. For
example, for data lying on the probability simplex space,
i.e. X = Pd−1, the similarity functions defined either
on Rd or on Pd−1 can be used. However, the similarity
function on Pd−1 is more appropriate, because it exploits
the geometrical structure of Pd−1, which, in contrast, is
ignored by the similarity function on Rd (Kedem et al.,
2012).

The set of anchor points {z1, . . . ,zn} can be defined in
various ways. Ideally, anchor points should be similar to
the given learning instances xi, i.e. anchor points follow
the same distribution as that of learning instances. Empiri-
cally, we can use directly training instances or cluster cen-
ters, the latter established by clustering algorithms. Similar
to the current practice in kernel methods we will use in SB-
FIML as anchors points all the training instances.

Similarity Functions on Rd. We can define the similarity
on Rd in various ways. In this paper we will investigate two
types of differentiable similarity functions. The first one is
based on the Gaussian function, defined as:

sk(xi) = exp(−‖xi − zk‖
2
2

σk
) (7)

where ‖ · ‖2 is the L2 norm. σk controls the size of the
neighborhood of the anchor point zk, with large values pro-
ducing large neighborhoods. Note that the different σks
could be set to different values; if all of them are equal,
this similarity function is exactly the Gaussian kernel. The
second type of similarity function that we will look at is:

sk(xi) = 1− 1

π
arccos(

xTi zk
‖xi‖2 · ‖zk‖2

) (8)

which measures the normalized angular similarity between
xi and zk. This similarity function can be explained as we
first projecting all points from Rd to the hypersphere and
then applying the angular similarity to points on a hyper-
sphere. As a result, this similarity function is useful for data
which approximately lie on a hypersphere. Note that this
similarity function is also a valid kernel function (Honeine
& Richard, 2010).

One might say we can also achieve nonlinearity by map-
ping instances into the proximity space Q using the fol-
lowing similarity-based map g : X −→ Q:

g(x) = (s1(x), . . . , sn(x)) (9)

We now compare our similarity-based map f , equation 6
against the similarity-based map g, equation 9, in two as-
pects, namely representation robustness and pullback met-
ric analysis.

Representation Robustness. Compared to the represen-
tation induced by the similarity-based map g, equation 9,
our representation induced by the similarity-based map f ,
equation 6, is more robust to density variations in origi-
nal data space, i.e. the density of the learning instances
varies significantly between different regions. This can be
explained by the fact that the finite discrete distribution is
essentially a representation of the neighborhood structure
of a learning instance normalized by a ”scaling” factor, the
sum of similarities of the learning instance to the anchor
points. Hence the distance implied by the finite discrete
distribution representation is less sensitive to the density
variations of the different data regions. This is an impor-
tant property. Without such robustness, an objective func-
tion based on raw distances can be easily biased towards
data regions the density of which is low and thus dominates
learning of the objective function. One example of this kind
of objective is that of LMNN (Weinberger & Saul, 2009),
which we will also use later in SBFIML to learn the Fisher
information distance.

Pullback Metric Analysis. We also show how the two
approaches differ by comparing the pullback metrics in-
duced by the two similarity-based maps f and g. In doing
so, we first need to specify the Riemannian metrics GQ
in the proximity space Q and GP on the statistical mani-
fold Pn−1. Following the work of similarity-based learn-
ing (Chen et al., 2009), we use the Euclidean metric as the
GQ in the proximity space Q. On the statistical manifold
Pn−1 we use the Fisher information metric GFIM defined
in equation 3 as GP . To simplify our analysis, we assume
X = Rd. However, note that this analysis can be general-
ized to other manifolds, e.g. Pd−1. We use the standard
Cartesian coordinate system for points in Rd and Q and
use m-affine coordinate system, equation 1, for points on
Pn−1.

The pullback metric induced by these two differential maps
are given in the following lemma.

Lemma 3. In Rd, at x with Cartesian coordinate, the form
of the pullback metric G∗Q(x) of the Euclidean metric in-
duced by the differential map g of equation 9 is:

G∗Q(x) = ∇g(x)∇g(x)T =

n∑
i=1

∇si(x)∇si(x)T (10)
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(a) G∗Q(x) (b) G∗P(x) (c) G∗Q(x) (d) G∗P(x)

Figure 1. The visulization of equi-distance curves of pullback metrics G∗Q(x) and G∗P(x).

where the vector ∇si(x) of size d × 1 is the differential
of ith similarity function si(x). The form of the pullback
metric G∗P(x) of the Fisher information metric induced by
the differential map f of equation 6 is:

G∗P(x) =

n∑
i=1

1

s̄i(x)
(∇s̄i(x)∇s̄i(x)

T
) (11)

where∇s̄i(x) = s̄i(x) (∇ log(si(x))− E (∇ log(si(x))))
and the expectation of∇ log(si(x)) is E(∇ log(si(x))) =∑n
k=1 s̄k(x)∇ log(si(x)) .

Gaussian Similarity Function. The form of pullback met-
rics G∗Q(x) and G∗P(x) depends on the explicit form of the
similarity function si(x). We now study their differences
using the Gaussian similarity function with kernel width σ,
equation 7. We first show the difference between G∗Q(x)
and G∗P(x) by comparing their m largest eigenvectors, the
directions in which metrics have the largest distance dis-
crimination.

The m largest eigenvectors UQ(x) of G∗Q(x) are:

UQ(x) = arg max
UTU=I

tr(UTG∗Q(x)U) (12)

= arg max
UTU=I

m∑
k=1

n∑
i=1

4

σ2
(uTk si(x)(x− zi))2

where tr(·) is the trace norm and uk is the kth column
of matrix U. The m largest eigenvectors UP(x) of the
pullback metric G∗P(x) are:

UP(x) = arg max
UTU=I

tr(UTG∗P(x)U) (13)

= arg max
UTU=I

m∑
k=1

n∑
i=1

4s̄i(x)

σ2
(uTk (zi − E(zi))

2

where E(zi) =
∑n
k=1 s̄k(x)zk

We see one key difference between UP(x) and UQ(x).
In equation 13, UP(x) are the directions which maximize
the sum of expected variance of uTk zi, k ∈ {1, . . . ,m},
with respected to its expected mean. In contrast, the direc-
tions of UQ(x) in equation 12 maximize the sum of the un-
weighted ”variance” of uTk si(x)(x−zi), k ∈ {1, . . . ,m},

without centralization. Their difference can be intuitively
compared to the difference of doing local PCA with or
without centralization. Therefore, UP(x) is closer to the
principle directions of local anchor points. Second, since
G∗P(x) =

∑n
i=1

4s̄i(x)
σ2 (zi − E(zi))(zi − E(zi))

T , it is
also easy to show that G∗P(x) has no distance in the or-
thogonal directions of the affine subspace spanned by the
weighted anchor points of s̄i(x)zi. So, G∗P(x) removes
the effect of locally irrelevant dimensions to the anchor
point manifold.

To show the differences of pullback metrics G∗Q(x) and
G∗P(x) intuitively, we visualize their equi-distance curves
in Figure 1, where the Guassian similarity function, euqa-
tion 7, is used to define the similarity maps in equations 9
and 6. As shown in Figure 1, we see that the pullback met-
ric G∗P(x) emphasizes more the distance along the princi-
ple direction of the local anchor points than the pullback
metric G∗Q(x). Furthermore, in Figure 1(b) we see that
G∗P(x) has a zero distance in the direction being orthogo-
nal to the manifold of anchor points, the straight line which
the (green) anchor points lie on. Therefore, G∗P(x) is more
discriminative on the manifold of the anchor points. To ex-
plore the effect of these differences, we also experimentally
compare these two approaches in section 4 and the results
show that learning the Fisher information distance on P
outperforms in a significant manner learning Mahalanobis
distance in proximity space Q.

3.2. Large Margin Fisher Information Metric Learning

By applying on the learning instances the differential map
f of equation (6) we map them on the statistical manifold
Pn−1. We are now ready to learn the Fisher information
distance from the data.

Distance Parametrization. As discussed in section 2, the
Fisher information distance on Pn−1 can be exactly com-
puted by the cosine distance (Lebanon, 2006; Lee et al.,
2007):

dFIM (pi,pj) = 2 arccos(
√
pi
T√

pj) (14)

where pi is the probability mass vector of the finite discrete
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distribution pi(ξ). To parametrize the Fisher information
distance, we apply on the probability mass vector pi a lin-
ear transformation L. The intuition is that, the effect of the
optimal linear transformation L is equivalent to locating a
set of hidden anchor points such that the data’s similarity
representation is the same as the transformed representa-
tion. Thus the parametric Fisher information distance is
defined as:

dFIM (Lpi,Lpj) = 2 arccos(
√
Lpi

T√
Lpj)(15)

s.t. L ≥ 0,
∑
i

Lij = 1,∀j

L has size k × n. k is the number of hidden anchor points.
To speedup the learning process, in practice we often learn
a low rank linear transformation matrix L with small k.
The constraints L ≥ 0 and

∑
i Lij = 1,∀j are added to

ensure that each Lpi is still a finite discrete distribution on
the manifold Pk−1.

Learning. We will follow the large margin metric learn-
ing approach of (Weinberger & Saul, 2009) and define the
optimization problem of learning L as:

min
L

∑
ijk∈C(i,j,k)

[εijk]+ + α
∑
i,j→i

dFIM (Lpi,Lpj)(16)

s.t. L ≥ 0∑
i

Lij = 1; ∀j

εijk = dFIM (Lpi,Lpj) + γ − dFIM (Lpi,Lpk)

where α is a parameter that balances the importance of the
two terms. Unlike LMNN (Weinberger & Saul, 2009), the
margin parameter γ is added in the large margin triplet con-
straints following the work of (Kedem et al., 2012), since
the cosine distance is not linear with LTL. The large mar-
gin triplet constraints C(i, j, k) for each instance xi are
generated using its k1 same-class nearest neighbors and
its k2 different-class nearest neighbors in the X space and
constraining the distance of each instance to its k2 differ-
ent class neighbors to be larger than those to its k1 same
class neighbors with γ margin. In the objective function of
(16) the matrix L is learned by minimizing the sum of the
hinge losses and the sum of the pairwise distances of each
instance to its k1 same-class nearest neighbors.

Optimization. Since the cosine distance defined in equa-
tion (14) is not convex, the optimization problem (16) is
not convex. However, the constraints on matrix L are lin-
ear and we can solve this problem using a projected sub-
gradient method. At each iteration, the main computation
is the sub-gradient computation with complexity O(mnk),
wherem is the number of large margin triplet constraints. n
and k are the dimensions of the L matrix. The simplex pro-
jection operator on matrix L can be efficiently computed

with complexity O(nk log(k)) (Duchi et al., 2008). Note
that, learning distance metric on P has been previously
studied by Riemannian Metric Learning (RML) (Lebanon,
2006) and χ2-LMNN (Kedem et al., 2012). In χ2-LMNN,
a symmetric χ2 distance on P is learned with large mar-
gin idea similar to problem 16. SBFIML differs from χ2-
LMNN in that it uses the cosine distance to measure the dis-
tance onP . As described in section 2, the cosine distance is
exactly equivalent to the Fisher information distance on P ,
while the χ2 distance is only an approximation. In contrast
to SBFIML and χ2-LMNN, the work of RML focuses on
unsupervised Fisher information metric learning. More im-
portantly, both RML and χ2-LMNN can only be applied in
problems in which the input data lie on P , while SBFIML
can be applied to general data manifolds via the similarity-
based differential map. Finally, note that SBFIML can also
be applied to problems where we only have access to the
pairwise instance similarity matrix, since it needs only the
probability mass of finite discrete distributions as its input.

Local Metric Learning View of SBFIML. SBFIML can
also be interpreted as a local metric learning algorithm. SB-
FIML defines the local metric on X as the pullback metric
of the Fisher information metric induced by the following
similarity-based parametric differential map fL : X −→
Pk−1:

fL(xi) = L · pi, s.t. L > 0,
∑
i Lij = 1,∀j (17)

where as before pi is the probability mass vector of the
finite discrete distribution pi(ξ) defined in equation (6).
SBFIML learns the local metric by learning the parame-
ters of fL. The explicit form of the pullback metric G∗

can be computed according to the equation (5). Given the
pullback metric we can approximate the geodesic distance
on X by assuming that the geodesic curves are formed by
straight lines as local metric learning methods (Noh et al.,
2009; Wang et al., 2012) do, which would result in a non-
metric distance. However, Lemma 2 allows us to approxi-
mate the geodesic distance on X by the Fisher information
distance on Pk−1. SBFIML follows the latter approach.
Compared to the non-metric distance approximation, this
new distance is a well defined distance function which has
a closed form expression. Furthermore, this new distance
approximation has the same asymptotic convergence result
as the non-metric distance approximation.

4. Experiments
We will evaluate the performance of SBFIML on ten
datasets from the UCI Machine Learning and mldata1

repositories. The details of these datasets are reported
in the first column of Table 1. All datasets are prepro-
cessed by standardizing the input features. We compare

1http://mldata.org/.
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Table 1. Mean and standard deviation of 5 times 10-fold CV accuracy results on Rd datasets. The superscripts +−= next to the accuracies
of SBFIML indicate the result of the Student’s t-test with SBMML,χ2 LMNN, LMNN, GLML, PLML, KML and SVM. They denote
respectively a significant win, loss or no difference for SBFIML. The bold entries for each dataset have no significant difference from
the best accuracy for that dataset. The number in the parenthesis indicates the score of the respective algorithm for the given dataset
based on the pairwise comparisons of the Student’s t-test.

Datasets(#Inst./#Feat./#Class) SBFIML SBMML χ2 LMNN LMNN GLML PLML KML SVM
stk25(208/172/2) 81.6±1.8==+++==(5.0) 81.7±3.0(5.0) 80.9±1.4(5.0) 75.7±2.0(1.5) 72.7±1.8(0.5) 74.4±3.6(1.0) 81.9±2.7(5.0) 81.2±1.0(5.0)
wpbc(198/33/2) 79.6±1.0==+++=+(5.5) 79.3±1.1(5.5) 78.8±1.7(4.5) 73.6±1.7(0.5) 76.5±1.6(3.0) 71.7±1.6(0.5) 79.7±1.2(5.5) 77.3±0.6(3.0)
wine(178/13/3) 98.0±1.0===+===(4.0) 98.3±0.4(5.0) 97.4±0.3(3.5) 97.3±0.5(3.5) 96.1±1.1(0.5) 97.5±1.1(3.5) 98.1±0.6(4.0) 98.1±0.6(4.0)
sonar(208/60/2) 87.2±1.3==+====(4.0) 87.1±2.0(3.5) 86.4±2.0(3.5) 84.8±1.5(2.0) 87.1±0.7(3.5) 86.1±1.4(3.0) 86.9±2.2(3.5) 88.1±0.2(5.0)
musk(476/166/2) 96.1±0.4++=++++(6.5) 95.5±0.2(4.5) 94.8±0.5(3.0) 95.8±0.5(5.0) 91.3±0.6(0.5) 90.9±0.3(0.5) 95.3±0.2(4.0) 94.9±0.7(4.0)
wdbc(569/30/2) 97.2±0.4−=++=−=(3.5) 97.9±0.3(6.0) 97.5±0.5(4.5) 96.4±0.2(1.0) 96.1±0.4(0.5) 96.8±0.5(3.0) 97.9±0.3(6.0) 97.3±0.2(3.5)
balance(625/4/3) 97.5±0.5++++++=(6.5) 96.6±0.3(4.0) 96.2±0.5(4.0) 90.2±0.8(1.5) 88.8±0.5(0.0) 91.8±2.0(1.5) 96.6±0.3(4.0) 97.7±0.5(6.5)
breast(683/10/2) 96.7±0.3==+=+==(4.5) 96.4±0.5(4.0) 96.9±0.3(5.0) 95.8±0.4(1.0) 96.4±0.2(3.5) 95.1±0.7(0.5) 96.5±0.4(4.5) 96.9±0.2(5.0)
australian(690/14/2) 84.6±0.3++++++−(6.0) 80.5±0.9(2.0) 83.5±0.5(5.0) 81.2±1.0(2.0) 80.5±0.8(2.0) 80.2±1.0(2.0) 80.8±0.6(2.0) 85.7±0.9(7.0)
vehicle(846/18/4) 79.2±0.6+==+−+=(4.5) 75.7±1.1(1.0) 78.4±1.3(4.0) 79.6±0.9(4.5) 77.3±0.8(2.5) 81.3±0.5(6.5) 76.1±1.2(1.5) 78.0±7.3(3.5)
Total Score 50.0 40.5 42.0 22.5 16.5 22.0 40.0 46.5

SBFIML against three metric learning baseline methods:
LMNN (Weinberger & Saul, 2009)2, KML (Wang et al.,
2011)3, GLML (Noh et al., 2009), and PLML (Wang et al.,
2012). The former two learn a global Mahalanobis metric
in the input feature space Rd and the RKHS space respec-
tively, and the last two learn smooth local metrics in Rd.
In addition, we also compare SBFIML against Similarity-
based Mahalanobis Metric Learning (SBMML) to see the
difference of pullback metrics G∗Q(x), equation 10, and
G∗P(x), equation 11. SBMML learns a global Maha-
lanobis metric in the proximity space Q. Similar to SB-
FIML, the metric is learned by optimizing the problem 16,
in which the cosine distance is replaced by Mahalanobis
distance. The constraints on L in problem 16 are also re-
moved. To see the difference between the cosine distance
used in SBFIML and the χ2 distance used in χ2 LMNN,
we compare SBFIML against χ2 LMNN. Note that, both
methods solve exactly the same optimization problem 16
but with different distance computations. Finally, we also
compare SBFIML against SVM for binary classification
problems and against multi-class SVMs for multiclass clas-
sification problems. In multi-class SVMs, we use the one-
against-all strategy to determine the class label.

KML, SBMML and χ2 LMNN learn a n × n PSD matrix
and are thus computationally expensive for datasets with
large number of instances. To speedup the learning process,
similar to SBFIML, we can learn a low rank transformation
matrix L of size k × n. For all methods, KML, SBMML,
χ2 LMNN and SBFMIL, we set k = 0.1n in all experi-
ments. The matrix L in KML and SBMML was initialized
by clipping the n×n identity matrix into the size of k×n.
In a similar manner, in χ2 LMNN and SBFIML the matrix
L was initialized by applying on the initialization matrix L
in KML a simplex projector which ensures the constraints
in problem (16) are satisfied.

The LMNN has one hyper-parameter µ (Weinberger &

2http://www.cse.wustl.edu/∼kilian/code/code.html.
3http://cui.unige.ch/∼wangjun/.

Saul, 2009). We set it to its default value µ = 1. As
in (Noh et al., 2009), GLML uses the Gaussian distri-
bution to model the learning instances of a given class.
The hyper-parameters of PLML was set following (Wang
et al., 2012). The SBFIML has two hyper-parameters α
and γ. Following LMNN (Weinberger & Saul, 2009), we
set the α parameter to 1. We select the margin parameter γ
from {0.0001, 0.001, 0.01, 0.1} using a 4-fold inner Cross
Validation (CV). The selection of an appropriate similarity
function is crucial for SBFIML. We choose the similarity
function with a 4-fold inner CV from the angular similarity,
equation (8), and the Gaussian similarity in equation (7).
We examine two types of Gaussian similarity. In the first
we set all σk to σ which is selected from {0.5τ, τ, 2τ}, τ
was set to the average of all pairwise distances. In the sec-
ond we set the σk for each anchor point zk separately; the
σk was set by making the entropy of the conditional distri-
bution p(xi|zk) = sk(xi)∑n

i=1 sk(xi)
equal to log(nc) (Hinton &

Roweis, 2002), where n is the number of training instances
and c was selected from {0.8, 0.9, 0.95}.

Since χ2 LMNN and SBFIML apply different distance
parametrizations to solve the same optimization problem,
the parameters of χ2 LMNN are set in exactly the same
way as SBFIML, except that the margin parameter γ of
χ2 LMNN was selected from {10−8, 10−6, 10−4, 10−2},
because χ2 LMNN uses the squared χ2 distance (Kedem
et al., 2012). The best similarity map for χ2 LMNN is also
selected using a 4-fold inner CV from the same similarity
function set as that of SBFIML.

Akin to SBFIML, the performance of KML and SVM de-
pends heavily on the selection of the kernel. We select au-
tomatically the best kernel with a 4-fold inner CV. The ker-
nels are chosen from the linear, the set of polynomial (de-
gree 2,3 and 4), the angular similarity, equation (8), and the
Gaussian kernels with widths {0.5τ, τ, 2τ}, as in SBFIML
τ was set to the average of all pairwise distances. In addi-
tion, we also select the margin parameter γ of KML from
{0.01, 0.1, 1, 10, 100}. The C parameter of SVM was se-
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Table 2. Accuracy results on large datasets.

Datasets(#Inst./#Feat./#Class) SBFIML SBMML χ2 LMNN
German(1000/20/2) 69.40==(1.0) 69.30(1.0) 69.10(1.0)
Image(2310/18/2) 98.05==(1.0) 98.18(1.0) 97.79(1.0)
Splice(3175/60/2) 90.93+=(1.5) 90.55(0.5) 90.87(1.0)
Isolet(7797/617/26) 95.45==(1.0) 95.19(1.0) 95.70(1.0)
Pendigits(10992/16/10) 98.08++(2.0) 97.68(0.5) 97.77(0.5)
Total Score 6.5 4.0 4.5

lected from {0.01, 0.1, 1, 10, 100}. SBMML does not have
any constraints on the similarity function, thus we select
its similarity function with a 4-fold inner CV from a set
which includes all kernel and similarity functions used in
SBFIML and KML. As in KML, we select the margin pa-
rameter γ of SBMML from {0.01, 0.1, 1, 10, 100}. For all
methods, except GLML and SVM which do not involve
triplet constraints, the triplet constraints are constructed us-
ing three same-class and ten different-class nearest neigh-
bors for each learning instance. Finally, we use the 1-
NN rule to evaluate the performance of the different metric
learning methods.

To estimate the classification accuracy we used 5 times 10-
fold CV. The statistical significance of the differences were
tested using Student’s t-test with a p-value of 0.05. In order
to get a better understanding of the relative performance of
the different algorithms for a given dataset we used a sim-
ple ranking schema in which an algorithm A was assigned
one point if it was found to have a statistically significantly
better accuracy than another algorithm B, 0.5 points if the
two algorithms did not have a significant difference, and
zero points if A was found to be significantly worse than B.

Results. In Table 1 we report the accuracy results. We see
that SBFIML outperforms in a statistical significant man-
ner the single metric learning method LMNN and the local
metric learning methods, GLML and PLML, in seven, eight
and six out of ten datasets respectively. When we compare
it to KML and SBMML, which learn a Mahalanobis met-
ric in the RKHS and proximity space, respectively, we see
that it is significantly better than KML and SBMML in four
datasets and significantly worse in one dataset. Compared
to χ2 LMNN, SBFIML outperforms χ2-LMNN on eight
datasets, being statistically significant better on three, and
it never loses in statistical significant manner. Finally, com-
pared to SVM, we see that SBFIML is significantly better
in two datasets and significantly worse in one dataset. In
terms of the total score, SBFIML achieves the best predic-
tive performance with 50 point, followed by SVM ,which
scores 46.5 point, and χ2-LMNN with 42 point. The local
metric learning method GLML is the one that performs the
worst. A potential explanation for the poor performance of
GLML could be that its Gaussian distribution assumption is
not that appropriate for the datasets we experimented with.

To provide a better understanding of the predictive per-

formance difference between SBFIML, SBMML, and χ2

LMNN, we applied them on five large datasets. To speedup
the learning process, we use as anchor points 20% of ran-
domly selected training instances. Moreover, the param-
eter k of low rank transformation matrix L was reduced
to k = 0.05n, where n is the number of anchor points.
The kernel function and similarity map was selected using
4-fold inner CV. The classification accuracy of Isolet and
Pendigits are estimated by the default train and test split,
for other three datasets we used 10-fold cross-validation.
The statistical significance of difference were tested with
McNemar’s test with p-value of 0.05.

The accuracy results are reported in Table 2. We see
that SBFIML achieves statistical significant better accuracy
than SBMML on the two datasets, Splice and Pendigits.
When compare it to χ2 LMNN, we see it is statistical sig-
nificant better on one dataset, Pendigits. In terms of to-
tal score, SBFIML achieves the best score, 6.5 points, fol-
lowed by χ2 LMNN.

5. Conclusion
In this paper we present a two-stage metric learning al-
gorithm SBFIML. It first maps learning instances onto a
statistical manifold via a similarity-based differential map
and then defines the distance in the input data space by
the Fisher information distance on the statistical manifold.
This induces a new family of distance metrics in the input
data space with two important properties. First, the induced
metrics are robust to density variations in the original data
space and second they have largest distance discrimina-
tion on the manifold of the anchor points. Furthermore, by
learning a metric on the statistical manifold SBFIML can
learn distances on different types of input feature spaces.
The similarity-based map used in SBFIML is natural and
flexible; unlike KML it does not need to be PSD. In addi-
tion SBFIML can be interpreted as a local metric learning
method with a well defined distance approximation. The
experimental results show that it outperforms in a statis-
tical significant manner both metric learning methods and
SVM.
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