[edit]
Target-Based Temporal-Difference Learning
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:3713-3722, 2019.
Abstract
The use of target networks has been a popular and key component of recent deep Q-learning algorithms for reinforcement learning, yet little is known from the theory side. In this work, we introduce a new family of target-based temporal difference (TD) learning algorithms that maintain two separate learning parameters {–} the target variable and online variable. We propose three members in the family, the averaging TD, double TD, and periodic TD, where the target variable is updated through an averaging, symmetric, or periodic fashion, respectively, mirroring those techniques used in deep Q-learning practice. We establish asymptotic convergence analyses for both averaging TD and double TD and a finite sample analysis for periodic TD. In addition, we provide some simulation results showing potentially superior convergence of these target-based TD algorithms compared to the standard TD-learning. While this work focuses on linear function approximation and policy evaluation setting, we consider this as a meaningful step towards the theoretical understanding of deep Q-learning variants with target networks.