
XQuery Rewrite Optimization in IBM R© DB2 R©∗pureXML TM

FatmaÖzcan
IBM Almaden Research Center

650 Harry Road, San Jose

Normen Seemann
IBM Silicon Valley Lab

555 Bailey Road, San Jose

Ling Wang
IBM Silicon Valley Lab

555 Bailey Road, San Jose

Abstract

In this paper, we describe XQuery compilation and rewrite optimization in DB2 pureXML, a hybrid
relational and XML database management system. DB2 pureXMLhas been designed to scale to large
collections of XML data. In such a system, effective filtering of XML documents and efficient execution
of XML navigation are vital for high throughput. Hence the focus of rewrite optimization is to consoli-
date navigation constructs as much as possible and to pushdown comparison predicates and navigation
constructs into data access to enable index usage. In this paper, we describe the new rewrite transfor-
mations we have implemented specifically for XQuery and its navigational constructs. We also briefly
discuss how some of the existing rewrite transformations developed for the SQL engine are extended and
adapted for XQuery.

1 Introduction

XML has emerged in the industry as the predominant mechanismfor representing and exchanging structured
and semi-structured information across the Internet, between applications, and within an intranet. Key benefits
of XML are its vendor and platform independence and its high flexibility. With the proliferation of XML data,
several XML management systems [7, 10, 17, 5, 4, 6, 12, 11, 14]have been developed over the last couple of
years. All major database vendors have released XML extensions to their relational engines, in addition to many
native XML management systems. XQuery [18] and SQL/XML [9] are the two industry-standard languages
that are supported by these systems to query XML. Most of the current research now focuses on optimization of
XQuery and SQL/XML in these XML management systems.

In this paper, we describe XQuery rewrite optimization within the context ofDB2 pureXML [4], which is a
hybrid relational and XML database engine that provides native XML storage, indexing, navigation and query
processing through both SQL/XML [9] and XQuery [18], using the XML data type introduced by SQL/XML.
DB2 pureXML stores XML data in columns of relational tables, as instances of the XQuery data model [19]
in a structured type-annotated tree. By storing binary representation of type-annotated trees,DB2 pureXML
avoids repeated parsing and validation of documents.DB2 pureXML [4] query evaluation run-time contains
three major components for XML query processing: (1) XML navigation engine, (2) XML index run-time and
(3) the XQuery function library. Additionally, several relational runtime operators have been extended to deal

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗DB2 pureXML is a a trademark or registered trademark of International Business Machines Corporation.

1

with XML data. The XML navigation engine evaluates path expressions over the native store, by traversing the
parent-child relationships in XML storage. It returns nodereferences and atomic values to be further processed
by the query run-time. Unlike other approaches in which every XPath step is modeled as separate operator
[6, 16, 5], a single navigation operation inDB2 pureXML can evaluate multiple XPath expressions, consisting
of multiple steps, as a whole. After parsing both SQL/XML andXQuery queries are mapped into a unified
internal representation and optimized by the hybrid query compiler [4].

An important decision which impacted the whole XQuery compiler design is thatDB2 pureXML does not
require all XML documents in an XML column conform to a singleschema, or to a collection of conforming
schemas, and it does not implement static typing. Static typing is too restrictive for evolving schemas, as
each document insertion or change in schema may result in recompilation of applications. As a result, XPath
transformations that exploit schema information cannot beapplied inDB2 pureXML. Instead, we focus on
rewrites that optimize the general data flow in a complex XQuery or SQL/XML query. In this paper, we describe
those rewrites that we developed for XQuery.

The rest of this paper is organized as follows: In Section 2, we provide an overview of how XQuery is
modeled inDB2 pureXML, and then in Section 3 we describe rewrite transformation developed for XQuery.
Finally, we conclude in Section 4.

2 XQuery Compilation in DB2 pureXML

DB2 pureXML provides a hybrid compiler, supporting both XQuery and SQL/XML queries. It contains several
modules: two parsers, one for XQuery and one for SQL/XML, a global semantics module, a rewrite module,
a cost-based optimizer module, and a code-generation module, executed in this order. XQuery and SQL/XML
queries are first parsed using their respective parsers. Theoutput of the parsers is a unified internal represen-
tation, i.e. the QGM (Query Graph Model) graph. The rest of the processing is common for both languages.
The rewrite module contains a rule-based transformation engine [15], as well as several transformations that
are applied before or after the rule-based engine. It applies algebraic transformation to the QGM graph. The
cost-based optimizer translates the final QGM produced by the rewrite module into query execution plans and
choses the optimal one. The focus of this paper is the rewritemodule. But, in this section, we will start with an
overview of basic QGM[15] and its extensions to XQuery, necessary to understand the rewrites.

In its simplest form, a QGM graph consists of operations (nodes) and quantifiers (arcs) which represent
the data flow between operations. QGM supports arbitrary table operations, where the inputs and outputs are
tables. Examples of operations include SELECT, GROUP BY, UNION, and etc. The SELECT operation node in
QGM roughly represents a SPJ query block and handles restriction (selection), projection, as well as joins. Each
operation consumes a set of input columns through its input quantifiers, and produces a set of output columns.
Quantifiers range over operation nodes or base tables, and carry the input columns. There are two types of
quantifiers:ForEachandAny/All. The expression within an operation node is applied to each tuple input by a
ForEachquantifier.Any/All quantifiers are used to express universally (or existentially) qualified predicates.

XQuery [18] includes similar constructs to iterate over XMLsequences, apply predicates and sort data. We
exploit many existing features of QGM to model these XQuery features and introduce new entities to represent
and manipulate XPath expressions and XML sequences. In general, the result of every XQuery expression is a
sequence of items. Since XQuery sequences, i.e. XQDM (XQuery data model) [19] is represented as a column in
DB2 pureXML, any sub QGM-graph that is created to represent a specific XQuery expression produces a table
with a single row and a single column of type XML. FLWOR and quantified expressions define new variables
that are in scope within their respective expressions. To keep track of these variable scopes, we model FLWOR
and quantified expressions as scalar sub-queries, with explicit QGM operation nodes defining the query blocks.
The rest of the XQuery expressions that we support are represented as scalar functions; they either have run-time
counterparts that implement them, or they are expanded intodetailed QGM operations later in the compiler.

2

Some XQuery expressions consume a sequence as a whole (such as functions), while others require iterating
through the items in a sequence. We need to model these different ways of how XML data is flown into various
XQuery expressions. For XQuery, we have introduced two new kinds of ForEachquantifiers,FOR andLET.
A LET quantifier aggregates the output of an operation node into an XML sequence, whereas a FOR quantifier
unnests XML sequences output by an operation node and iterates over every single item. For example, if
an operation node produces a table with two rows containing{a, b, c} and{d, e}, then the output of a LET
quantifier is a single row that contains all items, i.e.{a, b, c, d, e}, whereas the output of a FOR quantifier is a
table with five rows, each row containing a single item.

2.1 Representation of XPath Expressions

XPath [18] expressions consist of a series of steps, where each step either expresses navigation, or contains
another XQuery expression, such as an XQuery built-in function, a FLWOR or a quantified expression, or a
node constructor. The focus of earlier research has been on efficient representation and execution of XPath
expressions, which contain only navigational steps. Most systems [16, 5, 6, 17, 14, 11, 7], represent and execute
each step separately as selections. In other words, they normalize [20] XPath expressions into explicit FLWOR
blocks, where iteration between steps and within predicates is expressed explicitly. Some provide indexes for
efficient access to individual nodes. But, they all require structural joins [2] to establish parent-child (or ancestor-
descendant) relationships.

In DB2 pureXML, we support XPath expressions, with its full generality andallow any XQuery expression
in an XPath step or predicate. In general, we do not normalizeXPath expressions, except in some certain cases.
Instead, we represent XPath expressions, which may containmany steps and branches, as a pattern tree which
computes a single variable binding. As the XML navigation engine ofDB2 pureXML holistically computes an
XPath expression, we do not need to model each step separately and we do not need structural joins to combine
the results. Later, rewrites combine multiple XPath expressions into a single pattern tree, which computes
multiple variable bindings.

We introduce a new operation, namely theExpBox, to represent XML navigation. An ExpBox contains an
annotated pattern tree, and produces tuples of XQDM bindings. A pattern tree is a tree representation of many
co-mingled XPath expressions. A pattern tree node represents an XPath step and has three or more positional
children. The first child of a pattern tree node represents the axis, the second one is either a name, a kind, or
a wildcard test ”*”, and the third child represents the predicate. The rest of the children of a pattern tree node
represents the next steps, and are other pattern tree nodes.Pattern tree nodes are annotated with flags to capture
various properties. TheisExtractionflag is set totrue, if the pattern tree node computes a variable binding that
needs to be extracted and returned to the run-time engine forfurther processing. TheisFor flag is set totrue if
the pattern tree node represents the last step of a FOR binding. A pattern tree node can be marked as a FOR
even if it does not represent an extracted variable binding.When XPath expressions are merged to eliminate
unnecessary extractions, we need to remember the last step of a FOR binding so that navigation run-time can
apply the correct duplicate elimination and document orderrules. TheEmptyOnEmptyflag signals when an
empty sequence needs to be created if there is no qualifying node.

2.2 Representation of FLWOR Expressions

The FOR and LET bindings in a FLWOR expression produce a tuplestream, which is then filtered by thewhere
clause, and thereturn clause is invoked for each surviving tuple. We model the FLWOR expression by using
two SELECT operations. The lower one computes the FOR and LETbindings and applies thewhere clause
predicates. We create a sub-graph for each binding and create either a FOR or a LET quantifier over it. These
FOR and LET quantifiers, which provide the tuple stream as input to the lower SELECT node, reflect the join
semantics of the FLWOR expression. Its output is fed to another SELECT operation, which is used to model the

3

return clause and theorder by clause, if present. Later in query rewrites these two selectboxes may be merged
depending on the properties of the expressions in theorder-by andreturn clauses.

3 XML Rewrites

The rule-based rewrite engine of DB2 provides several rewrite transformations for relational data [15]. Some
of these rewrites are also applicable to XQuery, as they optimize the data flow in QGM by minimizing the
number of operations and the length of the data flow, and both SQL and XQuery are modeled with QGM. For
example, there is a rewrite which merges SELECT operation nodes. This rewrite is extended to deal with the new
quantifier types, which are introduced for XQuery. This rewrite enables unfolding of nested FLWOR blocks,
and minimizes the QGM graph significantly. There are other rewrites which would not be applicable and those
are blocked for XQuery operations.

In this section, we focus on the new set of rewrite transformations introduced for XQuery, namely rewrites
for optimizing XPath expressions and the new LET and FOR quantifiers. The main goal of these new rewrites
is to consolidate XPath expressions into the least number ofnavigation operation nodes possible, as well as to
bring comparisons into XPath expressions and close to the table access to enable XML index usage.

DB2 pureXML supports value indexes defined by XPath expressions. These indexes are used to answer
XPath expressions which contain value or general comparisons. DB2 pureXML employs XML indexes to
eliminate documents that do not satisfy XPath predicates, and uses XPath query containment algorithms of [3]
to decide whether an index is eligible.

Most of the new rewrites work as part of the rule-based engine, but we also provide some transformations
that are outside. If the transformation can fire multiple times and interacts with other rewrites to enable them or
is enabled by them, we implement it as part of the rule-based engine. Otherwise, it is implemented as a one-time
only transformation. The rewrites that are part of the rule-based engine work on one aspect, such as a quantifier
or an operation node, of the QGM graph at a time and collectively simplify the QGM graph.

In addition to these rewrites, we also provide a separate rule-based transformation engine just for XPath
expressions. The transformations in this set work on a single XPath expression, usually one XPath step at a time.
These transformations include rules that normalize XPath expressions by eliminating parent axes, converting
multiple predicates on a step into a conjunction when possible, among others.

Note thatDB2 pureXML does not support static typing, but type information is important in query optimiza-
tion. Type information can be derived from two places: from the XML schema against which the document has
been validated, and from the signatures of the applied functions and operators. For example, fn:count() function
always returns a single integer, and fn:data() function always generates an atomic type. We use the return data
types of functions and operators, as well as literals, to infer the data type of an operation. We exploit type
information both in index matching, as well as in some rewrites. For example, the FOR2REG rewrite, which is
explained below, will fire if the data type of the XML column isa singleton.

In the following, we describe the general conditions under which the rewrites will fire. The actual rules
contain more details, which we omit here due to space limitations.

3.1 LET and FOR Quantifier Rewrites

As discussed earlier, a LET quantifier requires aggregatingthe results of the operation node it ranges over, so it
is translated into a group-by operation, and it is blocking.A FOR quantifier, on the other hand, needs to iterate
over the results of the operation node it ranges over, and it is translated into an UNNEST operation. It desirable
to eliminate both kinds of operations, if possible. We provide rewrites which tries to convert a LET quantifier
into a FOR and a FOR quantifier into a regular (REG) quantifier.The first condition we check for both rewrite
is that the operation node that the quantifier ranges over is not a common subexpression.

4

In its simplest form, we can convert a FOR quantifier into a REGquantifier if we can prove that the oper-
ation node it ranges over produces one singleton sequence. To prove this property, we may have to trace the
computation back several operations. Converting a LET quantifier into a FOR is more involved and requires
more properties to be proved. We check separate conditions depending on the operation node the LET quantifier
ranges over. If it is a SELECT operation, then we check whether there is a subsequent FOR or a LET quantifier
that obliterates this LET step, ensuring that there is no operation in between that requires to consume the output
of the LET quantifier as a single sequence. If the operation node is an ExpBox, i.e. an XPath expression, then
we need to prove that this XPath expression isinput independent. We say that an XPath expression isinput
independentif its context sequence contains distinct nodes, and the subtrees pointed to by the nodes in the con-
text sequence do not overlap. This will be true when the context column is a base table column, or the XPath
expression consists of only navigational steps, and does not contain any descendant axis or positional predicates.

3.2 XPath Merging

There are two forms of XPath merging: one rewrite transformation which is part of the rule-based engine, and
another one that is applied after all rewrites. The first one merges two XPath expressions,xpath1 andxpath2,
if 1-) xpath1 computes the context ofxpath2, 2-) there is no predicate on the first step, i.e. the context step,
of xpath2, 3-) the output ofxpath1 is only used inxpath2 as the context, and 4-)xpath1 andxpath2 are
compatible in their distinctness properties. When we mergethese two XPath expressions, we create a new
ExpBox containing the XPath expression that is the concatenation ofxpath1 andxpath2, without its context
step, and we mark the quantifier ranging over this new node same as the quantifier ranging overxpath2. Note
that if xpath1 is a FOR binding, then we need to be careful to produce the correct set of results. For example,
supposexpath1 is a FOR binding and produces $i as$doc//customer andxpath2 is a LET binding given by
$i/accountId. If the document has multiple customers, the final output should be a set of account id’s for each
customer. When we merge the two XPath expressions into$doc//customer/accountId and mark the final
output as a LET binding, we also mark the intermediatecustomer step as a FOR step, so that our navigation
run-time produces the correct output.

The second transformation takes as input the resulting QGM after all the rewrites have been applied. It first
computes a dependency graph among the XPath expressions in aquery block, i.e. a SELECT operation node.
Next, the algorithm partitions the set of XPath expressionswithin the same query block that are over the same
document into clusters, by taking into account the interactions with other operations in the query so as not to
sacrifice an optimal execution plan. Finally, it merges the XPath expression within the same cluster, as long as
the resulting dependency graph is acyclic. This transformation produces expressions which compute multiple
bindings. The details of this rewrite can be found in [1].

3.3 Resetting EmptyOnEmpty Flag

A let-clause binds its variable to the result of the associated expression, even when the result of the expression
is an empty sequence. As all values of the LET bindings need tobe returned, we cannot use an XML index to
compute the expression in a LET binding, unless we can prove certain properties. We introduce a new quantifier
flag, calledEmptyOnEmpty, which signals that the quantifier needs to produce an empty sequence, even if the
operation node it ranges over produces no results. When we first parse an XQuery expression, we create a LET
quantifier over all XQuery expressions, and over LET bindings, because all XQuery expressions have implied
LET semantics [18]. Later, we provide a rewrite transformation which tries to reset this flag, enabling both index
usage and several other rewrites, most notably the one that merges SELECT boxes.

In general, we can reset theEmptyOnEmptyflag when there is awhereclause predicate which eliminates the
empty sequence, and there are no other consumers of that LET binding. Moreover, there are two other XQuery
operations which discard the empty sequences, iterators, such as FOR clauses, and sequence concatenation. If

5

we prove that the empty sequence is to be discarded later on due to one of these operations, we can reset the
EmptyOnEmptyflag.

3.4 Local Predicate Pushdown into XPath Expressions

Similar to pushing down selections in a relational query, weprovide a rewrite which tries to push downlocal
predicates into base column accessing XPath expressions tofilter out unqualified data as early as possible. We
consider a predicate to belocal, if it accesses only one document. Moreover, an XPath such as$doc/cid can
also be considered as a local predicate by converting it into$doc[cid], and can be pushed down to its context
XPath. We call thisXPath pushdown.

3.4.1 XPath Pushdown

XPath itself can be considered as a local predicate, as navigation steps are also existential tests. A set of rewrite
rules together implement XPath push down. This set mainly includes (1) rules to push down XPath through
operations such as SELECT and UNION, base tables, and XML element construction, and (2)XPIMPLY rule,
which converts XPath into a local predicate.

An XPath can be pushed down if the following conditions hold:1-) The XPath expression consists of only
navigational steps, and does not have any steps containing functions, such as$doc/a/fn : concat(b, c)/d. Note
that functions in predicates do not block this rewrite. 2-) There are no common subexpressions along the path
where the XPath expression will be pushed down. 3-) The XPathexpression isinput independent. 4-) The target
operation node does not have any sorting requirements.

During push down, each rule pushes down the XPath expressionthrough one operation node at a time. The
rule engine remembers the current pushable position and makes a new copy of the pushable XPath expression.
It then recursively calls the next rewrite to further push down the XPath expression. This way we try to reach to
the base table level, where we can enable index matching. Once the rule engine locates the operation node where
the XPath expression cannot be pushed down any further,XPIMPLYrule fires and converts an XPath expression
of the form$d/steps into $d[steps], provided that there is no other consumer for this XPath expression.

3.4.2 Local Predicate Pushdown

This rewrites pushes down awhere clause predicate into an XPath expression. Consider the following query:
Query I:for $c in db2 − fn : xmlcolumn(”T2.DOC”)/c, $a in $c/a where $c/d = 5 return $c.

The predicate$c/d = 5 in this query can be pushed down into the first XPath expression, and rewritten as:
Query II: for $c in db2 − fn : xmlcolumn(”T2.DOC”)/c[d = 5], $a in $c/a return $c.

In general, awhere clause predicate can be pushed down into the context XPath expression if: 1-) It is a
local predicate, containing general and value comparisons, connected with conjunction and/or disjunction, 2-) It
is not a predicate on an aggregation result, and 3-) The target XPath expression is a FOR binding. This rewrite
does not work only in a single query block. Instead, when we locate such a candidate predicate, we disconnect it
from its current SELECT operation node, and try to push it down as many query blocks as possible. This rewrite
helps consolidate XPath expressions, and may enable merging of further XPath expressions. For example, for
Query II, XPath merging rule will fire at some point, and merge the two XPath expressions, consolidating the
whole query into a single XPath expression.

3.5 Join Pull up (Simple Decorrelation)

ConsiderQuery Ibelow, which contains an XPath expression with a correlatedvariable, expressing a join. There
are several problems with this query: 1-) The join order is fixed due to the correlation, 2-) Only nested-loop join

6

method can be used, and 3-) Only an index on T1 can be used, and any index on T2 cannot be exploited, because
the XPath expression on T2 needs to be executed first.

Query I:
for $i in db2-fn:xmlcolumn(”T2.DOC”)/c,
$j in db2-fn:xmlcolumn(”T1.DOC”)/a[b=$i/d]
return $j

Query II:
for $i in db2-fn:xmlcolumn(”T2.DOC”)/c,
$j in db2-fn:xmlcolumn(”T1.DOC”)/a
where $j/b=$i/d
return $j

To address these problems, we provide a rewrite, calledjoin pull up, which pulls up join conditions embed-
ded in XPath expressions into thewhereclause, decorrelating the query. For example,Query Iwill be converted
into Query II. This enables the optimizer to consider using both join orders, all join methods, as well as both
indexes on T1 and T2. In general, a join predicate can be pulled up when all of the following conditions hold: 1-)
The quantifier ranging over the ExpBox containing the join predicate, is either a FOR quantifier, or a LET quan-
tifier, which does not have theEmptyOnEmptyflag set and which is not consumed anywhere else. 2-) The join
predicate is either a general or a value comparison. 3-) It isthe last predicate of a predicate sequence. 4-) It is a
predicate, which maybe connected by a conjunction. Given a predicate of formxp[prd1AND(prd2ORprd3)),
only prd1 is considered for pull up.

3.6 Query Decorrelation Rewrites

A correlation is a reference to a variable that has been defined in a previous or enclosing query block. Correlated
subqueries are quite common in XQuery. For example, most grouping queries in XQuery are expressed using
correlation. Although this a natural way of writing queries, it provides several performance bottlenecks: It
severely limits the optimizer choices, because the correlation imposes a partial join order, and only a nested-
loop join method can be used. Moreover, in a parallel environment correlation creates a synchronization point,
and becomes a bottleneck in the data flow.

As we discussed earlier,DB2 pureXML query compiler already employs a variety of simplifying rewrite
transformations, which may decorrelate some of the simple cases, such as join-pull up rewrite. However, only
the magic decorrelation rewrite [13] addresses the most general problem. The magic decorrelation algorithm is
closely entwined with the magic sets rewrite [8]. For convenience, we highlight the aspects of these rewrites
that need to be revisited for XML processing.

When magic processing a subquery that contains the correlation variable, we generate a magic operation
node as a SELECT DISTINCT operation, joining all the eligible quantifiers. Eligible predicates are pushed to
form a semi join under an adornment node, effectively filtering the data stream. The adornments consists of the
set of conditioned, bound, and free variables which are determined by the pushed predicates. Simply put, the
magic sets rewrite generalizes local predicate pushdown tojoin predicates. Enforcing distinctness in the magic
node is important so that we do not increase the total cardinality. Magic decorrelation rewrite [13] extends the
magic sets to correlations. In this case, the magic node flowsall to-be-decorrelated columns.

The main challenge in decorrelating an XML-typed variable reference is enforcing distinctness in the magic
node. There are different ways in which XML data can be compared. One natural way is to employ thefn :
data() function to retrieve a comparable value. However, this approach can be costly since we potentially
deal with large XML-structures. Another way is to use node id’s (which are comparable) to perform equality
comparisons and GROUP BY operations. However, XML type can contain both nodes and atomic values, which
do not have id’s. If we can prove that the XML type only contains nodes, we can use the id-based approach.
But, in the general case a better solution is to ensure that wedo not have to enforce distinctness. We can achieve
this by adding keys to the magic node and to the list of to-be-decorrelated columns during decorrelation. We can
obtain keys from descendant nodes as follows: For base tables, we pull up any key defined on the table. If no
such key exists, we can use the record identifiers of the base tables. For a node which enforces distinctness, we
can pull up all of its output columns. For any join node, we canpull up keys from every join operand. If we can

7

determine and add such keys, then we do not have to enforce distinctness on the magic node, and we do not add
any GROUP BY columns or equality predicates using any XML-typed columns. Naturally, we cannot always
determine such keys. However, we observed that this approach is better-suited and more flexible for a majority
of queries.

4 Conclusion

In this paper, we described XQuery compilation and algebraic rewrite optimization within the context ofDB2
pureXML, a hybrid relational and XML database engine. We focused on rewrites whose main goal was to
consolidate the XPath expressions in the query into the least number of possible navigation operations and
enable index usage. We provide other rewrites, which are needed to simplify the QGM graphs generated for
XQuery and SQL/XML, in addition to the rewrites we describedhere. We omit those due to space limitations.

References

[1] A. Balmin and F.Özcan and A. Singh and E. Ting. Grouping and optimization of XPath expressions in DB2
pureXML. In Proc. of SIGMOD, 2008.

[2] S. Al-Khalifa et al. Structural Joins: A Primitive for Efficient XML Query Pattern Matching. InProc. of ICDE, 2002.

[3] A. Balmin, F. Özcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framework for using materialized XPath views in
XML query processing. InProc. of VLDB, Toronto, Canada, 2004.

[4] K. Beyer et al. System RX: One part relational, one part XML. In Proc. of ACM SIGMOD, pages 347–358, 2005.
[5] C. Re and J. Simeon and M.F. Fernandez. A Complete and Efficient Algebraic Compiler for XQuery. InProc. of

ICDE, 2006.
[6] D. Florescu et al. The BEA Streaming XQuery Processor.VLDB Journal, 13(3):294–315, 2004.
[7] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. InProc. of VLDB, Toronto, Canada, 2004.
[8] I. S. Mumick and H. Pirahesh. Implementation of Magic-sets in a Relational Database System. InProc. of SIGMOD,

pages 103–114, 1994.
[9] International Organization for Standardization (ISO). Information Technology-Database Language SQL-Part 14:

XML-Related Specifications (SQL/XML), ANSI/ISO/IEC 9075-14:2006.
[10] H. V. Jagadish et al. TIMBER: A Native XML Database.VLDB JOurnal, 11(1):274–291, 2002.
[11] Z.H. Liu, M. Krishnaprasad, and V. Arora. Native XQueryProcessing in Oracle XMLDB. InProc. of SIGMOD,

pages 828–833, 2005.
[12] M. J. Carey. Data Delivery in a Service-oriented World:The BEA AquaLogic Data Services Platform. InProc. of

SIGMOD, pages 695–705, 2006.
[13] P. Seshadri, H. Pirahesh and T. Y. C. Leung. Complex Query Decorrelation. InProc. of ICDE, 1996.
[14] S. Pal et al. XQuery Implementation in a Relational Database System. InProc. of VLDB, 2005.
[15] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/Rule Based Query Rewrite Optimization in Starburst. In

Proc. of SIGMOD, pages 39–48, 1992.
[16] J. Shanmugasundaram et al. Querying XML Views of Relational Data. InProc.of VLDB, pages 261–270, Roma,

Italy, September 2001.
[17] T.Fiebig et al. Anatomy of a Native XML Base Management System.VLDB JOurnal, 11(4), 2002.
[18] XQuery 1.0: An XML Query Language, January 2007. W3C Recommendation, Seehttp://www.w3.org/TR/

xquery.
[19] XQuery 1.0 and XPath 2.0 Data Model, January 2007. W3C Recommendation, Seehttp://www.w3.org/TR/

xpath-datamodel.
[20] XQuery 1.0 Formal Semantics, January 2007. W3C Recommendation, Seehttp://www.w3.org/TR/

query-semantics.

8

