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Abstract

A gamma process dynamic Poisson factor
analysis model is proposed to factorize a
dynamic count matrix, whose columns are
sequentially observed count vectors. The
model builds a novel Markov chain that sends
the latent gamma random variables at time
(t − 1) as the shape parameters of those at
time t, which are linked to observed or la-
tent counts under the Poisson likelihood. The
significant challenge of inferring the gamma
shape parameters is fully addressed, using
unique data augmentation and marginaliza-
tion techniques for the negative binomial dis-
tribution. The same nonparametric Bayesian
model also applies to the factorization of
a dynamic binary matrix, via a Bernoulli-
Poisson link that connects a binary observa-
tion to a latent count, with closed-form con-
ditional posteriors for the latent counts and
efficient computation for sparse observations.
We apply the model to text and music anal-
ysis, with state-of-the-art results.

1 INTRODUCTION

There has been growing interest in analyzing dynamic
count and binary matrices, whose columns are data
vectors that are sequentially collected over time. Such
data appear in many real world applications, such
as text analysis, social network modeling, audio and
language processing, and recommendation systems.
Count data are discrete and nonnegative, have lim-
ited ranges, and often present overdispersion; binary
data only have two possible values: 0 and 1; and both
kinds of data commonly appear in big matrices that
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are extremely sparse. While the classical matrix fac-
torization method using the Frobenius norm is effec-
tive for factorizing real matrices [1, 2, 3, 4, 5, 6, 7], its
inherent Gaussian assumption is often overly restric-
tive for modeling count and binary matrices. Exploit-
ing well-developed techniques for Gaussian data, one
usually considers connecting a count observation to a
latent Gaussian random variable using the lognormal-
Poisson link, and connecting a binary observation us-
ing the probit or logit links. These generalized linear
model [8] based approaches, however, might involve
heavy computation and lack intuitive interpretation
of the inferred factorization.

Despite these disadvantages, latent Gaussian based ap-
proaches are commonly used to analyze count and
binary data. This is particularly true for dynamic
modeling, since inference techniques for linear dy-
namical systems such as the Kalman filter are well
developed, and can be readily applied once the dy-
namic count/binary data are transformed into the la-
tent Gaussian space. For example, to analyze the tem-
poral evolution of topics in a corpus, the dynamic topic
model draws the topic proportion at each time stamp
from a logistic normal distribution, whose parameters
are chained in a state space model that evolves with
Gaussian noise [9]. Although the dynamic topic model
is a discrete latent variable model, to model the topic
proportion that explains the number of words assigned
to a topic in a document, which is a count, it chooses
to use the logistic normal link and imposes a temporal
smoothness in the latent Gaussian space.

Rather than modeling the temporal evolution of count
and binary data in the latent Gaussian space using a
linear dynamical system, we consider a fundamentally
different approach: we directly chain the positive Pois-
son rates of the count or binary data in a state space
model that evolves with gamma noise. More specifi-
cally, we build a gamma Markov chain that sends θt−1,
a latent gamma random variable at time t− 1, as the
shape parameter of the latent gamma random variable
at time t as θt|θt−1 ∼ Gam(θt−1, 1/c); at each time
point, we use θt as the Poisson rate for a count as
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nt ∼ Pois(θt); and the counts {nt}t are conditionally
independent given {θt}t. If the observation is binary,
then we assume the Bernoulli random variable is gener-
ated by thresholding a latent count as bt = 1(nt ≥ 1),
which means bt = 1 if nt ≥ 1 and bt = 0 if nt = 0. We
call this count-to-binary link function as the Bernoulli-
Poisson link, under which the conditional posterior of
the latent count follows a truncated Poisson distribu-
tion.

To apply the gamma Markov chain to dynamic count
and binary matrix factorization, we extend it to a mul-
tivariate setting, which is integrated into a discrete la-
tent variable model called Poisson factor analysis [10].
Specifically, we factorize the observed dynamic count
(binary) matrix under the Poisson (Bernoulli-Poisson)
likelihood, and chain the latent factor scores across
time, where a gamma distributed factor score is linked
via a Poisson distribution to a latent count that counts
how many times the corresponding factor is used by
the corresponding observation. To avoid tuning the
latent dimension of factorization, we also employ a
gamma process to automatically infer the number of
factors, which can be potentially infinite. The key
challenge for this unconventional Markov chain is to
infer the gamma shape parameters, for which we dis-
cover a simple and effective solution.

The paper makes the following contributions: 1) We
construct a novel gamma Markov chain to model dy-
namic count and binary data. 2) We provide closed-
form update equations to infer the parameters of the
gamma Markov chain, using novel data augmentation
and marginalizing techniques. 3) We integrate the
gamma Markov chain into Poisson factor analysis to
analyze dynamic count matrices. 4) We factorize a dy-
namic binary matrix under the Bernoulli-Poisson like-
lihood, with extremely efficient computation for sparse
observations. 5) We apply the developed techniques to
real world dynamic count and binary matrices, with
state-of-the-art results.

2 PRELIMINARIES

Negative Binomial Distribution: The negative bi-
nomial (NB) distribution m ∼ NB(r, p), with probabil-

ity mass function (PMF) Pr(M = m) = Γ(m+r)
m!Γ(r) p

m(1−
p)r, where m ∈ Z and Z = {0, 1, . . .}, can be aug-
mented into a gamma-Poisson construction as m ∼
Pois(λ), λ ∼ Gam(r, p/(1 − p)), where the gamma
distribution is parameterized by its shape r and scale
p/(1 − p). It can also be augmented under a com-

pound Poisson representation as m =
∑l
t=1 ut, ut

iid∼
Log(p), l ∼ Pois(−rln(1 − p)), where u ∼ Log(p) is
the logarithmic distribution [11].

Lemma 2.1 ([12]). If m ∼ NB(r, p) is represented
under its compound Poisson representation, then the
conditional posterior of l given m and r has PMF:

Pr(l = j|m, r) =
Γ(r)

Γ(m+ r)
|s(m, j)|rj , j = 0, 1, . . . ,m,

where |s(m, j)| are unsigned Stirling numbers of the
first kind. We denote this conditional posterior as
l ∼ CRT(m, r), a Chinese restaurant table (CRT)
count random variable, which can be generated via
l =

∑m
n=1 zn, zn ∼ Bernoulli(r/(n− 1 + r)).

Gamma Process: The gamma Process [13, 14]
G ∼ GaP(c,G0) is a completely random measure
[15, 16] defined on the product space R+ × Ω, where
R+ = {x : x > 0}, with concentration parame-
ter c and a finite and continuous base measure G0

over a complete separable metric space Ω, such that
G(Ai) ∼ Gam(G0(Ai), 1/c) are independent gamma
random variables for disjoint partition {Ai}i of Ω. The
Lévy measure of the gamma process can be expressed
as ν(drdω) = r−1e−crdrG0(dω). Since the Poisson in-
tensity ν+ = ν(R+ × Ω) = ∞ and

∫
R+×Ω

rν(drdω) is

finite, following [14], a draw from the gamma process
consists of countably infinite atoms, which can be ex-

pressed as G =
∑∞
k=1 rkδωk , where (rk, ωk)

iid∼ π(drdω)
and π(drdω)ν+ ≡ ν(drdω).

Poisson Factor Analysis: A large number of dis-
crete latent variable models can be united under Pois-
son factor analysis (PFA) [10], which factorizes a count
matrix N ∈ ZV×T under the Poisson likelihood as
N ∼ Pois(ΦΘ), where Φ ∈ RV×K+ is the factor load-

ing matrix or dictionary and Θ ∈ RK×T+ is the fac-
tor score matrix. A wide variety of algorithms, al-
though constructed with different motivations and for
distinct problems, can all be viewed as PFA with dif-
ferent prior distributions imposed on Φ and Θ. For
example, non-negative matrix factorization [17, 18],
with the objective to minimize the Kullback-Leibler
divergence between N and its factorization ΦΘ, is
essentially PFA solved with maximum likelihood es-
timation. Latent Dirichlet allocation [19] is equiva-
lent to PFA, in terms of both block Gibbs sampling
and variational inference, if Dirichlet distribution pri-
ors are imposed on both φk ∈ RV+, the columns of
Φ, and θt ∈ RK+ , the columns of Θ. The gamma-
Poisson model [20, 21, 22] is PFA with gamma priors
on Φ and Θ. A family of NB processes, such as the
beta-NB [10, 23] and gamma-NB processes [12, 24],
impose different gamma priors on {θtk}, the marginal-
ization of which leads to differently parameterized NB
distributions; for example, the beta-NB process im-
poses θtk ∼ Gam (rt, pk/(1− pk)), where {pk}1,∞ are
the weights of the countably infinite atoms of the
beta process [25], and the gamma-NB process imposes
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θtk ∼ Gam (rk, pt/(1− pt)), where {rk}1,∞ are the
weights of the countably infinite atoms of the gamma
process. Both the beta-NB and gamma-NB process
PFAs are nonparametric Bayesian models that allow
K to grow without limit.

Related Dynamic Models for Count Data Anal-
ysis: The dynamic rank factor model (DRFM [26])
performs analysis of multiple ordinal time series where
the latent dynamics are modeled using a transition ma-
trix and the observations are sampled from another la-
tent variable that, in turn, is sampled using a normal
distribution centered around such latent space. The
dynamic-HDP [27] models the temporal evolution of
Dirichlet random probability measures and is designed
for mixture models whose mixture weights smoothly
evolve over time. In [28], the authors model the tem-
poral evolution of relational data, with the temporal
smoothness constraint on latent variables imposed in
the Gaussian space. The online multiscale dynamic
topic model [29] analyzes the evolution of sets of doc-
uments. The proposed gamma process dynamic PFA
(GP-DPFA) is a factor model that describes the tem-
poral evolution of latent factor scores (not normalized
random measures like in the dynamic-HDP); at each
time point, it models a single count/binary vector (not
a set of documents like in a dynamic topic model).
Interestingly, in [30], the author models groups of re-
lated count time series through a shared latent Gaus-
sian space, though the results from that paper are not
reproducible as neither the code nor the datasets are
publicly available. To impose temporal smoothness in
the frequency domain for audio processing, [31] con-
siders chaining latent variables across successive time
frames via the gamma scale parameters, whereas GP-
DPFA chains latent variables via the gamma shape
parameters only.

3 GAMMA PROCESS DYNAMIC
POISSON FACTOR ANALYSIS

Consider a dynamic count matrix N ∈ ZV×T , whose
T columns are sequentially observed V -dimensional
count vectors. We consider a modified version of
PFA as N ∼ Pois(ΦΛΘ), where Λ = diag(λ) and
λ = (λ1, . . . , λ∞) is a vector representing the strengths
of the countably infinite latent factors. Further, a
gamma process G ∼ GaP(c,G0) is considered, a draw
from which is expressed as G =

∑∞
k=1 λkδφk , where

φk ∈ Ω is an atom drawn from a V -dimensional base
distribution G0(dφk)/G0(Ω) = Dir(dφk; η, . . . , η) and
λk = G(φk) is the associated weight. We mark each
atom φk with a constant θ(−1)k = 0.01, and then gen-
erate a gamma Markov chain by letting:

θtk|θ(t−1)k ∼ Gam(θ(t−1)k, 1/ct), t = 0, . . . , T.

We then integrate the weights of the gamma pro-
cess {λk} and the infinite-dimensional gamma Markov
chain into a gamma process dynamic Poisson factor
analysis (GP-DPFA) model as:

nvt =
∞∑
k=1

nvtk, nvtk ∼ Pois(λkφvkθtk),

φk ∼ Dir(η1, . . . , ηV ), θtk ∼ Gam(θ(t−1)k, 1/ct),

G ∼ GaP(c,G0), ct ∼ Gam(e0, 1/f0).

We further let both the concentration parameter c
and mass parameter γ0 = G0(Ω) be drawn from
Gam(e0, 1/f0). Note that under the regular setting
where different columns of Θ are independently mod-
eled, the parameterization N ∼ Pois(ΦΛΘ) is not a
strict generalization of the beta-NB process PFA de-
scribed in [10, 12]: if one follows the beta-NB pro-
cess to let θtk ∼ Gam (rt, pk/(1− pk)), and λk is
assumed to be independent from θtk, then θ̃tk :=
λkθtk ∼ Gam (rt, qk/(1− qk)), where qk = λkpk

1+(λk−1)pk
;

thus Λ are redundant and can be absorbed into Θ
as N ∼ Pois(ΦΘ̃). Whereas in this paper, with the
column index t corresponding to time, for tractable
inference, it becomes necessary to use the modified
representation to impose a temporal smoothness con-
straint for consecutive columns, which are no longer
assumed to be independent, as discussed below.

3.1 Inference via Gibbs Sampling

Though GP-DPFA supports a countably infinite num-
ber of latent factors, in practice, it is impossible to
instantiate all of them. Common approaches for ex-
act inference for a nonparametric Bayesian model in-
volve either marginalizing out the underlying stochas-
tic process [32, 33] or using slice sampling to adap-
tive truncate the number of atoms [34]. For simplicity,
in this paper, we consider a finite approximation of
the infinite model by truncating the number of factors
to K, with λk ∼ Gam(γ0/K, 1/c), which approaches
the original infinite model as K → ∞. Despite the
significant challenge presented in inferring the gamma
shape parameters, generalizing the data augmentation
and marginalization techniques unique to the negative
binomial distribution [12, 24], we are able to derive
closed-form Gibbs sampling update equations.

Exploiting the property that
∑V
v=1 φvk = 1 for any k,

the likelihood of the latent counts, conditioned on
(Φ,Θ,λ), can be expressed as in Table 1. Below we
let nv·k :=

∑
t nvtk, n·tk :=

∑
v nvtk, and n··k :=∑

v

∑
t nvtk.

Sample nvtk: Using the relationship between the
Poisson and multinomial distributions, as in Lemma
4.1 of [10], given the observed counts and latent pa-
rameters, we have:
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Table 1: Likelihood of GP-DPFA

P ({(nvtk)Kk=1}|Φ,Θ,Λ) =
T∏
t=1

V∏
v=1

K∏
k=1

(λkφvkθtk)nvtk

nvtk!
e−λkφvkθtk .

=
(∏T

t=1

∏V
v=1

∏K
k=1

1
nvtk!

)∏K
k=1

{(∏V
v=1 φ

nv·k
vk

)(∏T
t=1 θ

n·tk
tk λn·tk

k e−λkθtk
)}

.

(
(nvtk)

K
k=1 |−

)
∼ Mult

(
nvt,

(
λkφvkθtk∑
k λkφvkθtk

)K
k=1

)
. (1)

Sample φk: Using the Dirichlet-multinomial conju-
gacy and the likelihood in Table 1, the conditional
posterior of φk can be expressed as

(φk|−) ∼ Dir(η + n1·k, . . . , η + nV ·k). (2)

Sample λk: Since in the likelihood n·tk ∼
Pois(λkθtk), using the gamma-Poisson conjugacy, the
conditional posterior of λk can be expressed as

(λk|−) ∼ Gam
(
n··k + γ0

K ,
1

c+
∑
t θtk

)
. (3)

Sample θtk: Due to the Markovian construction, it
is necessary to consider both backward and forward
information for the inference of θtk. Starting from the
last time point t = T , one has n·Tk ∼ Pois(λkθTk),
θTk ∼ Gam(θ(T−1)k, 1/cT ). As θTk is not linked to
a future factor score, it can be directly marginal-
ized out, leading to n·Tk ∼ NB(θ(T−1)k, pTk), where

pTk := λk
cT+λk

. The NB distribution can be further
augmented with an auxiliary count random variable as
lTk ∼ CRT(n·Tk, θ(T−1)k), n·Tk ∼ NB(θ(T−1)k, pTk).
Following Lemma 2.1, the joint distribution of lTk
and n·Tk is a bivariate count distribution that can
be equivalently represented as n·Tk ∼

∑lTk
t=1 Log(pTk),

lTk ∼ Pois(−θ(T−1)k ln(1−pTk)). Thus lTk can be con-
sidered as the backward information from T to (T−1).
Recursively, given l(t+1)k, the backward information
from (t+ 1) to t, we then have:

l(t+1)k ∼ Pois(−θtk ln(1−p(t+1)k)), n·tk ∼ Pois(λkθtk).

The marginalization of θtk leads to

(n·tk + l(t+1)k) ∼ NB(θ(t−1)k, ptk),

where ptk :=
λk−ln(1−p(t+1)k)

ct+λk−ln(1−p(t+1)k) . Thus ltk, the back-

ward information to (t− 1), can be sampled as

(ltk|−) ∼ CRT(n·tk + l(t+1)k, θ(t−1)k). (4)

With these information calculated backwards from t =
T to t = 1, one can then sample θtk forwards from
t = 0 to t = T as

(θtk|−) ∼ Gam(θ(t−1)k+n·tk+l(t+1)k, (1−ptk)/ct). (5)

where n·0k := 0 and θ(−1)k := 0.01. This unique sam-
pling procedure effectively solves the challenge of infer-
ring the gamma shape parameters in a Markov chain.

Sample ct, c and γ0: For t = 0, . . . , T , we sample ct
as

(ct|−) ∼ Gam
(
e0 +

∑
k θ(t−1)k,

1
f0+

∑
k θtk

)
. (6)

We sample c as

(c|−) ∼ Gam
(
e0 + γ0,

1
f0+

∑
k λk

)
. (7)

Since n··k ∼ NB
(
γ0
K ,

∑
t θtk

c+
∑
t θtk

)
, γ0 can be sampled as:

(`k|−) ∼ CRT
(
n··k,

γ0
K

)
, (8)

(γ0|−) ∼ Gam

(
e0 +

∑
k `k,

1

f0−
∑
k ln
(

1−
∑
t θtk

c+
∑
t θtk

)) .
3.2 Modeling Binary Observations

To model binary data, a data augmentation technique
is introduced here. Rather than following the usual
approach to link a binary observation to a latent Gaus-
sian random variable using the probit or logit links, a
binary observation is linked to a latent count as

b = 1(n ≥ 1), n ∼ Pois(λ),

which is named in this paper as the Bernoulli-Poisson
(BePo) link. We call the distribution of b given λ as the
BePo distribution, with PMF fB(b|λ) = e−λ(1−b)(1 −
e−λ)b, b ∈ {0, 1}. The conditional posterior of the
latent count n is simply (n|b, λ) ∼ b · Pois+(λ), where
k ∼ Pois+(λ) is the truncated Poisson distribution

with PMF fK(k) = 1
1−e−λ

λke−λ

k! , k = 1, 2, . . .. Thus
if b = 0, then n = 0 almost surely (a.s.), and if b = 1,
then n is drawn from a truncated Poisson distribution.
To simulate the truncated Poisson random variable
x ∼ Pois+(λ), we use rejection sampling: if λ ≥ 1,
we draw x ∼ Pois(λ) till x ≥ 1; if λ < 1, we draw
y ∼ Pois(λ) and u ∼ Unif(0, 1), and let x = y + 1
if u < 1/(y + 1). The acceptance rate is 1 − e−λ if
λ ≥ 1 and λ−1(1− e−λ) if λ < 1. Thus the minimum
acceptance rate is 63.2% (when λ = 1).

With the BePo link to connect an observed dynamic
binary matrix to a dynamic latent count matrix, we
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θ(T−2) θ(T−1) θT

n(T−2) n(T−1) nT

Gamma Gamma

Poisson Poisson Poisson

(a)

θ(T−2) θ(T−1)

n(T−2) n(T−1)

nT
Gamma

Poisson Poisson

NB

(b)

θ(T−2) θ(T−1)

n(T−2) n(T−1)

nT

LT

Gamma

Poisson Poisson

NB

CRT CRT

(c)

θ(T−2) θ(T−1) LT

n(T−2) n(T−1) nT

Gamma Poisson

Poisson Poisson SumLog

(d)

Figure 1: Illustration of Inference in GPAR

(a) c = 0.1 (b) c = 1 (c) c = 2

Figure 2: Plots of Variance

apply GP-DPFA to dynamic binary matrix factoriza-
tion. The only additional step is to add the sampling
of the latent counts as

(nvt|bvt,Φ,Θ,Λ) ∼ bvtPois+(
∑
k λkφvkθtk). (9)

A clear advantage of the BePo link over both the pro-
bit and logit links is that it is extremely efficient in
handling sparse matrices: if an element of the binary
matrix is zero, then the corresponding latent count
under the BePo link is zero a.s., whereas further cal-
culation is often required to sample the corresponding
latent variable under both the probit and logit links.

3.3 Gamma Poisson Auto-Regressive Model

A special case of GP-DPFA with K = V = 1 is named
as the gamma-Poisson auto-regressive model (GPAR).
A precise description of this model is expressed as

nt ∼ Pois(θt), θt ∼ Gam(θ(t−1), 1/c), c ∼ Gam(e0, 1/f0).

In Section 4, we evaluate the performance of GPAR
and compare it with some interesting baselines. Ana-
lyzing the properties of GPAR is also interesting in its
own right. The data augmentation used for inference
in GP-DPFA can be better illustrated in the context
of GPAR. Fig. 1(a) shows a segment of the GPAR
model corresponding to time t = T , t = (T − 1) and
t = (T − 2). Marginalization of θT leads to the model
in Fig. 1(b) with nT being generated from θ(T−1) us-
ing an NB distribution. Further, in Fig. 1(c), a la-
tent CRT variable LT is augmented whose parame-
ters are given by θ(T−1) and nT . Using the compound
Poisson representation of the NB distribution, one can
show that the model in Fig. 1(d) is equivalent to the

model in Fig. 1(c) as far as the joint distribution of
LT and nT is concerned. In the inference, once LT is
sampled from CRT(nT , θ(T−1)), sampling of θ(T−1) be-
comes straightforward as the conditional distribution
of θ(T−1) given n(T−1) and LT is a gamma distribution.

The predictive performance of GPAR can be investi-
gated using the laws of total expectation and total vari-
ance. Given observations up to time T , the expected
latent rate at time (t+T ) is E[θT+t] = c−tE[θT ], where
c can be inferred from training data and held fixed in
prediction. Similarly, using the laws of total variance,
the variance of the latent rate at time (t+ T ) is

Var(θT+t) = c−t
(∑t

t′=1 c
−t′
)
E(θT ). (10)

Fig. 2 shows the variance for c ∈ {0.1, 1, 2}. The plot
marked as “theory” displays the variances dictated by
(10) and the one marked as “simulated” illustrates the
sample variances of 10,000 i.i.d. random samples sim-
ulated from the gamma Markov chain. Note that, as t
gets larger, the simulated plot deviates from the the-
oretical one in Fig. 2(c) due to numerical issues on
a finite-precision machine. The inferred posterior of c
can be used to indicate the model’s prediction of the
trend of θt. For example, if the posterior high density
region of c is above one, then θt would be predicted to
have a clear downtrend.

4 EXPERIMENTS

In this section, experimental results are reported on a
variety of synthetic and real world datasets and GP-
DPFA is compared with relevant baselines. The syn-
thetic and coal-mine disaster datasets provide a test-
bed of GPAR, a special case of GP-DPFA.
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Table 2: Results on Synthetic Data
Data Measure GPAR SGCP KS LGCP10 LGCP100
SDS1 MSE 4.18±0.04 4.20±0.03 6.65±0.10 5.96±0.07 5.44±0.12

PMSE 2.82±0.09 3.20±0.11 5.43±0.19 6.92±0.20 4.28±0.37
SDS2 MSE 27.12±0.15 38.38 ±0.13 73.71±0.14 70.34±0.12 43.51±0.07

PMSE 10.14±0.31 12.01 ±0.22 13.49±0.38 14.73±0.22 12.52±0.43
SDS3 MSE 10.94±0.07 11.41±0.05 30.56±0.16 90.76±0.14 10.79±0.14

PMSE 5.81±0.16 7.19 ±0.12 25.17±0.41 28.72±0.18 20.08±0.52

Table 3: Results on Real-world Text Data
Data Model MP MR PP
STU GP-DPFA 0.2230±0.0009 0.1976±0.0004 0.1891±0.0028

DRFM 0.2171±0.0025 0.1978±0.0014 0.1773±0.0104
Baseline 0.1018±0.0216 0.1329±0.0173 0.0612±0.0328

Conf. GP-DPFA 0.3020±0.0004 0.2681±0.0003 0.2412±0.0004
DRFM 0.3023±0.0005 0.2566±0.0006 0.2410±0.0006
Baseline 0.1241±0.0194 0.1107±0.0131 0.1014±0.0370

(a) (b) (c)

Figure 3: (a) estimate of the underlying rate after first iteration, (b) estimate of the rate after 3000 iterations
(with the first 2000 iterations used as burnin), (c) estimate of the rate with uncertainty after 3000 iterations.

4.1 Results with Synthetic Datasets

As in [35], three one-dimensional data sets are used
with the following rate functions:

• A sum of an exponential and a Gaussian bump
(SDS1): θ(t) = 2exp(−t/15) + exp(−((t − 25)/10)2)
on the interval t = [0 : 1 : 50].
• A sinusoid with increasing frequency (SDS2): θ(t) =
5sin(t2) + 6 on t = [0 : 0.2 : 5].
• θ is the piecewise linear function on the interval t =
[0 : 1 : 100] and is given by: θ(t) = (2 + t/30) if
0 ≤ t ≤ 30, θ(t) = (3 − (t − 30)/10) if 31 ≤ t ≤ 50,
θ(t) = (1 + 1.5 ∗ (t − 50)/25) if 51 ≤ t ≤ 75 and
θ(t) = (2.5 + 0.5 ∗ (t− 75)/25) if 76 ≤ t ≤ 100 (SDS3).

GPAR is compared with the sigmoidal Gaussian
Cox process (SGCP) [35], log-Gaussian Cox process
(LGCP) [36], and the classical kernel smoothing (KS)
[37]. These methods are considered as state-of-the-art
in various scenarios involving modeling of count time
series. Edge-corrected kernel smoothing is performed
using a quartic kernel and a mean-square minimiza-
tion technique is used for bandwidth selection. The
squared-exponential kernel is used for both the SGCP
and LGCP. Since the LGCP works with discretization,
experiments are performed with 10, 25 and 100 bins.
The rate functions provide ground truth and cumula-
tive mean squared error (MSE) between the ground
truth and the estimated rate are measured for all the
models. Additionally, for each of the above series, the
last five observations are withheld and MSE is mea-
sured between the true rate and the estimated rate
over these withheld observations. The results are dis-
played in Table 2. “PMSE” stands for MSE in predic-
tion for the last five years of data. The best results
are presented in bold.

4.2 Results with Real World Datasets

Coalmine Disaster Dataset: The British coal mine
disaster dataset [35] records the number of coalmine
accidents arranged according to year from 1851 to
1962. To illustrate the robustness of the inference
framework, the underlying rate is initialized to a large
value 1000. Fig. 1(a) shows the estimated rate and
the sampled value of the underlying rate after the 1st

iteration. Fig. 1(b) shows the estimation of the un-
derlying rate along with a “baseline” GP-DPFA model
that does not use any temporal correlation. A box plot
of the sampled rate is presented in Fig. 1(c) showing
that the alogorithm converges to a good estimate even
with such a poor initialization. For these plots, 3000
iterations are used and the last 1000 samples are col-
lected.

State-of-the-Union Dataset (STU): The STU
dataset contains the transcripts of 225 US State of
the Union addresses, from 1790 to 2014. Each tran-
script corresponding to each year is considered as one
document. After removing stop words and terms that
occur fewer than 7 times in one document or less than
20 times overall, there are 2375 unique words.

Conference Abstract Dataset (Conf.): The Conf.
dataset consists of the abstracts of the papers appear-
ing on DBLP for the second author of this paper from
2000 to 2013. For every year, a count vector of di-
mension V = 1771 is maintained where the counts are
the occurrences of the words appearing in all docu-
ments from the given year, chosen after standard pre-
processing like stemming and stop-words removal.

Table 3 displays the results from both STU and Conf.
datasets. 20% of the words are held-out for each of the
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(a) (b) (c)

Figure 4: (a) correlation across topics over time, (b) latent factors dominant over time for GP-DPFA, (c) latent
factors dominant over time for the baseline.

(a) (b) (c) (d) (e)

Figure 5: (a) correlation of the observed data across time, (b) correlation discovered in the latent space, (c)
correlation between the observation and latent counts, (d) correlation between the ten most prominent latent
factors for GP-DPFA, (e) correlation between the ten most prominent latent factors in the baseline model.

first 224 years in the STU data and 10% of the words
are held-out for each of the first 13 years in the Conf.
data, when training three different models: i) GP-
DPFA, ii) DRFM [26], and iii) a baseline model which
is a simplified version of GP-DPFA that does not use
temporal correlation for the latent rates. Additionally,
all the data from the last year for both of these datasets
are held-out. The underlying prediction problem is
concerned with estimating the held-out words. For the
prediction corresponding to each year, the words are
ranked according to the estimated count and then two
quantities are calculated: i) precision@top-M which is
given by the fraction of the top-M words, predicted by
the model, that matches the true ranking of the words;
and ii) recall@top-M which is given by the fraction of
words from the held-out set that appear in the top−M
ranking. In the experiments reported, M = 50 is used.
For the last year for which entire data is held-out, cal-
culation of recall@top−M is irrelevant. In Table 3,
the column MP and MR signify mean precision and
mean recall respectively over all the years that appear
in the training set. The column PP signifies the pre-
dictive precision for the final year, for which the en-
tire dataset is held out. Such measure is also adopted
for the recommendation system in [22] and is perhaps
the only reasonable measure when the likelihoods be-
tween two different models like GP-DPFA and DRFM
are not comparable. GP-DPFA almost always out-
performs DRFM and both of these dynamic models
convincingly beat the baseline model.

For the Conf. dataset, Fig. 4(a) shows the correlation
discovered in the latent space over time, and Figs. 4

(b) and (c) show the normalized strengths of the la-
tent factors (i.e. λkθtk/

∑
k λkθtk) discovered by GP-

DPFA and the baseline model, respectively. One can
clearly see that the assignments to latent factors are
strongly correlated with time for GP-DPFA but the
baseline model tends to choose different latent factors
for different years. In the experiments, K = 100 is
used and GP-DPFA infers that only a small subset of
the 100 topics need to be active, implying an auto-
matic model selection. The number of active latent
topics is found to be around 14 on average. Exam-
ining some of the topics provides even more insight
about the data. For example, the top words of a topic
that has large weights across all years include “net-
work”, “graph-partition”, “algorithm”, “cluster” and
“outlier”, whereas the top words of a topic that is dom-
inant over a certain period of time include “Bregman”,
“projection”, “clustering” and “ensemble”, revealing
the author’s publication trend.

Music Dataset: Four different polyphonic music se-
quences of piano are used for experiments with GP-
DPFA. Each of these datasets is a collection of binary
strings indicating which of the keys are “on” at each
time [38, 39]. “Nottingham” is a collection of 1200 folk
tunes, “Piano.midi” is a classical piano MIDI archive,
“MuseData” is an electronic library of orchestral and
piano classical music, and “JSB chorales” refers to the
entire corpus of 382 four-part harmonized chorales by
J. S. Bach. The polyphony (number of simultaneous
notes) varies from 0 to 15 and the average polyphony
is 3.9. We use an input of 88 binary units that span
the whole range of piano from A0 to C8. In Fig. 5, re-

7



Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices

Figure 6: Top Row: Correlation plots for JSB chorales, Middle Row: Correlation plots for Piano.midi, Bottom
Row: Correlation plots for Musedata. In each row, figures from left to right are plots that are analogous to Figs.
5 (a)-(c).

sults are displayed for one of the 1200 tunes from Not-
tingham data. Fig. 5(a) shows the correlation of the
binary strings across time. Interestingly, a similar but
more prominent correlation structure is discovered in
the latent factor scores (i.e. across (λkθtk)Kk=1’s), dis-
played in Fig. 5(b). Additionally, the correlations be-
tween the original data and the estimated latent counts
are presented in Fig. 5(c). One can see that this corre-
lation plot perfectly imitates the correlation between
the original data, implying that the original data are
faithfully reconstructed using GP-DPFA. Also, in Fig.
5(d) we display the correlation between the top ten
φk’s (ranked according to the magnitudes of the λk’s)
discovered by GP-DPFA. We compare this plot with
Fig. 5(e), which shows the correlation between the
top ten φk’s discovered by the non-dynamic baseline
model. One can clearly see that GP-DPFA discovers
comparatively less correlated latent factors.

The top, middle and bottom rows in Fig. 6 illustrate
the correlation plots for one of the tunes in the JSB
chorales dataset, the Piano.midi data and the Muse-
Data, respectively. The left-most plot in each of the
rows shows the correlation of the observed data. The
plots in the middle illustrate the correlation discovered
in the latent space and the plots in the last column
shows the the correlation between the observed data
and estimated latent counts. It is shown that even
when the correlation structure is not clear in the origi-

nal data, very clear correlation structure is discovered
in the latent space, without sacrificing the data recon-
struction quality.

5 CONCLUSIONS

This paper introduces gamma process dynamic Pois-
son factor analysis to model multivariate count and
binary vectors that evolve over time. The constructed
gamma Markov chain is a unique contribution of the
paper. Efficient inference techniques and superior em-
pirical performance on both synthetic and real world
datasets make the approach a promising candidate for
modeling more sophisticated count time-series data;
for example, time-evolving matrices and tensors that
appear quite frequently in social network analysis, text
mining and recommendation systems.

References

[1] Nathan Srebro, Tommi Jaakkola, et al. Weighted low-
rank approximations. In ICML, 2003.

[2] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo.
In Proc. of ICML, pages 880–887, 2008.

[3] M. Aharon, M. Elad, and A. M. Bruckstein. The
K-SVD: An algorithm for designing of overcomplete

8



Ayan Acharya, Joydeep Ghosh, Mingyuan Zhou

dictionaries for sparse representations. IEEE Trans.
Signal Process., 2006.

[4] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? Journal of the ACM,
2011.

[5] Y. Koren, R. Bell, and C. Volinsky. Matrix factor-
ization techniques for recommender systems. IEEE
Computer, 2009.

[6] N. D. Lawrence and R. Urtasun. Non-linear matrix
factorization with gaussian processes. In Proc. In-
ternational Conference on Machine Learning, pages
601–608, 2009.

[7] S. Gunasekar, A. Acharya, N. Gaur, and J. Ghosh.
Noisy matrix completion using alternating minimiza-
tion. In ECML PKDD, Part II, LNAI 8189, pages
194–209, 2013.

[8] P. McCullagh and J. A. Nelder. Generalized linear
models. Chapman & Hall, 2nd edition, 1989.

[9] D. M. Blei and J. D. Lafferty. Dynamic topic models.
In ICML, 2006.

[10] M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-
negative binomial process and Poisson factor analysis.
In AISTATS, 2012.

[11] N. L. Johnson, A. W. Kemp, and S. Kotz. Univariate
Discrete Distributions. John Wiley & Sons, 2005.

[12] M. Zhou and L. Carin. Augment-and-conquer nega-
tive binomial processes. In NIPS, 2012.

[13] T. S. Ferguson. A Bayesian analysis of some nonpara-
metric problems. Ann. Statist., 1973.

[14] R. L. Wolpert, M. A. Clyde, and C. Tu. Stochastic
expansions using continuous dictionaries: Lévy Adap-
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