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Abstract

Recent studies reveal that a deep neural network

can learn transferable features which generalize

well to novel tasks for domain adaptation. How-

ever, as deep features eventually transition from

general to specific along the network, the feature

transferability drops significantly in higher layers

with increasing domain discrepancy. Hence, it is

important to formally reduce the dataset bias and

enhance the transferability in task-specific layers.

In this paper, we propose a new Deep Adaptation

Network (DAN) architecture, which generalizes

deep convolutional neural network to the domain

adaptation scenario. In DAN, hidden representa-

tions of all task-specific layers are embedded in a

reproducing kernel Hilbert space where the mean

embeddings of different domain distributions can

be explicitly matched. The domain discrepancy

is further reduced using an optimal multi-kernel

selection method for mean embedding matching.

DAN can learn transferable features with statisti-

cal guarantees, and can scale linearly by unbiased

estimate of kernel embedding. Extensive empiri-

cal evidence shows that the proposed architecture

yields state-of-the-art image classification error

rates on standard domain adaptation benchmarks.

1. Introduction

The generalization error of supervised learning machines

with limited training samples will be unsatisfactorily large,

while manual labeling of sufficient training data for diverse

application domains may be prohibitive. Therefore, there is

incentive to establishing effective algorithms to reduce the

labeling cost, typically by leveraging off-the-shelf labeled
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data from relevant source domains to the target domains.

Domain adaptation addresses the problem that we have data

from two related domains but under different distributions.

The domain discrepancy poses a major obstacle in adapting

predictive models across domains. For example, an object

recognition model trained on manually annotated images

may not generalize well on testing images under substantial

variations in the pose, occlusion, or illumination. Domain

adaptation establishes knowledge transfer from the labeled

source domain to the unlabeled target domain by exploring

domain-invariant structures that bridge different domains

of substantial distribution discrepancy (Pan & Yang, 2010).

One of the main approaches to establishing knowledge

transfer is to learn domain-invariant models from data,

which can bridge the source and target domains in an iso-

morphic latent feature space. In this direction, a fruitful line

of prior work has focused on learning shallow features by

jointly minimizing a distance metric of domain discrepancy

(Pan et al., 2011; Long et al., 2013; Baktashmotlagh et al.,

2013; Gong et al., 2013; Zhang et al., 2013; Ghifary et al.,

2014; Wang & Schneider, 2014). However, recent studies

have shown that deep neural networks can learn more trans-

ferable features for domain adaptation (Glorot et al., 2011;

Donahue et al., 2014; Yosinski et al., 2014), which produce

breakthrough results on some domain adaptation datasets.

Deep neural networks are able to disentangle exploratory

factors of variations underlying the data samples, and group

features hierarchically in accordance with their relatedness

to invariant factors, making representations robust to noise.

While deep neural networks are more powerful for learning

general and transferable features, the latest findings also re-

veal that the deep features must eventually transition from

general to specific along the network, and feature transfer-

ability drops significantly in higher layers with increasing

domain discrepancy. In other words, the features computed

in higher layers of the network must depend greatly on

the specific dataset and task (Yosinski et al., 2014), which

are task-specific features and are not safely transferable to
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novel tasks. Another curious phenomenon is that disentan-

gling the variational factors in higher layers of the network

may enlarge the domain discrepancy, as different domains

with the new deep representations become more “compact”

and are more mutually distinguishable (Glorot et al., 2011).

Although deep features are salient for discrimination, en-

larged dataset bias may deteriorate domain adaptation per-

formance, resulting in statistically unbounded risk for the

target tasks (Mansour et al., 2009; Ben-David et al., 2010).

Inspired by the literature’s latest understanding about the

transferability of deep neural networks, we propose in this

paper a new Deep Adaptation Network (DAN) architecture,

which generalizes deep convolutional neural network to the

domain adaptation scenario. The main idea of this work

is to enhance the feature transferability in the task-specific

layers of the deep neural network by explicitly reducing

the domain discrepancy. To establish this goal, the hidden

representations of all the task-specific layers are embedded

to a reproducing kernel Hilbert space where the mean em-

beddings of different domain distributions can be explicitly

matched. As mean embedding matching is sensitive to the

kernel choices, an optimal multi-kernel selection procedure

is devised to further reduce the domain discrepancy. In ad-

dition, we implement a linear-time unbiased estimate of the

kernel mean embedding to enable scalable training, which

is very desirable for deep learning. Finally, as deep models

pre-trained with large-scale repositories such as ImageNet

(Russakovsky et al., 2014) are representative for general-

purpose tasks (Yosinski et al., 2014; Hoffman et al., 2014),

the proposed DAN model is trained by fine-tuning from

the AlexNet model (Krizhevsky et al., 2012) pre-trained on

ImageNet, which is implemented in Caffe (Jia et al., 2014).

Comprehensive empirical evidence demonstrates that the

proposed architecture outperforms state-of-the-art results

evaluated on the standard domain adaptation benchmarks.

The contributions of this paper are summarized as fol-

lows. (1) We propose a novel deep neural network archi-

tecture for domain adaptation, in which all the layers cor-

responding to task-specific features are adapted in a lay-

erwise manner, hence benefiting from “deep adaptation.”

(2) We explore multiple kernels for adapting deep represen-

tations, which substantially enhances adaptation effective-

ness compared to single kernel methods. Our model can

yield unbiased deep features with statistical guarantees.

2. Related Work

A related literature is transfer learning (Pan & Yang, 2010),

which builds models that bridge different domains or tasks,

explicitly taking domain discrepancy into consideration.

Transfer learning aims to mitigate the effort of manual la-

beling for machine learning (Pan et al., 2011; Gong et al.,

2013; Zhang et al., 2013; Wang & Schneider, 2014) and

computer vision (Saenko et al., 2010; Gong et al., 2012;

Baktashmotlagh et al., 2013; Long et al., 2013), etc. It is

widely recognized that the domain discrepancy in the prob-

ability distributions of different domains should be for-

mally measured and reduced. The major bottleneck is how

to match different domain distributions effectively. Most

existing methods learn a new shallow representation model

in which the domain discrepancy can be explicitly reduced.

However, without learning deep features which can sup-

press domain-specific factors, the transferability of shallow

features could be limited by the task-specific variability.

Deep neural networks learn nonlinear representations that

disentangle and hide different explanatory factors of varia-

tion behind data samples (Bengio et al., 2013). The learned

deep representations manifest invariant factors underlying

different populations and are transferable from the original

tasks to similar novel tasks (Yosinski et al., 2014). Hence,

deep neural networks have been explored for domain adap-

tation (Glorot et al., 2011; Chen et al., 2012), multimodal

and multi-source learning problems (Ngiam et al., 2011;

Ge et al., 2013), where significant performance gains have

been obtained. However, all these methods depend on the

assumption that deep neural networks can learn invariant

representations that are transferable across different tasks.

In reality, the domain discrepancy can be alleviated, but

not removed, by deep neural networks (Glorot et al., 2011).

Dataset shift has posed a bottleneck to the transferability of

deep networks, resulting in statistically unbounded risk for

target tasks (Mansour et al., 2009; Ben-David et al., 2010).

Our work is primarily motivated by Yosinski et al. (2014),

which comprehensively explores feature transferability of

deep convolutional neural networks. The method focuses

on a different scenario where the learning tasks are differ-

ent across domains, hence it requires sufficient target la-

beled examples such that the source network can be fine-

tuned to the target task. In many real problems, labeled

data is usually limited especially for a novel target task,

hence the method cannot be directly applicable to domain

adaptation. There are several very recent efforts in learning

domain-invariant features in the context of shallow neural

networks (Ajakan et al., 2014; Ghifary et al., 2014). Due

to the limited capacity of shallow architectures, the per-

formance of these proposals does not surpass deep CNN

(Krizhevsky et al., 2012). Tzeng et al. (2014) proposed a

DDC model that adds an adaptation layer and a dataset shift

loss to the deep CNN for learning a domain-invariant rep-

resentation. While performance was improved, DDC only

adapts a single layer of the network, which may be restric-

tive in that there are multiple layers where the hidden fea-

tures are not transferable (Yosinski et al., 2014). DDC is

also limited by suboptimal kernel matching of probability

distributions (Gretton et al., 2012b) and its quadratic com-

putational cost that restricts transferability and scalability.



Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks

In unsupervised domain adaptation, we are given a source

domainDs = {(xs
i , y

s
i )}

ns

i=1 with ns labeled examples, and

a target domain Dt = {xt
j}

nt

j=1 with nt unlabeled exam-

ples. The source domain and target domain are charac-

terized by probability distributions p and q, respectively.

We aim to construct a deep neural network which is able

to learn transferable features that bridge the cross-domain

discrepancy, and build a classifier y = θ(x) which can

minimize target risk ǫt (θ) = Pr(x,y)∼q [θ (x) 6= y] using

source supervision. In semi-supervised adaptation where

the target has a small number of labeled examples, we de-

note by Da = {(xa
i , y

a
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the

target domain has no (or only limited) labeled information.

To approach this problem, many existing methods aim to

bound the target error by the source error plus a discrepancy

metric between the source and the target (Ben-David et al.,

2010). Two classes of statistics have been explored for

the two-sample testing, where acceptance or rejection deci-

sions are made for a null hypothesis p = q, given samples

generated respectively from p and q: energy distances and

maximum mean discrepancies (MMD) (Sejdinovic et al.,

2013). In this paper, we focus on the multiple kernel variant

of MMD (MK-MMD) proposed by Gretton et al. (2012b),

which is formalized to jointly maximize the two-sample

test power and minimize the Type II error, i.e., the failure

of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space

(RKHS) endowed with a characteristic kernel k. The mean

embedding of distribution p in Hk is a unique element

µk(p) such that Ex∼pf (x) = 〈f (x) , µk (p)〉Hk
for all

f ∈ Hk. The MK-MMD dk (p, q) between probability dis-

tributions p and q is defined as the RKHS distance between

the mean embeddings of p and q. The squared formulation

of MK-MMD is defined as

d2k (p, q) ,
∥

∥Ep [φ (xs)]−Eq

[

φ
(

xt
)]
∥

∥

2

Hk
. (1)

The most important property is that p = q iff d2k (p, q) = 0
(Gretton et al., 2012a). The characteristic kernel associated

with the feature map φ, k (xs,xt) = 〈φ (xs) , φ (xt)〉, is

defined as the convex combination of m PSD kernels {ku},

K ,

{

k =

m
∑

u=1

βuku :

m
∑

u=1

βu = 1, βu > 0, ∀u

}

, (2)

where the constraints on coefficients {βu} are imposed to

guarantee that the derived multi-kernel k is characteristic.

As studied theoretically in Gretton et al. (2012b), the kernel

MK-

MMD

MK-

MMD

MK-

MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source

output

target

output

frozen frozenfrozen
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tune

fine-
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learn learnlearn learn

Figure 1. The DAN architecture for learning transferable features.

Since deep features eventually transition from general to specific

along the network, (1) the features extracted by convolutional lay-

ers conv1–conv3 are general, hence these layers are frozen, (2)

the features extracted by layers conv4–conv5 are slightly less

transferable, hence these layers are learned via fine-tuning, and

(3) fully connected layers fc6–fc8 are tailored to fit specific

tasks, hence they are not transferable and should be adapted with

MK-MMD.

adopted for the mean embeddings of p and q is critical to

ensure the test power and low test error. The multi-kernel

k can leverage different kernels to enhance MK-MMD test,

leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain

discrepancy is to find an abstract feature representation

through which the source and target domains are simi-

lar (Ben-David et al., 2010). Although this idea has been

explored in several papers (Pan et al., 2011; Zhang et al.,

2013; Wang & Schneider, 2014), to date there has been no

attempt to enhance the transferability of feature representa-

tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-

plore the idea of MK-MMD-based adaptation for learning

transferable features in deep networks. We start with deep

convolutional neural networks (CNN) (Krizhevsky et al.,

2012), a strong model when it is adapted to novel tasks

(Donahue et al., 2014; Hoffman et al., 2014). The main

challenge is that the target domain has no or just limited

labeled information, hence directly adapting CNN to the

target domain via fine-tuning is impossible or is prone to

over-fitting. With the idea of domain adaptation, we are

targeting a deep adaptation network (DAN) that can exploit

both source-labeled data and target-unlabeled data. Fig-

ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,

2012), which is comprised of five convolutional layers

(conv1–conv5) and three fully connected layers (fc6–

fc8). Each fc layer ℓ learns a nonlinear mapping hℓ
i =

f ℓ
(

Wℓhℓ−1
i + bℓ

)

, where hℓ
i is the ℓth layer hidden rep-

resentation of point xi, W
ℓ and bℓ are the weights and bias

of the ℓth layer, and f ℓ is the activation, taking as recti-

fier units f ℓ(x) = max(0,x) for hidden layers or softmax

units f ℓ (x) = ex/
∑|x|

j=1 e
xj for the output layer. Letting
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Θ =
{

Wℓ,bℓ
}l

ℓ=1
denote the set of all CNN parameters,

the empirical risk of CNN is

min
Θ

1

na

na
∑

i=1

J (θ (xa
i ) , y

a
i ), (3)

where J is the cross-entropy loss function, and θ (xa
i ) is

the conditional probability that the CNN assigns xa
i to la-

bel yai . We will not discuss how to compute the convolu-

tional layers as we will not impose distribution-adaptation

regularization in those layers, given that the convolutional

layers can learn generic features that tend to be transferable

in layers conv1–conv3 and are slightly domain-biased in

conv4–conv5 (Yosinski et al., 2014). Hence, when adapt-

ing the pre-trained AlexNet to the target, we opt to freeze

conv1–conv3 and fine-tune conv4–conv5 to preserve the

efficacy of fragile co-adaptation (Hinton et al., 2012).

In standard CNNs, deep features must eventually transition

from general to specific by the last layer of the network, and

the transferability gap grows with the domain discrepancy

and becomes particularly large when transferring the higher

layers fc6–fc8 (Yosinski et al., 2014). In other words, the

fc layers are tailored to their original task at the expense of

degraded performance on the target task, hence they cannot

be directly transferred to the target domain via fine-tuning

with limited target supervision. In this paper, we fine-tune

CNN on the source labeled examples and require the dis-

tributions of the source and target to become similar under

the hidden representations of fully connected layers fc6–

fc8. This can be realized by adding an MK-MMD-based

multi-layer adaptation regularizer (1) to the CNN risk (3):

min
Θ

1

na

na
∑

i=1

J (θ (xa
i ) , y

a
i ) + λ

l2
∑

ℓ=l1

d2k
(

Dℓ
s,D

ℓ
t

)

, (4)

where λ > 0 is a penalty parameter, l1 and l2 are layer in-

dices between which the regularizer is effective. In our im-

plementation of DAN, we set l1 = 6 and l2 = 8, although

different configurations are also possible, depending on the

size of the labeled source dataset and the number of param-

eters in the layers that are to be fine-tuned. Dℓ
∗ =

{

h∗ℓ
i

}

is

the ℓth layer hidden representation for the source and target

examples, and d2k
(

Dℓ
s,D

ℓ
t

)

is the MK-MMD between the

source and target evaluated on the ℓth layer representation.

Training a deep CNN requires a large amount of labeled

data, which is prohibitive for many domain adaptation

problems, hence we start with an AlexNet model pre-

trained on ImageNet 2012 and fine-tune it as in Yosinski

et al. (2014). With the proposed DAN optimization frame-

work (4), we are able to learn transferable features from a

source domain to a related target domain. The learned rep-

resentation can both be salient benefiting from CNN, and

unbiased thanks to MK-MMD. Two important advantages

that distinguish DAN from relevant literature are: (1) multi-

layer adaptation. As revealed by (Yosinski et al., 2014),

feature transferability gets worse on conv4–conv5 and sig-

nificantly drops on fc6–fc8, hence it is critical to adapt

multiple layers instead of only one layer. In other words,

adapting a single layer cannot undo the dataset bias be-

tween the source and the target, since there are other lay-

ers that are not transferable. Another benefit of multi-layer

adaptation is that by jointly adapting the representation lay-

ers and the classifier layer, we could essentially bridge the

domain discrepancy underlying both the marginal distribu-

tion and the conditional distribution, which is crucial for

domain adaptation (Zhang et al., 2013). (2) multi-kernel

adaptation. As pointed out by Gretton et al. (2012b), kernel

choice is critical to the testing power of MMD since differ-

ent kernels may embed probability distributions in different

RKHSs where different orders of sufficient statistics can be

emphasized. This is crucial for moment matching, which is

not well explored by previous domain adaptation methods.

3.2. Algorithm

Learning Θ Using the kernel trick, MK-MMD (1) can be

computed as the expectation of kernel functions d2k (p, q) =

Exsx′sk(xs,x′s) + Extx′tk(xt,x′t) − 2Exsxtk(xs,xt),

where xs,x′s iid
∼ p, xt,x′t iid∼ q, and k ∈ K. However, this

computation incurs a complexity of O(n2), which is rather

undesirable for deep CNNs, as the power of deep neu-

ral networks largely derives from learning with large-scale

datasets. Moreover, the summation over pairwise simi-

larities between data points makes mini-batch stochastic

gradient descent (SGD) more difficult, whereas mini-batch

SGD is crucial to the training effectiveness of deep net-

works. While prior work based on MMD (Pan et al., 2011;

Tzeng et al., 2014) rarely addresses this issue, we believe it

is critical in the context of deep learning. In this paper, we

adopt the unbiased estimate of MK-MMD (Gretton et al.,

2012b) which can be computed with linear complexity.

More specifically, d2k (p, q) = 2
ns

∑ns/2
i=1 gk (zi), where

we denote quad-tuple zi , (xs
2i−1,x

s
2i,x

t
2i−1,x

t
2i), and

evaluate multi-kernel function k on each quad-tuple zi by

gk (zi) , k(xs
2i−1,x

s
2i)+k(xt

2i−1,x
t
2i)−k(xs

2i−1,x
t
2i)−

k(xs
2i,x

t
2i−1). This approach computes an expectation of

independent variables as in (1) with cost O(n).

When we train deep CNN by mini-batch SGD, we only

need to consider the gradient of objective (4) with respect to

each data point xi. Since the linear-time MK-MMD takes

a nice summation form that can be readily decoupled into

the sum of gk(zi)’s, we only need to compute the gradients
∂gk(z

ℓ
i)

∂Θℓ for the quad-tuple zℓi =
(

hsℓ
2i−1,h

sℓ
2i,h

tℓ
2i−1,h

tℓ
2i

)

of

the ℓth layer hidden representation. To be consistent with

the gradient of MK-MMD, we need to compute the cor-

responding gradient of CNN risk
∂J(zi)
∂Θℓ , where J (zi) =



Learning Transferable Features with Deep Adaptation Networks

∑

i′ J (θ (xa
i′ ) , y

a
i′), and {(xa

i′ , y
a
i′)} indicates the labeled

examples in quad-tuple zi—for instance, in unsupervised

adaptation where the target domain has no labeled data, we

have {(xa
i′ , y

a
i′)} = {(xs

2i−1, y
s
2i−1), (x

s
2i, y

s
2i)}. To per-

form a mini-batch update, we compute the gradient of ob-

jective (4) with respect to the ℓth layer parameter Θℓ as

∇Θℓ =
∂J (zi)

∂Θℓ
+ λ

∂gk
(

zℓi
)

∂Θℓ
. (5)

Such a mini-batch SGD can be easily implemented within

the Caffe framework for CNNs (Jia et al., 2014). Given

kernel k as the linear combination of m Gaussian kernels

{ku (xi,xj) = e−‖xi−xj‖
2/γu}, the gradient

∂gk(zℓi)
∂Θℓ can

be readily computed using the chain rule. For instance,

∂k(hsℓ
2i−1,h

tℓ
2i)

∂Wℓ
= −

m
∑

u=1

2βu

γu
ku

(

hsℓ
2i−1,h

tℓ
2i

)

×
(

hsℓ
2i−1 − htℓ

2i

)

×
(

I

[

h
s(ℓ−1)
2i−1

]

− I

[

h
t(ℓ−1)
2i

])T

,

(6)

where the last row computes the gradient of the ℓth layer

rectifier units, with I being defined as an indicator such that

I
[

hℓ−1
ji

]

= hℓ−1
ji if Wℓ

j·h
ℓ−1
i +bℓ

j > 0, else I
[

hℓ−1
ji

]

= 0.

Learning β The proposed multi-layer adaptation regular-

izer performs layerwise matching by MK-MMD, hence we

seek to learn optimal kernel parameter β for MK-MMD by

jointly maximizing the test power and minimizing the Type

II error (Gretton et al., 2012b), leading to the optimization

max
k∈K

d2k
(

Dℓ
s,D

ℓ
t

)

σ−2
k , (7)

where σ2
k = Ezg

2
k (z)− [Ezgk (z)]

2
is estimation variance.

Lettingd = (d1, d2, . . . , dm)T, each du is MMD via kernel

ku. Covariance Q = cov (gk) ∈ R
m×m can be computed

in O(m2n) cost, i.e. Quu′ = 4
ns

∑ns/4
i=1 g∆ku

(z̄i) g
∆
ku′

(z̄i),

where z̄i , (z2i−1, z2i) and g∆ku
(z̄i) , gku

(z2i−1) −
gku

(z2i). Hence (7) reduces to a quadratic program (QP),

min
dTβ=1,β>0

βT (Q+ εI)β, (8)

where ε = 10−3 is a small regularizer to make the prob-

lem well-defined. By solving (8), we obtain a multi-kernel

k =
∑m

u=1 βuku that jointly maximizes the test power and

minimizes the Type II error.

We note that the DAN objective (4) is essentially a minimax

problem; i.e., we compute min
Θ

max
K

d2k
(

Dℓ
s,D

ℓ
t

)

σ−2
k . The

CNN parameter Θ is learned by minimizing MK-MMD as

a domain discrepancy, while the MK-MMD parameter β is

learned by minimizing the Type II error. Both criteria are

dedicated to an effective adaptation of domain discrepancy,

aiming to consolidate the transferability of DAN features.

We accordingly adopt an alternating optimization that up-

dates Θ by mini-batch SGD (5) and β by QP (8) iteratively.

Both updates cost O(n) and are scalable to large datasets.

3.3. Analysis

We provide an analysis of the expected target-domain risk

of our approach, making use of the theory of domain adap-

tation (Ben-David et al., 2007; 2010; Mansour et al., 2009)

and the theory of kernel embedding of probability distribu-

tions (Sriperumbudur et al., 2009; Gretton et al., 2012a;b).

Theorem 1 Let θ ∈ H be a hypothesis, ǫs(θ) and ǫt(θ) be

the expected risks of source and target respectively, then

ǫt(θ) 6 ǫs(θ) + 2dk(p, q) + C, (9)

where C is a constant for the complexity of hypothesis

space and the risk of an ideal hypothesis for both domains.

Proof sketch: A result from Ben-David et al. (2007) shows

that ǫt(θ) 6 ǫs(θ) + dH(p, q) + C0, where dH(p, q) is the

H-divergence between p and q, which is defined as

dH(p, q) , 2 sup
η∈H

∣

∣

∣

∣

Pr
xs∼p

[η(xs) = 1]− Pr
xt∼q

[

η(xt) = 1
]

∣

∣

∣

∣

.

(10)

The H-divergence relies on the capacity of the hypothesis

space H to distinguish distributions p from q, and η ∈ H
can be viewed as a two-sample classifier. By choosing η as

a (kernel) Parzen window classifier (Sriperumbudur et al.,

2009), dH(p, q) can be bounded by the empirical estimate

dH(p, q) 6 d̂H(Ds,Dt) + C1

6 2

(

1− inf
η∈H

[

ns
∑

i=1

L[η(xs
i )=1]

ns
+

nt
∑

j=1

L[η(xt
j )=−1]
nt

])

+C1

= 2 (1 + dk(p, q)) + C1,
(11)

where L(·) is the linear loss function of the Parzen window

classifier η, L[η = 1] , −η, L[η = −1] , η. By explicitly

minimizing MK-MMD in multiple layers, the features and

classifier learned by the proposed DAN model can decrease

the upper bound on target risk. The source classifier and the

two-sample classifier together provide a way to assess the

adaptation performance, and can facilitate model selection.

Note that we maximize MK-MMD w.r.t. β (7) to minimize

Type II test error, and to help the Parzen window classifier

achieve minimal risk of two-sample discrimination in (11).

4. Experiments

We compare the DAN model to state-of-the-art transfer

learning and deep learning methods on both unsupervised

and semi-supervised adaptation problems, focusing on the

efficacy of multi-layer adaptation with multi-kernel MMD.
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4.1. Setup

Office-31 (Saenko et al., 2010) This dataset is a standard

benchmark for domain adaptation. It consists of 4,652 im-

ages within 31 categories collected from three distinct do-

mains: Amazon (A), which contains images downloaded

from amazon.com, Webcam (W) and DSLR (D), which

are images taken by web camera and digital SLR camera in

an office with different environment variation, respectively.

We evaluate our method across the 3 transfer tasks, A →
W, D → W and W → D, which are commonly adopted in

deep learning methods (Donahue et al., 2014; Tzeng et al.,

2014). For completeness, we further include the evaluation

on the other 3 transfer tasks, A → D, D → A and W → A.

Office-10 + Caltech-10 (Gong et al., 2012). This dataset

consists of the 10 common categories shared by the Office-

31 and Caltech-256 (C) (Griffin et al., 2007) datasets and

is widely adopted in transfer learning methods (Long et al.,

2013; Baktashmotlagh et al., 2013). We can build another

6 transfer tasks: A → C, W → C, D → C, C → A, C → W,

and C → D. With more transfer tasks, we are targeting an

unbiased look at the dataset bias (Torralba & Efros, 2011).

We compare to a variety of methods: TCA (Pan et al.,

2011), GFK (Gong et al., 2012), CNN (Krizhevsky et al.,

2012), LapCNN (Weston et al., 2008), and DDC

(Tzeng et al., 2014). Specifically, TCA is a conventional

transfer learning method based on MMD-regularized PCA.

GFK is a widely-adopted method for our datasets which

interpolates across intermediate subspaces to bridge the

source and target. CNN was the leading method in the

ImageNet 2012 competition, and it turns out to be a strong

model for learning transferable features (Yosinski et al.,

2014). LapCNN is a semi-supervised variant of CNN

based on Laplacian graph regularization. Finally, DDC is a

domain adaptation variant of CNN that adds an adaptation

layer between the fc7 and fc8 layers that is regularized

by single-kernel MMD. We implement the CNN-based

methods, i.e., CNN, LapCNN, DDC, and DAN based on

the Caffe (Jia et al., 2014) implementation of AlexNet

(Krizhevsky et al., 2012) trained on the ImageNet dataset.

In order to study the efficacy of multi-layer adaptation and

multi-kernel MMD, we evaluate several variants of DAN:

(1) DAN using only one hidden layer, either fc7 or fc8
for adaptation, termed DAN7 and DAN8 respectively; (2)

DAN using single-kernel MMD for adaptation, termed

DANSK.

We mainly follow standard evaluation protocol for unsu-

pervised adaptation and use all source examples with labels

and all target examples without labels (Gong et al., 2013).

To make our results directly comparable to most published

results, we report a classical protocol (Saenko et al., 2010)

in that we randomly down-sample the source examples,

and further require 3 labeled target examples per category

for semi-supervised adaptation. We compare the averages

and standard errors of classification accuracy for each task.

For baseline methods, we follow the standard procedures

for model selection as explained in their respective papers.

For MMD-based methods (i.e., TCA, DDC, and DAN),

we use a Gaussian kernel k (xi,xj) = e−‖xi−xj‖
2/γ

with the bandwidth γ set to the median pairwise distances

on the training data—the median heuristic (Gretton et al.,

2012b). We use multi-kernel MMD for DAN, and con-

sider a family of m Gaussian kernels {ku}
m
u=1 by varying

bandwidth γu between 2−8γ and 28γ with a multiplica-

tive step-size of 21/2 (Gretton et al., 2012b). As minimiz-

ing MMD is equivalent to maximizing the error of clas-

sifying the source from the target (two-sample classifier)

(Sriperumbudur et al., 2009), we can automatically select

the MMD penalty parameter λ on a validation set (com-

prised of source-labeled instances and target-unlabeled in-

stances) by jointly assessing the test errors of the source

classifier and the two-sample classifier. We use the fine-

tuning architecture (Yosinski et al., 2014), however, due to

limited training examples in our datasets, we fix convo-

lutional layers conv1–conv3 that were copied from pre-

trained model, fine-tune conv4–conv5 and fully connected

layers fc6–fc7, and train classifier layer fc8, both via back

propagation. As the classifier is trained from scratch, we

set its learning rate to be 10 times that of the lower lay-

ers. We use stochastic gradient descent (SGD) with 0.9

momentum and the learning rate annealing strategy imple-

mented in Caffe, and cross-validate base learning rate be-

tween 10−5 and 10−2 with a multiplicative step-size 101/2.

4.2. Results and Discussion

The unsupervised adaptation results on the first six Office-

31 transfer tasks are shown in Table 1, and the results

on the other six Office-10 + Caltech-10 transfer tasks are

shown in Table 2. To directly compare with DDC, we re-

port semi-supervised adaptation results of the same tasks

used by DDC in Table 3. We can observe that DAN sig-

nificantly outperforms the comparison methods on most

transfer tasks, and achieves comparable performance on the

easy transfer tasks, D → W and W → D, where source and

target are similar (Saenko et al., 2010). This is reasonable

as the adaptability may vary across different transfer tasks.

The performance boost demonstrates that our architecture

of multi-layer adaptation via multi-kernel MMD is able to

transfer pre-trained deep models across different domains.

From the experimental results, we can make the follow-

ing observations. (1) Deep learning based methods signif-

icantly outperform conventional shallow transfer learning

methods by a large margin. (2) Among the deep learn-

ing methods, the semi-supervised LapCNN provides no

improvement over CNN, suggesting that the challenge of

domain discrepancy cannot be readily bridged by semi-

amazon.com
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Table 1. Accuracy on Office-31 dataset with standard unsupervised adaptation protocol (Gong et al., 2013).

Method A → W D → W W → D A → D D → A W → A Average

TCA 21.5 ± 0.0 50.1 ± 0.0 58.4 ± 0.0 11.4 ± 0.0 8.0 ± 0.0 14.6 ± 0.0 27.3

GFK 19.7 ± 0.0 49.7 ± 0.0 63.1 ± 0.0 10.6 ± 0.0 7.9 ± 0.0 15.8 ± 0.0 27.8

CNN 61.6 ± 0.5 95.4 ± 0.3 99.0 ± 0.2 63.8 ± 0.5 51.1 ± 0.6 49.8 ± 0.4 70.1

LapCNN 60.4 ± 0.3 94.7 ± 0.5 99.1 ± 0.2 63.1 ± 0.6 51.6 ± 0.4 48.2 ± 0.5 69.5

DDC 61.8 ± 0.4 95.0 ± 0.5 98.5 ± 0.4 64.4 ± 0.3 52.1 ± 0.8 52.2 ± 0.4 70.6

DAN7 63.2 ± 0.2 94.8 ± 0.4 98.9 ± 0.3 65.2 ± 0.4 52.3 ± 0.4 52.1 ± 0.4 71.1

DAN8 63.8 ± 0.4 94.6 ± 0.5 98.8 ± 0.6 65.8 ± 0.4 52.8 ± 0.4 51.9 ± 0.5 71.3

DANSK 63.3 ± 0.3 95.6 ± 0.2 99.0 ± 0.4 65.9 ± 0.7 53.2 ± 0.5 52.1 ± 0.4 71.5

DAN 68.5 ± 0.4 96.0 ± 0.3 99.0 ± 0.2 67.0 ± 0.4 54.0 ± 0.4 53.1 ± 0.3 72.9

Table 2. Accuracy on Office-10 + Caltech-10 dataset with standard unsupervised adaptation protocol (Gong et al., 2013).

Method A → C W → C D → C C → A C → W C → D Average

TCA 42.7 ± 0.0 34.1 ± 0.0 35.4 ± 0.0 54.7 ± 0.0 50.5 ± 0.0 50.3 ± 0.0 44.6

GFK 41.4 ± 0.0 26.4 ± 0.0 36.4 ± 0.0 56.2 ± 0.0 43.7 ± 0.0 42.0 ± 0.0 41.0

CNN 83.8 ± 0.3 76.1 ± 0.5 80.8 ± 0.4 91.1 ± 0.2 83.1 ± 0.3 89.0 ± 0.3 84.0

LapCNN 83.6 ± 0.6 77.8 ± 0.5 80.6 ± 0.4 92.1 ± 0.3 81.6 ± 0.4 87.8 ± 0.4 83.9

DDC 84.3 ± 0.5 76.9 ± 0.4 80.5 ± 0.2 91.3 ± 0.3 85.5 ± 0.3 89.1 ± 0.3 84.6

DAN7 84.7 ± 0.3 78.2 ± 0.5 81.8 ± 0.3 91.6 ± 0.4 87.4 ± 0.3 88.9 ± 0.5 85.4

DAN8 84.4 ± 0.3 80.8 ± 0.4 81.7 ± 0.2 91.7 ± 0.3 90.5 ± 0.4 89.1 ± 0.4 86.4

DANSK 84.1 ± 0.4 79.9 ± 0.4 81.1 ± 0.5 91.4 ± 0.3 86.9 ± 0.5 89.5 ± 0.3 85.5

DAN 86.0 ± 0.5 81.5 ± 0.3 82.0 ± 0.4 92.0 ± 0.3 92.0 ± 0.4 90.5 ± 0.2 87.3

Table 3. Accuracy on Office-31 dataset with classic unsupervised

and semi-supervised adaptation protocols (Saenko et al., 2010).

Method A → W D → W W → D Average

DDC 59.4 ± 0.8 92.5 ± 0.3 91.7 ± 0.8 81.2

DAN 66.0 ± 0.4 93.5 ± 0.2 95.3 ± 0.3 84.9

DDC 84.1 ± 0.6 95.4 ± 0.4 96.3 ± 0.3 91.9

DAN 85.7 ± 0.3 97.2 ± 0.2 96.4 ± 0.2 93.1

supervised learning. (3) DDC, a cross-domain variant of

CNN with single-layer adaptation via single-kernel MMD,

generally outperforms CNN, confirming its effectiveness in

learning transferable features using domain-adaptive deep

models. Note that while DDC based on Caffe AlexNet was

shown to significantly outperform DeCAF (Donahue et al.,

2014) in which fine-tuning was not carried out, it does not

yield a large gain over Caffe AlexNet using fine-tuning.

This shows the limitation of single-layer adaptation via

single-kernel MMD, which cannot explore the strengths of

deep networks and multiple kernels for domain adaptation.

To dive deeper into DAN, we present the results of three

variants of DAN: (1) DAN7 and DAN8 achieve better ac-

curacy than DDC, which highlights that multi-kernel MMD

can bridge the domain discrepancy more effectively than

single-kernel MMD. The reason is that multiple kernels

with different bandwidths can match both the low-order

moments and high-order moments to minimize the Type II

error (Gretton et al., 2012b). (2) DANSK also attains higher

accuracy than DDC, which confirms the capability of deep

architecture for distribution adaptation. The rationale is

similar to that of deep networks: each layer of deep net-

work is intended to extract features at a different abstraction

level, and hence we need to match the distributions at each

task-specific layer to consolidate the adaptation quality at

all levels. The multi-layer architecture is one of the most

critical contributors to the efficacy of deep learning, and we

believe it is also important for MMD-based adaptation. The

evidence of comparable performance between the multi-

layer variant DANSK and multi-kernel variants DAN7 and

DAN8 shows their equal importance for domain adaptation.

As expected, DAN obtains the best performance by jointly

exploring multi-layer adaptation with multi-kernel MMD.

Another benefit of DAN is that it uses a linear-time unbi-

ased estimate of the kernel embedding, which makes it an

order more efficient than existing methods TCA and DDC.

Though Tzeng et al. (2014) speed up DDC by computing

the MMD within each mini-batch of the SGD, this leads to

a biased estimate of MMD and lower adaptation accuracy.

4.3. Empirical Analysis

Feature Visualization To demonstrate the transferabil-

ity of the DAN learned features, we follow Donahue et

al. (2014) and Tzeng et al. (2014) and plot in Figures 2(a)–

2(b) and 2(c)–2(d) the t-SNE embeddings of the images
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Figure 2. Feature visualization: t-SNE of DDC features on source (a) and target (b); t-SNE of DAN features on source (c) and target (d).
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Figure 3. Empirical analysis: (a) A-Distance of CNN & DAN fea-

tures; (b) sensitivity of λ (dashed lines show best baseline results).

in task C → W with DDC features and DAN features, re-

spectively. We make the following observations: (1) With

DDC features, the target points are not discriminated very

well, while with DAN features, the points are discriminated

much better. (2) With DDC features, the categories be-

tween the source and the target are not aligned very well,

while with DAN features, the categories are aligned much

better between domains. Both these observations can ex-

plain the superior performance of DAN over DDC: (1) im-

plies that the target points are more easily discriminated

with DAN features, and (2) implies that the target points

can be better discriminated with the source classifier. DAN

can learn more transferable features for effective domain

adaptation.

A-Distance A theoretical result in Ben-David et al. (2010)

suggests A-distance as a measure of domain discrepancy.

As computing the exact A-distance is intractable, an ap-

proximate distance is defined as d̂A = 2 (1− 2ǫ), where ǫ
is the generalization error of a two-sample classifier (ker-

nel SVM in our case) trained on the binary problem to

distinguish input samples between the source and target

domains. Figure 3(a) displays d̂A on transfer tasks A →
W and C → W using Raw features, CNN features, and

DAN features, respectively. It reveals a surprising obser-

vation that the d̂A on both CNN and DAN features are

larger than the d̂A on Raw features. This implies that ab-

stract deep features can be salient both for discriminating

different categories and different domains, which is consis-

tent with Glorot et al. (2011). However, domain adaptation

may be deteriorated by the enlarged domain discrepancy

(Ben-David et al., 2010). It is desirable that d̂A on DAN

feature is smaller than d̂A on CNN feature, which guaran-

tees more transferable features.

Parameter Sensitivity We investigate the effects of the

parameter λ. Figure 3(b) gives an illustration of the

variation of transfer classification performance as λ ∈
{0.1, 0.4, 0.7, 1, 1.4, 1.7, 2} on tasks A → W and C → W.

We can observe that the DAN accuracy first increases and

then decreases as λ varies and demonstrates a bell-shaped

curve. This confirms the motivation of jointly learning deep

features and adapting distribution discrepancy, since a good

trade-off between them can enhance feature transferability.

5. Conclusion

In this paper, we have proposed a novel Deep Adaptation

Network (DAN) architecture to enhance the transferability

of features from task-specific layers of the neural network.

We confirm that while general features can generalize well

to a novel task, specific features tailored to an original task

cannot bridge the domain discrepancy effectively. We show

that feature transferability can be enhanced substantially by

mean-embedding matching of the multi-layer representa-

tions across domains in a reproducing kernel Hilbert space.

An optimal multi-kernel selection strategy further improves

the embedding matching effectiveness, while an unbiased

estimate of the mean embedding naturally leads to a linear-

time algorithm that is very desirable for deep learning from

large-scale datasets. An extensive empirical evaluation on

standard domain adaptation benchmarks demonstrates the

efficacy of the proposed model against previous methods.

As deep features transition from general to specific along

the network, it is interesting to study the principled way of

deciding the boundary of generality and specificity, and the

application of distribution adaptation to the convolutional

layers of CNN to further enhance the feature transferability.
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