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Modeling in biology is mainly grounded in mathematics, and specifically on or-

dinary differential equations (ODE). The programming language approach is a
complementary and emergent tool to analyze the dynamics of biological networks.

Here we focus on BlenX showing how it is possible to easily re-use ODE models

within this framework. A budding yeast cell cycle example demonstrates the ad-
vantages of using a stochastic approach. Finally, some hints are provided on how

the automatically translated model can take advantage of the full power of BlenX
to analyze the control mechanisms of the cell cycle machinery.

1. Introduction

Abstract models of biological systems are becoming an indispensable con-
ceptual and computational tool for biologists. In order to be useful, a
model has to allow automatic analysis, and permit the integration of new
knowledge without changing too much the already built model.

Chemical kinetics has traditionally been analyzed using a mathemati-
cal formalism in which continuous variables evolve deterministically, even
if molecular populations in a biological systems are integer variables that
evolve stochastically 1. There is not yet an agreement upon the characteri-
zation of the best “usable form” in modeling biology, because some aspects
are better handled with the deterministic approach, while for others the
stochastic one is more suitable. For example, in the literature, beside deter-
ministic ordinary differential equations (ODE for short), we find stochastic
cell cycle models built with stochastic ODE Langevine type 2, with the
Gillespie method 3 and with stochasticity on transitions 4. Moreover, as
a recent paper by Nurse on Nature 5 points out, the life science field re-
quires the development of new and more appropriate languages to describe
biological systems.

After the work of Regev et al. 6, a promising trend in this direction is
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to use programming languages to generate executable models of biological
systems. This strategy diverges from classical mathematical modeling be-
cause it is executable and not just simply solvable 7. Execution means that
we can describe the flow of control between species and reactions, i.e. not
only the time, but also the causality relation among the events that consti-
tute the history of the dynamics of the model. This interpretation is very
similar to programming the behaviour of a system rather than describing
only its outcome with respect to time. As a consequence, a number of pro-
cess calculi have been adapted or newly developed for building biological
models and performing stochastic simulations (i.e. stochastic π-calculus8,9,
BioAmbients10, Brane Calculi11, CCS-R12, k-calculus13, Bio-PEPA14).

The main contribution of this paper is a semi-automatic method to
translate existing deterministic models written with ODEs into programs
written in the stochastic modeling language BlenX 15,16. The simple transla-
tion of general ODE terms into a stochastic BlenX model is possible because
of the expressive power of the language that allows the definition of general
rate functions for the transitions.

The paper is organized as follows. In the next section we concisely recall
the two languages used for modeling biological systems, i.e. the mathe-
matical (ODEs) and the computational (BlenX) one. Sect. 3 illustrates a
semi-automatic procedure to translate the former into the latter and Sect.
4 applies this procedure on a biological relevant example, the cell cycle ma-
chinery of Saccharomyces cerevisiae. Validation results and improvements
of this model are then discussed in Sect. 4.3, conclusions and future work
directions close the paper in Sect. 5.

2. Modeling of Biological Systems

2.1. The mathematical language

The usual way in which life scientists build models starts from the orga-
nization of the known interactions of the relevant molecules into a wiring
diagram 17. There are no unambiguous rules or general conventions for
building these diagrams and so the information contained in those dia-
grams is quite difficult to be translated automatically in different modeling
languages. However, some information contained in those maps is funda-
mental to disambiguate between different reactions that are associated to
the same mathematical model.

Once the model is represented diagrammatically, the biochemical re-
lationships are converted into ODEs. A rate equation is written for each
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biochemical entity whose concentration changes over time. Those rate equa-
tions are written following different kinetic laws that take into account the
known properties of the chemicals involved, possibly abstracting some un-
known mechanisms.

Before doing the translation of the ODE model in BlenX, we want to
make a remark, already discussed by several authors 18,14,19, about the
usage of the Gillespie SSA algorithm 20 when high-level mathematical rep-
resentation of non-elementary reactions are incorporated in the form of
rate-dependent functions. The rate dependent functions are defining the
reaction propensities of the stochastic model. Following the approach of
21 we assume that the fundamental hypothesis of Gillespie, i.e. each reac-
tion time is a random variable following a negative exponential distribution
with rate equal to the value of the propensity function, is verified for the
biological system we are modeling. If this hypothesis is valid, a stochas-
tic characterization of the reaction times as negatively distributed random
variables is an accurate modeling choice, as proved by Gillespie 20. In
some studies, even considering Michaelis-Menten reactions 18, the applica-
bility of the fundamental hypothesis was mathematically proved, and in
some others dealing with the circadian rhythm this same hypothesis was
experimentally verified in silico 22. In our case, because of the presence of
many non-elementary reactions, a careful validation similar to the one in
21 has been performed: here just few examples will be shown for the sake
of conciseness and because the main focus of the paper is the translation
procedure and not the validation process that has to be done on each single
class of non-elementary reactions.

2.2. The BlenX Language

A detailed description of the BlenX language is out of the scope of this
paper; here we just summarize the sub-part of the BlenX language needed
for understanding the code of the presented examples. We refer the reader
to 15,16 for a detailed description of the language and its modeling approach.

The basic metaphor we keep is that a biological entity, i.e. a component
that is able to interact with other components to accomplish some biological
functions, is represented by a box in BlenX. This box has an interface (its set
of binders) and an internal structure that drives its behaviour (see Fig. 1).

For example, in a box modeling a protein, binders may represent sensing
and effecting domains. Sensing domains are the places where the protein
receives signals, effecting domains are the places that a protein uses for

Pacific Symposium on Biocomputing 14:239-250 (2009)



September 18, 2008 14:3 Proceedings Trim Size: 9in x 6in 2008-PSB

Figure 1. Boxes as abstractions of biological entities.

propagating signals, and the internal structure codifies the actions that
transform an input signal into, for example, the activation/inactivation of
a specific domain. The exchanging of signals can happen between boxes
whose binders have a certain degree of affinity, which codes the strength of
their interaction.

The basic primitives of the language that will be used in Sect. 3 to
translate ODEs into BlenX are summarized in graphical form in Fig. 2.

Figure 2. Intuitive behaviour of some BlenX primitives. Each row represents one of

the primitives used in our translation. The first primitive codifies the interaction be-
tween two boxes, through the exchange of an input/output signal (input is in the form

of b?() and the output is in the form a!()). The last three rows are the graphical rep-

resentation of events of the form: “when(conditions) verb”, where the action verb is
triggered when conditions are satisfied. The verb can be one of split, new or delete,

that model respectively the substitution, creation, and deletion of boxes in the system

(graphically depicted above). Conditions, in the models presented here, are in the form
of “entity name : : function”, whose meaning is that the action after the condition is

triggered, at rate function, on the entity entity name.

Rate functions are associated to action and events, and those rates can
be declared using real numbers that will be used as base rate for the ele-
mentary mass action law, or arbitrary functions (e.g. Hill response) that
are useful when a box represents an aggregated process or when the precise
mechanism of interaction between entities is not known.

3. From ODEs to BlenX models

The rationale is to use the same level of abstraction adopted in the deter-
ministic model so that we can define an easy mapping of ODEs into BlenX.
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This translation requires using few primitives of the language. Later in the
paper, we propose some hints on how the user can tune the model pro-
duced by this mapping, using more powerful BlenX capabilities: this is a
fundamental step toward the generation of a more effective translation of
the functioning of the logic circuits that underpin biological phenomena 5.

We first modify the differential equations to get the variation of the
number of molecules instead of concentrations, using a scalar constant α
defined as α = (NA10−6V )−1, where NA is the Avogadro’s number and V

is the volume of the modelled system. Applying ConcS = α ·MolNumS

conversion for each species S, we have an ODE system with the original
kinetics constant, but written in terms of number of molecules. This allows
us to use directly those terms as stochastic rate functions, without the need
of giving to each single kinetic constant its stochastic numerical counterpart.

The second algebraic modification of the ODE system that we need is to
add the species that are appearing “implicitly” in the system. If a species is
present in a constant total amount but it can switch between an active and
an inactive state, the time evolution of just one of the two states is usually
explicitly considered, because the other (the “implicit”) one can be derived
from the first. In our initial simplified usage of BlenX we have to specify
all the states in which a species can be, and so we need a definition also
for the states not explicitly written in the initial ODEs. Hereafter, when
we talk about species, we include both the original explicit and the added
implicit ones.

The general mathematical description of a system of N reactant species
S1, . . . , SN expressed in terms of number of molecules M1, . . . ,MN and
involved in R1, . . . , RR reactions has the following form:

dMi

dt
=

Ri∑
j=1

f ij(M1, . . . ,MN ) (1)

where i = 1, . . . , N , Ri ≤ R, and f ij is a rate function that can contain
constants rate coefficients and/or other discrete/continuous variables de-
pendent from time and/or species in the model (see the example of CycB
variable introduced in Sect. 4.1). So the complete definition of the sys-
tem above has to be coupled with the set V ar1, . . . , V arT of mathematical
expressions for the variation of each discrete/continuous variable.

The translation from an ODE system written with the above conven-
tions to BlenX is summarized by the following pseudocode:
Input: the set (1) of ODEs;
Output: the definition of the BlenX model and the rate functions.
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Method:

(1) expand all the possible factors of the ODEs, so that all the equations are
written as summations of positive/negative terms;

(2) for(i in [1..N ])

for(j in [1..Ri])

define function(f i j) = ABS(mathematical expression(f ij))

(3) for (i in [1..T ])

define variable(var i) = mathematical expression(V ari)

(4) declare all the constants contained in the previous definitions

(5) for(i in [1..N ]) declare empty-box(i)

(6) for(i in [1..N ])

for(j in [1..Ri])

switch(kind of f ij reaction):

case ’synthesis’: add when (i : : f i j) new(1);

case ’degradation’: add when (i : : f i j) delete(1);

case ’changing from i to k’: add when (i : : f i j) split(Nil, k);

case ’changing from k to i’: add when (k : : f i j) split(Nil, i);

(7) remove all copies but one of the replicated events that have been created
for reactions appearing in multiple ODEs

(8) set the initial state of the model.

Note that the choice on step (6) has to be done manually, looking at
the wiring diagram of the system: this is the only step that cannot be done
automatically, because of the inverse problem discussed in the conclusions
of the paper.

In the next section, following 21, the whole process is applied to a
budding yeast cell cycle model 23 in order to show that the translation
is straightforward and that the stochastic simulations are, from one side,
consistent with the results obtained by the solution of the ODE system,
but from the other side, the stochastic model matches some characteristics
that cannot be found with the deterministic one.

4. Cell Cycle Machinery of Saccharomyces cerevisiae

4.1. Deterministic Model of Budding Yeast Cell Cycle

The budding yeast is a well-studied and understood example of how the
cell cycle can be controlled by the activity of only a few cyclin-dependent
protein kinases. We will focus hereafter on the biochemical machinery that
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Figure 3. Graphical representation of cell cycle engine. Solid lines link reactants to

products, dashed lines represent the mediation effect that some species have on reactions.

controls Cdks activity that has been modeled with ODEs by Novak and
Tyson (see 23, pag. 270), and that is depicted in Fig. 3.

For the sake of conciseness, we do not report here the 8 equations com-
posing the model in 23, but only the ODEs of two species that contain all
the basic features needed for the translation in BlenX of the model.

d|CDC20 IN |
dt

= k5p/α︸ ︷︷ ︸
synthesis

+
(k5s/α) ∗ (α ∗m ∗ CycB)n

(J5)n + (α ∗m ∗ CycB)n︸ ︷︷ ︸
(induced) synthesis

− k6 ∗ |CDC20 IN |︸ ︷︷ ︸
degradation

+

+
k8 ∗ |CDC20 A|

J8 + α ∗ |CDC20 A|︸ ︷︷ ︸
inactivation

−
k7 ∗ α ∗ |IEP | ∗ |CDC20 IN |

J7 + α ∗ |CDC20 IN |︸ ︷︷ ︸
activation

(2)

d|CDC20 A|
dt

=
k7 ∗ α|IEP ||CDC20 IN |
J7 + α|CDC20 IN |

−
k8|CDC20 A|

J8 + α|CDC20 A|
− k6|CDC20 A| (3)

dm

dt
= µ ∗m ∗ (1−m/mstar) (4)

Figure 4. Equations for the activation/inactivation of the Cdc20 protein and the rate
law for the growing of the mass. |S| is the number of molecules of species S and the
different ks (and Js) are the deterministic kinetic parameters. The part of the model
above is also referring to a discrete variable (CycB) that represents the activity of the

dimer CyclinB/Cdk. CycB is calculated with an algebraic expression which can be found
in 24 with the complete set of equations and variables.

4.2. Stochastic Model of Budding Yeast Cell Cycle

We now apply the translation steps described in Sect. 3 to each term of the
above ODEs generating the BlenX code of the model. The model can be

Pacific Symposium on Biocomputing 14:239-250 (2009)



September 18, 2008 14:3 Proceedings Trim Size: 9in x 6in 2008-PSB

given as input to BetaWBa framework to perform stochastic simulations.
The CDC20 IN species contains a positive term for the rate of its

synthesis (k5p/α) and a negative term for the rate of its degradation
(k6 ∗ |CDC20 IN |). The result of their codification is in Fig. 5(a).

Figure 5. BlenX code showing the result of the steps of the translation method on the
specific equations in Fig. 4: synthesis/degradation (a) and activation/inactivation (c)

rate functions, synthesis/degradation (b) and activation/inactivation mechanism (d).

The next step is the encoding of the structure of the model. We define
an empty box for the species CDC20 IN and then we add a new event
that represents its synthesis and a delete event that represents its degra-
dation. The rates of the events are the functions defined in Fig. 5(a) and
structure of the model is in Fig. 5(b). The CDC20 IN species contains
a positive Michaelis-Menten term that is representing the inactivation of
the CDC20 A and a negative Michaelis-Menten term that is representing
the activation of the CDC20 IN . Coding this rate terms similarly to the
previous case, we obtain the code in Fig. 5(c). In the model we just have
to add the box for the CDC20 A species because we have already defined
the box for the inactive species. Then we add two events, one encoding
the inactivation of the active Cdc20 and one encoding the activation of the

aBetaWB is available at http://www.cosbi.eu/
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inactive Cdc20. Their rate are the ones in Fig. 5(c) and the code for this
part of the model is in Fig. 5(d). All the terms of the complete ODE
system can be seen as one of the previous cases, so even if they are driven
by complex kinetics (as the Hill function in the synthesis of CDC20 IN)
they can be easily coded by a new/delete/split event.

With the rules introduced so far we encode almost the whole set of ODEs
from 23. The only one left is ODE (4), which is not representing a chemical
species but the mass of the cell. It can be seen as a variable that has to be
updated, following the function in equation (4), with discrete time steps.
With BlenX is possible to define those kind of variables simply copying their
ODE with the other rate functions, declaring it as a var rather than a func-

tion. Also cell division is an event that is not explicitly coded in the ODE
system, and it halves the mass value when the concentration of active Cd-
k/CycB falls below an assigned threshold (0.1, as in the 23 model) after hav-
ing raised above another threshold (here 0.2). In BlenX we can simply add
the event “when(:mCycB→0.2,mCycB←0.1:)update(m,mass div);”, which
tells the simulator to trace the state of the variable mCycB and whenever
this variable overcomes the 0.2 threshold and then goes back under the 0.1
threshold, the event that updates the value of the mass with its halved
value is executed. With this last rule we can complete the translation of
the model from ODE to BlenX.

4.3. Validation of the stochastic model

Following 21, we compare the results provided by the BlenX model and the
deterministic one for the wild type of budding yeast.

The model simulation was performed with BetaWB and the only differ-
ence among the runs of the model is the stochastic fluctuation (Fig. 6a-6b).

Figure 6. Deterministic (a) and stochastic (b) model results for the wild type. We plot
the time courses of the cell mass, cyclin [CycBT ] and APC mediator [Cdh1A] concentra-
tion for a [0-400] time interval. (c) One stochastic result for the mutant with growth rate
0.0045. The cell was able to generate 2 offspring generations before losing the ability of

surviving further. (d) Probability of having at least 10 generation of the mutant varying
the growth rate.
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Following the careful validation process of 21, we built some mutants
starting from the above model: here for the sake of conciseness we show just
one of them. All the results of the stochastic simulations are in agreement
with the deterministic model of those mutants. In order to show the insights
that can be obtained with the stochastic model, we here show results for
the mutant obtained with the deletion of the destruction box of cyclin
Clb2 (which reduces its degradation rates), and with the deletion of cyclin
Clb5 (which reduces the overall CycB level). This model can be obtained
changing just some specific parameters of the original model.

Experimental results show that this mutant is viable, but only with a
decreased growth rate 25. Therefore we reduce the rate constant of growth
speed from the default value 0.005 min−1 to 0.0041 min−1. Both the deter-
ministic and the stochastic model results correctly show its viability. It is
interesting to observe that the deterministic model is able to fit the lethal-
ity of the mutation with growth rate 0.005 and its viability with growth
rate 0.0041, but cannot predict the intermediate situations: it is instead
reasonable to expect a continuous transitions as the growth rate varies
in the interval [0.0041-0.005], with some mutant cells that have a limited
survivability for values of the growth rate inside the interval and a death
probability increasing approaching the lethal situation of 0.005.

Small colonies of mutants cells with growth rate in this interval have
been experimentally observed 25, so we are expecting that if a mutant is
able to complete a sufficient number of cells cycles before dying, a colony
may develop, even if its overall growth would be slow. We conducted an in-
silico experiment to evaluate the probability that a single mutant cell would
be able to generate at least 10 offspring generations before dying, varying
the growth rate within the interval [0.0041-0.005] (we ran 100 simulations
for each value). The results (Fig.6c-6d)) clearly show that colonies of the
mutant may exist for values of the growth rate higher than the threshold
which sets the upper limit for the viability of the mutant in the ODE model.
We can conclude that stochastic simulations are important to check the
partial viability of mutants at the border of life and death.

4.4. Improving the structure of the model

In this section we provide some hints on how the model structure can be
improved by using the full power of BlenX. The underlying mathematical
model is exactly the same as before, but using the peculiarities of this new
language, as pointed out in 5, can be a fundamental step toward the gen-
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eration of a more effective model that can unravel the precise mechanisms
of interactions that governs biological systems.

The first modification is to use the die action for the degradation mech-
anism of a box, so that the death of a box is driven by its own internal
behaviour and not by a global event (e.g. the independent degradation
of CycBT at rate k2p). The second modification is using the commu-
nication between boxes through binders for modeling simple mass action
kinetics. For example the degradation of the CycB/Cdk dimer caused by
its interaction with Cdh1 (Fig. 3) can be modeled explicitly as in Fig.
4.4 and by assigning an affinity rate k2s stoch of communication between
CYCBT TYPE and CDH1 TYPE binders, where k2s stoch is the deter-
ministic rate k2s converted to stochastic.

l e t CYCBT: bp roc = #(x ,CYCBT TYPE)
[ d i e ( r a t e ( k2p ) ) + x ? ( ) . d i e . n i l ] ;
l e t CDH1 : bp roc = #(y ,CDH1 TYPE)
[ rep y ! ( ) . n i l ] ;

d|CY CBT |
dt

= −k2p|CY CBT |+

−k2s|CDH1||CY CBT |+ ...

Figure 7. Code for a mass action dynamic (left) with the subpart of the deterministic

model it is referring to (right).

Using this kind of mechanism on the whole set of ODEs we create a
model that is more prone to be modified. As new knowledge is acquired
on a specific protein, this can be added to the internal behavior of that
specific box in parallel or choice with the existing coded behavior. The only
drawback of this approach is that we need to have a detailed description of
the interactions between the components and usually this is not the case
(e.g. in the cell cycle model described above, the Hill response has been used
in order to abstract a cooperative mechanism whose details are unknown).

5. Conclusions and Future Work

We presented a translation of existing ODE models into BlenX computa-
tional model. The procedure cannot be completely automatized, because it
has to face the inverse problem of reaction kinetics 26: more than one struc-
turally different network of chemicals can produce the same set of ODEs.
To disambiguate between those networks we need to have the knowledge of
the interactions between all the species, but usually this knowledge is hid-
den in wiring diagrams that are not following strict or general conventions.

Our translation creates a model that can be stochastically simulated in
order to answer questions that cannot be directly tackled by deterministic
models. The simple mapping is possible because of the expressive power
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of BlenX that allows the definition of general rate functions for reactions.
However the usage of the SSA algorithm with simple and complex kinetic
laws leaves to the user the responsibility to validate simulation results. The
example proposed here uses those different levels of abstraction and it has
been validated against experimental results. It is our future goal to further
analyze the mechanisms that are behind those complex kinetics in order to
make more detailed considerations on the effect of the stochastic noise.
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