Supplementary Information:
“Decomposing feature-level variation with
Covariate Gaussian Process Latent Variable Models”

A ADD-+INT kernel decomposition with
mean-zero functional constraints

Suppose f ~ GP(0,k(-)) where f is a one-dimensional function and k() is the squared exponential
kernel,

k(z,y) = o® exp <_; (z ;23/)2>

Following Durrande et al. [2012, 2013| we can construct a GP prior for f conditional on

1P rtydt = o.

Writing down the joint distribution of f(z) and its integral ff f(t)dt over some interval [a, b],

fl@) \ 0 k(z, ) P k(x, t)dt
<f,ff(t)dt> N[<0>’ (ffk(t,x)dt fffjk(t,s)dtds>]

we can express the conditional distribution of f(x) conditional on fab f(t)dt =0, i.e. conditional
on f being mean-zero. As a result,

b
1 / F(t)dt = 0) ~ GP(0, k().
where

Y kG t)dt [ Kt y)dt
[P [P k(t,s)dtds

k(z,y) = k(z,y)

When k(x,z') is the squared exponential kernel, these integrals have analytic forms,

/ab k(z, t)dt = 0.5v/27l0> <erf (b\};> —erf <aélx>>

b b a— —a)?
/ / k(t, s)dtds = v/2mlo? ((a — b)erf< ﬁlb> + \/\f;l(exp(— (b 572 ) ) — 1))




Now, being able to evaluate l;:, we can construct the mean-zero decomposition. We will formulate
the ADD+INT kernel decomposition on the joint (z,z) space as follows

k((z,z), (2, 2") :== 02 + 02ko(2, 2) + 02ko(z,2") + 02, ko(z, 2 ) ko(z, ')

where kg is the mean-zero kernel as above with kernel variance set to 1.
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B Additional experiments: Synthetic gene expression data

The “rings” and “pinwheel” exhibited highly non-linear patterns, whereas now we explore the
behaviour of these models on more realistic synthetic examples, considering dependency structures
that we expect to see in real gene expression data. For this purpose, we constructed synthetic
data sets where features would exhibit (i) linear additive signal, (ii) linear interactions combined
with additive signal, (iii) monotone dependency, and (iv) the latter combined with transient
signals.

For the synthetic gene expression data, we generated the following 5-dimensional data sets (z on
z-axis, y\9) on y-axis, coloured by covariate X).
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In these four scenarios, we measured how accurately do different models uncover the true
underlying z, results are summarised in Table 1.

Table 1: Under four data generation schemes (in columns), we compared the four models (in
rows) in how accurately they recovered the true z, displaying correlation between the true z and
the inferred values.

linear linear monotone monotone+

(ADD) (INT) transient
LVR 0.99 0.97 0.91 0.84
GPLVM  0.81 0.82 0.80 0.91
sup-GPLVM  0.91 0.83 0.87 0.90
c-GPLVM  0.99 0.97 0.96 0.97

In the linear data simulations, the linear assumptions of latent variable regression (LVR) allows
it to achieve near perfect recovering of the latent dimension but, despite the increased flexibility,
so does c-GPLVM. When the data-generating mechanism is non-linear and including transient
effects, the non-linear assumptions of GPLVM and sup-GPLVM exhibit their superiority over
LVR but cannot recover the true latent structure as accurately as c-GPLVM.



C Details about the synthetic survival experiment
(for section 5.2)

For the synthetic survival experiment, we generated a four-dimensional data set as shown below,
where two features depend on x (y; exhibits an interaction effect and y2 an additive effect),
whereas the rest do not. We picked two data points with

o truez=—-20and x=1.5
e truez=10and x=1.5

to carry out the synthetic experiment.
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Figure 1: Data generation scheme (4-dimensional y) for the synthetic censored-covariates

experiment.



D Details about the survival experiment on TCGA data

(for section 5.3)

As the posterior predictive from the Weibull regression does not take into account the fact that
we have available censoring information, we have provided both the default predictions (which
are not informed by censoring times) as well as the conditional predictions in Fig 2. We also
quantify the prediction accuracy by repeatedly sampling from the inferred posteriors and show

the distribution of mean squared error (MSE) in Figure 3.
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Figure 3: Mean squared prediction error for the TCGA artificial censoring experiment
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