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Abstract

Based on a-stable random projections with
small «, we develop a simple algorithm for
compressed sensing (sparse signal recovery)
by utilizing only the signs (i.e., 1-bit) of the
measurements. Using only 1-bit information
of the measurements results in substantial
cost reduction in collection, storage, commu-
nication, and decoding for compressed sens-
ing. The proposed algorithm is efficient in
that the decoding procedure requires only
one scan of the coordinates. Our analysis
can precisely show that, for a K-sparse sig-
nal of length N, 12.3K log N/§ measurements
(where ¢ is the confidence) would be sufficient
for recovering the support and the signs of
the signal. While the method is highly robust
against typical measurement noises, we also
provide the analysis of the scheme under ran-
dom flipping of the signs of measurements.

Compared to the well-known work on 1-
bit marginal regression (which can also be
viewed as a one-scan method), the proposed
algorithm requires orders of magnitude fewer
measurements. Compared to 1-bit Iterative
Hard Thresholding (IHT) (which is not a one-
scan algorithm), our method is still signifi-
cantly more accurate. Furthermore, the pro-
posed method is reasonably robust against
random sign flipping while THT is known to
be very sensitive to this type of noise.

1 Introduction

Compressed sensing (CS) [7, 2] is a popular and impor-
tant topic in mathematics and engineering, for recov-

Appearing in Proceedings of the 19*" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

ering sparse signals from linear measurements. Here,
we consider a K-sparse signal of length N, denoted by
x;, © = 1 to N, with Zfil Hz; # 0} = K. In our
scheme, the measurements are collected as follows

N
y; = insij, j=1,2,..,M, where s;; ~S(a,1)
i=1

where y;’s are the measurements and s;; is the (i, j)-
th entry of the design matrix sampled i.i.d. from
an a-stable distribution with unit scale, denoted by
S(a,1). This is different from classical framework
of compressed sensing. Classical algorithms of com-
pressed sensing use Gaussian design (i.e., &« = 2 in the
family of stable distribution) or Gaussian-like design
(e.g., a distribution with finite variance), to recover
signals via computationally intensive methods such as
linear programming [5] or greedy methods such as or-
thogonal matching pursuit (OMP) [19, 16, 18, 23].

The recent works [14, 15] studied the use of a-stable
random projections with o < 2, for accurate one-scan
compressed sensing. Basically, if Z ~ S(«, 1), then its

characteristic function is E (e*/let) = e " where
0 < a < 2. Thus, both Gaussian (« = 2) and Cauchy
(a = 1) distributions are special instances of a-stable
distribution family. Inspired by [14, 15], we develop
one scan 1-bit compressed sensing by using small «
(e.g., & = 0.05) and only the sign information (i.e.,
sgn(y;)) of the measurements. Compared to alterna-
tives, the proposed method is fast and accurate.

The problem of 1-bit compressed sensing has been
studied in the literature of statistics, information the-
ory and machine learning, e.g., [1, 11, 9, 20, 4, 22].
1-bit compressed sensing has many advantages. When
the measurements are collected, the hardware will any-
way have to quantize the measurements. Also, using
only the signs will potentially reduce the cost of stor-
age and transmission (if the number of measurements
does not have to increase too much).
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In Section 6, our empirical comparisons with 1-bit
marginal regression [20, 22| illustrate that the pro-
posed method needs orders of magnitude fewer mea-
surements. Compared to 1-bit Iterative Hard Thresh-
olding (IHT) [11], our algorithm is still significantly
more accurate. Furthermore, while our method is rea-
sonable robust against random sign flipping, THT is
known to be very sensitive to that kind of noise.

A distinct advantage of our proposed method is that,
largely due to the one-scan nature, we can precisely
analyze the algorithm with or without random flip-
ping noise; and we can provide the precise constants
of the bounds. For example, even for a conservative
version of our algorithm, the required number of mea-
surements would be no more than 12.3K log N/¢ (and
the practical performance is even better). Here 0 (e.g.,
0.05) is the usual notation for confidence.

The method of Gaussian (i.e., & = 2) random pro-
jections has become popular in machine learning and
information theory (e.g., [8]). The use of a-stable ran-
dom projections was previously studied in the context
of estimating the [, norms (e.g., vazl |z;|*) of data
streams, in the theory literature [10, 12] as well as
in machine learning venue [13]. Consequently, our 1-
bit CS algorithm also inherits the advantage when the
data (signals) arrive as streams [17].

The recent work [14, 15] used a-stable projections with
very small « to recover sparse signals, with many sig-
nificant advantages: (i) the algorithm needs only one
scan; (ii) the method is extremely robust against mea-
surement noises (due to the heavy-tailed nature of the
projections); and (iii) the recovery procedure is per
coordinate in that even when there are no sufficient
measurements, a significant portion of the nonzero co-
ordinates can still be recovered. The major disadvan-
tage of [14, 15] is that, since the measurements are
also heavy-tailed, the required storage for the mea-
surements might be substantial. Our proposed 1-bit
algorithm provides one practical (and simple) solution.

2 The Proposed Algorithm

In our algorithm, the entries (i.e., s;;) of the design ma-
trix are sampled from i.i.d. a-stable with unit scale,
denoted by S(a,1). We can follow the classical proce-
dure to generate samples [3] from S(«, 1). That is, we
first sample independent exponential w ~ exp(1) and
uninform u ~ unif(—m/2,m/2) variables, then

~ S(a, 1)
(1)

There are excellent books on stable distributions,
e.g., [24, 21]. Basically, if Z ~ S(«,1), then its char-

g(u,w; @) = sin(au) {cos(u — au)} (1-a)/a

(cosu)t/« w

acteristic function is F (eV -1zt

closed-form expressions of the density exists only for
a =2 (i.e., Gaussian), « = 1 (i.e., Cauchy), or o = 0+.

[e3
) = ¢ 11" However,

Algorithm 1 Stable measurement collection and the
one scan 1-bit algorithm for sign recovery.

Input: K-sparse signal x € R™¥ | design matrix S €
RV*M wyith entries sampled from S(«, 1) with small «
(e.g., @« =0.05). To generate the (i, j)-th entry s;;, we
sample w;; ~ uniform(—mn/2, 7/2) and w;; ~ exp(1)
and compute s;; = g(ui;, w;;; ) by (1).

Collect: measurements y; = vazl xisij, j =1 to M.
Compute: for each coordinate i =1 to N, compute

M

Qf = log (1 + 59”(yj)59n(uij)6_(K_1)wij) ,
j=1
M

Qi =) log (1 - sgn(yj)sgn(uij)e*(K*“ww')

j=1

Output: for i = 1 to N, report the estimated sign:
) +1 if Qf >0
sgn(xz;)) =< —1 ifQ; >0
0 ifQf<0andQ; <0

Alg. 1 summarizes our one-scan algorithm for recover-
ing the signs of sparse signals. The central component
is to compute Q] and Q;, for i = 1 to N, where

M
Qf =) log (1 + sgn(yj)sgn(uij)e’(K’l)w”) (2)
J=1

M
Qi = 1og (1= sgnly;)sgn(uig)e” K1) (3)

Jj=1

Later we will explain that it makes no essential differ-
ence if we replace sgn(u,;) with sgn(s;;) and w;; with
1/sij|*. The parameter a should be reasonably small,
e.g., a = 0.05. In many prior studies of compressed
sensing, K is often assumed to be known. When K is
not known, we will need to develop efficient algorithms
for the purpose of estimating K.

To make the theoretical analysis easier, Alg. 1 uses “0”
as the threshold for estimating the sign:

) +1 i QF >0
sgn(z;)) =< —1 it Q; >0 (4)
0 ifQf <0and@; <0

Later in the paper, Lemma 1 will show that at most
one of Qf and Q; can be positive. Using 0 as the
threshold simplifies the analysis. As will be shown in
our experiments, a practical variant will reduce the
number of measurements predicted by the analysis.
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Note that, unless the signal is ternary (i.e., x; €
{-1,0,1}), we will need another procedure for esti-
mating the values of the nonzero entries. A simple
strategy is to do a least square on the reported coor-
dinates, by collecting K additional measurements.

Next, we will present the intuition and theory for the
proposed algorithm.

3 Intuition

Our proposed algorithm, through the use of Qj and
Q7 , is based on the joint likelihood of (sgn(y;), sij).
Denote the density function of S(«, 1) by fs(s). Recall

N

Y=Y sy = isij + Y ausiy = 3isi; + 0:;
t=1 t#i

where S; ~ S(a,1) is independent of s;; and 0; =
1/«

(Zt i |mt\“) . Using a conditional probability ar-

gument, the joint density of (y;, s;;) can be shown to

be o fs(sij) fs (y’_aﬂ) Now, suppose we only use

(store) the sign information of y;. We have

<1 Y — T;Sij
Pr(y; > 0,si;) = / afS(sij)fS (TJ) dy
0 2 [

=fs(sij) (1 —Fs (_?Zslj>> = fs(sij)Fs (%i”)

where Fy is the cumulative distribution function (cdf)
of S(a,1). Similarly, we also have

Pr(y; <0,si;) =fs(si;) Fs (- 9,J>
which means the joint log-likelihood is proportional to

= T o s (st 5.

As we use small «, we can take advantage of the limit
at o = 0+. Suppose u ~ uniform(—m/2,7/2) and
w ~ exp(l). From (1), Z = g(u, w; o) = sgn(u)/w'/*.
In other words, as o — 0+, 1/|Z|* ~ exp(1). This fact
was originally established by [6]. Thus, as a« — 0+, we
have Fg(s) = & + sgn(s)eI*I"", which leads to

Clearly, if x; = 0, then I(z;,0;) = 0. It is thus conve-
nient to use 0 as the threshold. We can then use the
following Q; and Q; to determine if #; > 0 or z; < 0:

M K-1
Qf = Zlog <1+89n(5ijyj)eXp (_ e )) ’
ij

Jj=1

M K—-1
Q; = Zlog <1 — sgn(sijy;) exp <_'|5_ e ))
ij

Jj=1

M

U(x,0;) = Zlog <1 + sgn(si;xiy;) exp (

j=1

0;

T;iSij

As a — 0+, we have 0 = K —1 (if z; # 0) or K
(if 2; = 0). Also note that |x;|* = 0 (if ; = 0) or
1 (if z; # 0). Because sgn(s;;) = sgn(u;;) and ﬁ
becomes w;;, we can write them as

M

Qf = Zlog (1 + sgn(yj)sgn(uij)e_(K_l)w”) )
j=1
M

Q; =) log (1 - sgn(yj)sgn(uij)e’(K’”w”)
j=1

This explains (2) and (3) in Alg. 1.

So far, we have explained the idea behind our proposed
Alg. 1. Next we will conduct further theoretical anal-
ysis for the error probabilities and consequently the
sample complexity bound.

4 Analysis

Our analysis will use the fact that sgn(si;y;) =

sgn(y;/sij) = sgn(z; + 0;5;/s:5), where S; ~ S(a, 1)
1/«

is independent of s;; and 0; = (Zt# |:1:t|°‘> . Note

that both s;; and y; are symmetric random variables.

Our first lemma says that at most one of Qj and @Q; ,
respectively defined in (2) and (3), can be positive.

Lemma 1 If Q;" > 0 then Q; < 0. If Q; > 0 then
Qf <o.

Proof: It is more convenient to examine @ and
eQi . Let zj = e~ (K=Dwis - Note that 0 < z; < 1. Now

suppose e@ > 1. We divide the coordinates, j =1 to
M, into two disjoint sets I and 11, such that

e =T+ [[1-2l>1

jel JeIT

As — > 1+ 2z andﬁ>1fzj, we must have
J

1—2]'
1 1
H1 11 - >+ [ -21>1
. - Z] ; + Z] . ;
Jjel JeIr jel jeIl
and
Qi :H|1—zj\ H 1+ 2] <1
jel jelr
This completes the proof. 1

Although it is convenient to use 0 as the threshold, we
will provide more general error bounds by comparing
Q; and Q; with eM /K. The following intuition might
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be helpful to see why M /K is the right scale:

M

lQF | = Zlog(l + sgn(y;/sij) exp (— (K — 1)w;))
9

<> flog (1 + sgn(y;/sij) exp (—(K — Dwy;))|
j=1

M
~~ Z exp (—(K — 1)w;;)

By the moment generating function of the exponential
distribution, we obtain

M
E Zexp (—(K — 1)wiy)
M
=3 B (exp (—(K — uyy)) = % -

Lemma 2 concerns the error probability (i.e., false pos-
itive) when x; = 0 and eM/K is used as the threshold.

Lemma 2 For any € and any t > 0, we have

M
SQXP{__Hl(t§6>K)} (5)
K
where
Hi(tye, K) (6)
00 n—1
1 t—1
=ct — K log (1 + )
n=2,4.6,... ni —n+l =0 "' T l
In the limit as K — oo, we have
o'e) n—1
1 t—1
H1 (t, €, OO) =€t — Z E m (7)
n=2,4,6,...  1=0
Proof: See Appendiz A. O

To minimize the error probability in Lemma 2, we need
to seek the optimum (maximum) values of H for given
e and K. Figure 1 plots the optimum values ¢t = t] as
well as the optimum values of H for K = 5 to 100.
As expected, these optimum values are insensitive to
K (in fact, no essential difference from the limiting
case of K — o0). At e = 0, the value of 1/Hy is
about 12.2. Note that to control the error probability
to be < §, the required number of measurements will
be M > H£1 log N/6. Thus we use a numerical number

12.3 for the bound of the sample complexity.

Next, Lemma 3 concerns the false negative error prob-
ability when z; # 0.

3 2 B
—K=5 Optimum t*l —K=5 Optimum H,
—K=10 —K=10

=l k=20 L 5| —k=20
£ “[|—k =50 = —K =50
g ||—k=100 2 1f[—K=100
o1 )

05

0

-1 -05 0 05 1 LY 0 0.5 1

€ €

Figure 1: For Lemma 2, we plot the optimum ¢ = ¢] values
(left panel) which maximizes Hi(t;¢, K), as well as Hy =
HY at t = ¢ (right panel), for K =5 to 100. The different
curves essentially overlap. At the threshold € = 0, the
value 1/Hy is about 12.2 (and smaller than 12.3).

Lemma 3 For anye, 0 <t <1, and a — 0, we have

Pr (Qj' <eM/K,z; > 0) =Pr (QZ_ <eM/K,z; < O)
<exp (%Hz(t;ﬁ,KO (8)

where

Hy(t;e, K) = —et — K x log [A] 9)

'] 1 n—1 n l
are Y Il
n=2,4.6... n(K —1)+1 =0 " —1
> 1 "Hl t—1
s m+1)(K-1)+1 il —1
and
e’} 1 n—1 t—l
Hs(t; = —¢€t — — —_— 1
atieoo)=—ct— > —J]— (10)
n=2,4,6...  1=0
[e%s) n—1
1 t—1
+ 11
n=13.5... (n+1) =0 " —1
Proof: See Appendix B. [
1 15 .
—K=5 Optimum H2 —K=5
08 —K=10 —K=10
. —K=20 || . —K=20
E o6 —k=s0 || £ 1 —K=50
= —K =100 = —K =100
£ E
£0.4 =
o 005
0.2
Optimum t;
L —3 0 05 1 Y 0 05 1
€ €

Figure 2: For Lemma 3, we plot the optimum ¢ = ¢5 values
(left panel) which maximizes Ha(t;¢€, K), as well as Ho =
Hj at t = t5 (right panel), for K =5 to 100. The different
curves essentially overlap. At € = 0, the value of 1/H; is
again about 12.2 (which is smaller than 12.3).

Figure 2 plots the optimum ¢35 values which maximize

Hs, together with the optimum Hj values. Interest-
ingly, when ¢ = 0, the value of 1/HJ is also about 12.2
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(smaller than 12.3). This is not surprising, because,
for both H;(t;€,00) and Ha(t; €, 00), the leading term
at e=01is @.

Sample Complexity. Given K, N, ¢, §, the required
number measurements can be computed from

(N—K)xPr(Qf >eM/K,z; =0)
+K><Pr(Q;" <eM/K,z; >O) <4

When e = 0, because the constants of both error prob-
abilities are upper bounded by 12.3, we have a conve-
nient expression of complexity, as in Theorem 1.

Theorem 1 Using Alg. 1, in order for the total er-
ror (for estimating the signs) of all the coordinates to
be bounded by some & > 0, it suffices to use M =
[12.3K log N/&| measurements.

5 Recovery Under Noise

We can add measurement noises: y; = vazl 4855 +n;,
where typically n; ~ N(0,0%) at some noise level
0. The framework of sparse recovery using a-stable
random projections with small « is (boringly) robust
against this type of measurement noises [15]. To make
the study more interesting, we consider another com-
mon noise model for 1-bit compressed sensing by ran-
domly flipping the signs of the measurements.

That is, we introduce independent variables r;, j =1
to M, so that r; = 1 with probability 1—y and r; = —1
with probability v. During recovery, we use (r;y;) to
replace the original y;. For differentiation, we use Q:fw

and Q"

. + —
7.+ Tespectively, to replace Q] and Q; .

Interestingly, Lemma 4 shows that random flipping
does not affect the false positive probability.

Lemma 4 For any € and any t > 0, we have

Pr (Qj'7 >eM/K,x; = O) =Pr (Q;ﬁ >eM/K,x; = 0)

<ep{- Y e )] (11)

where Hy(t;e, K) is the same as in Lemma 2.

Proof: See Appendiz C. The key is that sgn(rjui;)
and sgn(u;;) have the same distribution. |

On the other hand, as shown in the next lemma, this
random flipping (with probability +) does affect the
false negative probability.

Lemma 5 For anye, 0 <t <1, and a — 0, we have

Pr(Q, < eM/K,z; > 0) = Pr(Q;, < eM/K,z; <0)

< exp (—%Hzx(t; e, K, 7)) (12)

where
Hy(t;e, K,v) = —et — K x log [B] (13)
[e%e} 1 n—1 1
B =1
+n:§6 n(K—1)+1 H n—I
> 1-2y ’ﬁ t—1
s (n+ (K -1)+1 i
[e] 1 n—1 L
H4(t; € 0077) =—€et— Z . 7 (14)
n=2.46... " 1=0 n—1
e} n—1
1—2y " t—1
+ 11
n=135 (n+1) gn—t
Proof: See Appendix D. O

From Lemma 4 and Lemma 5, we can numerically com-
pute the required number of measurements for any
given N and K. We will also provide an empirical
study in Section 6.

6 Experiments and Comparisons

In this section, we provide a series of experimental
studies to verify the proposed algorithm. In the litera-
ture, the so-called 1-bit marginal regression [20, 22]
can be viewed as a one-scan algorithm and hence
it is the competitor we should compare our method
with. As shown in the experiments, however, the pro-
posed method needs orders of magnitude fewer mea-
surements than 1-bit marginal regression (MR). Thus,
to make the empirical study more interesting, we also
compare the method with the well-known 1-bit Iter-
ative Hard Thresholding (IHT) [11]. The comparison
results show that the proposed algorithm is still sig-
nificantly more accurate. Furthermore, our method is
reasonably robust against random sign flipping, while
THT is known to be very sensitive to that kind of noise.

As mentioned earlier, the proposed method is boringly
robust against additive Gaussian noise [15] and thus we
focus on random sign flipping noise in the experiments.
We should also mention that, in our experiments with
1-bit MR and 1-bit THT, we always use Gaussian de-
signs. Applying 1-bit MR and THT with heavy-tailed
designs would not lead to meaningful results.

6.1 Experiment Set-up

In our experiments, we generate signals based on the
two parameters N and K. We choose (N,K) €
{(1000, 20), (1000, 50), (10000, 20), (10000, 50)}. For
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each given N and K, we first randomly select K
nonzero coordinates and then assign the values of
the nonzero entries according to i.i.d. samples from
N(0,5%). We then apply the proposed algorithm to
recover both the support and the signs of the signal.
The number of measurements is set according to

M =(KlogN/§

where the confidence ¢ is set to be 0.01. We vary the
parameter ¢ from 2 to 15. Note that this choice of M is
typically a small number compared to N. Recall that,
in our analysis, the required number of measurements
using criterion (4) is proved to be 12.3Klog N/é,
although the actual measurements needed will be
smaller by using a practical variant of Alg. 1.

6.2 A Variant of Alg. 1

Although Alg. 1 is convenient for theoretical analysis,
the practical performance can be improved by using a
simple variant based on ranking, although the theoret-
ical analysis would be more difficult.

Basically, after we have computed Q; and Q; from
(2) and (3), for ¢ = 1 to N, instead of using 0 as
the threshold, we choose the top- K coordinates ranked
by max{Q;, Q; }. Among the selected coordinates, if
QF > Q7 (or Q7 > QF), then we estimate sgn(x;)
to be positive (or negative). This procedure implic-
itly utilizes € away from 0 and hence less conservative
compared to vanilla Alg. 1 as validated by our exper-
iments. The drawback is that it relies on knowing
K. Nevertheless, in CS literature, reporting only the
top-K recovered coordinates appears to be a common
procedure. This is also used in our experiments for re-
porting the results of competing 1-bit CS algorithms.

Figure 3 reports the sign recovery errors defined as:
va [sgn(xz;)—sgn(x;)|/ K, to confirm that the variant
performs noticeably better than the original Alg. 1.

In the following experiments, we always only report
the performance of this variant of Alg. 1.

6.3 Sign Recovery under Random Sign
Flipping Noise

Figure 4 reports the sign recovery errors. In each
panel, we report results for 3 different y values (y = 0,
0.1, and 0.2), where + is the random sign flipping prob-
ability. The curves without label (red, if color is avail-
able) correspond to v = 0 (i.e., no random sign flip-
ping errors). The results in Figure 4 confirm that the
proposed method works well as predicted by the theo-
retical analysis. Moreover, the method is fairly robust
against random sign flipping noise.

- --Original 0.9
—Variant || 5 g

N=1000,K=20 | 506

- --Original
— Variant

N =1000, K =50

'
v
'
'
1
1
'
'
l
'

34567 8(9 101112131415 02 34567 8Z9 101112131415
1 1

0.9 \ - --Original 0.9 \ - --Original
508 H —Variant | Sgg | — Variant
Go7 W7t b
$ 0.6 B N-=10000; K =20 r,‘E;O.G ' N =10000; K =50
gos | gos :
& 0.4 " & 0.4
c 0.3 N c 0.3
[=2} \ [=2}
@ 0.2 5 : : o] 0.2

0.1 . 0.1

G2 34567 8(9 101112131415

02 34567 819 101112131415

Figure 3: Sign recovery errors for comparing Alg. 1
with a simple variant. The number of measurements is
chosen according to (K log N/§, for ¢ ranging from 2 to
15. The recovery error is .7 |sgn(z;) — sgn(z;)|/K. We
repeat each simulation 1000 times and report the median.

0.9 - - _09 2 5
508 N=1000.K=20 | 53¢ N = 1000, K = 50
UZJ‘ 0.7 LIEJ\ 0.7
@ 0.6 02 @ 0.6
305 : 305
© 0.4 © 0.4
14 0.1 14
8,0'3 5,0'3
202 202

0.1 0.1

0 0

02 34567 8(9 101112131415

G2 34567 8(9 101112131415

Figure 4: Sign recovery under random sign flipping
noise. In each panel, the 3 curves correspond to 3 different
random sign flipping probability ~, for v = 0, 0.1, and
0.2, respectively. The curve without label (red, if color is
available) is for v = 0. We repeat each simulation 1000
times and report the median.

6.4 Support Recovery

We can generalize the practical variant of Alg. 1.
That is, after we rank the coordinates according to
max{Q;, Q; }, we can choose top-BK coordinates for
B8 > 1. We have used = 1 in previous experiments.
Figure 5 reports the recall values for support recovery:

recall = #{retrieved true nonzeros}/K
for § = 1, 1.2, and 1.5. Note that in this case we

just need to present the recalls, because precision =
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#{retrieved true nonzeros}/(BK). As expected, us-
ing larger f values can reduce the required number of
measurements. This experiment could be interesting
for practitioners who care about this trade-off.

g 1 s~ T
0.9 ﬂJS/ 7 0.9//_/_/

3 E
0.8 208
' @©
07 N=1i000,k=20] 07 N = 1000, K = 50
06 3 " 5 s 0% 3 ) 5 6
F Z

1.5, = T

N =10000, K =20 N =10000, K =50

06 3 4 5 s % 3 4 5 6
¢ 14
Figure 5: Support recovery. We report top-

BK coordinates ranked by max{Q],Q;}, for B €
{1,1.2,1.5,2}. We report the recall values, i.e.,
#{retrieved true nonzeros}/K. As expected, using larger

(B will reduce the required number of measurements, which
is set to be (K log N/§ (where § = 0.01).

6.5 Comparisons with 1-bit Marginal
Regression

It is helpful to provide a comparison study with other
1-bit algorithms in the literature. Unfortunately, most
of those available 1-bit algorithms are not one-scan
methods. One exception is the 1-bit marginal regres-
sion [20, 22], which can be viewed as a one-scan al-
gorithm. Thus, it is the target competitor we should
compare our method with.

Figure 6 reports the sign recovery accuracy of 1-bit
marginal regression in our experimental setting. That
is, we also choose M = (K log N/§, although for this
approach, we must enlarge ( dramatically, compared
to our method. We can see that even with ¢ = 100,
the errors of 1-bit marginal regression are still large.

6.6 Comparisons with 1-bit Iterated Hard
Thresholding (IHT)

We conclude this section by providing a comparison
with the well-known 1-bit iterative hard thresholding
(IHT) [11]. Even though 1-bit THT is not a one-scan al-
gorithm, we compare it with our method for complete-
ness. As shown in Figure 7, the proposed algorithm is
still significantly more accurate for sign recovery.

Note that Figure 7 does not include results of 1-bit IHT

N =1000, K = 50

‘N=1000,K=20] 5

Gl 10 20 30 40 5(0 60 70 80 90100 0l 10 20 30 40 SZO 60 70 80 90100

N =10000,K =20 5 N =10000, K =50

01 10 20 30 40 SZO 60 70 80 90100 Gl 10 20 30 40 5(0 60 70 80 90100

Figure 6: Sign recovery with 1-bit marginal regres-
sion. The errors are still very larger even with ¢ = 100,
i.e., M = 100K log N/§. Note that in each panel, the three
curves correspond to three different random sign flipping
probabilities: v = 0, 0.1, and 0.2, respectively.

with random sign flipping noise. As previously shown,
the proposed method is reasonably robust against this
type of noise. However, we observe that 1-bit THT is
so sensitive to random sign flipping that the results
are probably not presentable !.

N = 1000, K = 20 N = 1000, K = 50

Sign Recovery Error
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1 1
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gos gos
gos4 o4p
c 03 - 03
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® 02 IHT ® 02 IHT
0.1p by e e R 0.1p Nt sErombeEobad R
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Figure 7: Sign recovery with 1-bit iterative hard
thresholding (IHT). The results of 1-bit IHT are pre-
sented as dashed (blue, if color is available) curves. For
comparison, we also plot the results of the proposed
method (solid and red if color is available).

! After consulting the author of [11], we decided not to
present the random sign flipping experiment for 1-bit IHT.
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7 Discussion: Estimation of K

In the theoretical analysis, we have assumed that K
is known, like many prior studies in compressed sens-
ing. The problem becomes more interesting when K
is not known. In this case, we will need to use (say) m
additional measurements for estimating K. One pro-
posal is to use m full (i.e., infinite-bit) measurements
such as the estimators developed in [12]. However,
using full (infinite-bit) measurements for estimating
K would be contradicting the original purpose of 1-
bit CS. It is hence an interesting research problem to
develop efficient bit-estimators of K. In fact, for any
1-bit CS algorithms, we must address the same issue.

8 Conclusion

1-bit compressed sensing (CS) is an important topic
because the measurements are typically quantized (by
hardware) and using only the sign information may
potentially lead to cost reduction in collection, trans-
mission, storage, and retrieval. Current methods for 1-
bit CS are less satisfactory because they require a very
large number of measurements and the decoding is typ-
ically not one-scan. Inspired by recent method of com-
pressed sensing with heavy-tailed designs, we develop
an algorithm for one-scan 1-bit CS, which is provably
accurate and fast, as validated by experiments.

For sign recovery, our proposed one-scan 1-bit algo-
rithm requires orders of magnitude fewer measure-
ments compared to 1-bit marginal regression. Our
method is still significantly more accurate than 1-bit
Iterative Hard Thresholding (IHT), which is not one-
scan. Moreover, unlike 1-bit THT, the proposed algo-
rithm is reasonably robust again random sign flipping
noise (for which we also have a theoretical proof).
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