
Bulletin of the Technical Committee on

Data
Engineering
September 2003 Vol. 26 No. 3 IEEE Computer Society

Letters
Nominations for Chair of TCDE .Paul Larson, Masaru Kitsuregawa, and Betty Salzberg1
Letter from the Editor-in-ChiefDavid Lomet 1
Letter from the Special Issue Editor .Reńee J. Miller 2

Special Issue on Structure Discovery

Learning and Discovering Structure in Web PagesWilliam W. Cohen 3
Learning Structure From Statistical ModelsLise Getoor 10
DTD Inference from XML Documents: The XTRACT Approach .

. .Minos Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, K. Shim18
Discovering Structure in a Corpus of SchemasAlon Y. Halevy, Jayant Madhavan, Philip A. Bernstein25
Database Exploration and BellmanTheodore Johnson, Amit Marathe, Tamraparni Dasu33
Schema DiscoveryReńee J. Miller, Periklis Andritsos 39

Conference and Journal Notices
ICDE Conference .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Umeshwar Dayal
Hewlett-Packard Laboratories
1501 Page Mill Road, MS 1142
Palo Alto, CA 94304

Johannes Gehrke
Department of Computer Science
Cornell University
Ithaca, NY 14853

Christian S. Jensen
Department of Computer Science
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Øst, Denmark

Renée J. Miller
Dept. of Computer Science
University of Toronto
6 King’s College Rd.
Toronto, ON, Canada M5S 3H5

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems.

The Data Engineering Bulletin web page is
http://www.research.microsoft.com/research/db/debull.

TC Executive Committee

Chair
Erich J. Neuhold
Director, Fraunhofer-IPSI
Dolivostrasse 15
64293 Darmstadt, Germany
neuhold@ipsi.fhg.de

Vice-Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Marianne Winslett
Department of Computer Science
University of Illinois
1304 West Springfield Avenue
Urbana, IL 61801

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

Nominations for Chair of TCDE

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a
two-year period. The mandate of the current Chair, Erich Neuhold, expires at the end of this year and the process
of electing a Chair for the period 2004-2005 has begun. A Nominating Committee consisting of Paul Larson,
Masaru Kitsuregawa and Betty Salzberg has been struck. The Nominating Committee invites nominations for
the position of Chair from all members of the TCDE. To submit a nomination, please contact any member of the
Nominating Committee before October 25, 2003.

More information about TCDE can be found at http://ipsi.fhg.de/tcde. Information about TC elections can
be found at http://www.computer.org/tab/hnbk/electionprocedures.htm.

Paul Larson, Masaru Kitsuregawa, and Betty Salzberg
TCDE Nominating Committee

Letter from the Editor-in-Chief

The Current Issue

We database folk love our structured data. The field started as an effort to solve the business data processing
problem. It is hard to imagine something more (rigidly) structured than an 80 column card having fixed length
fields. Precursor database systems, called formatted file systems, were little more than cards on tape. Early
database systems were liberated from the 80 column constraint by the increased flexibility of tape and disk,
where records could actually be arbitrary sizes. Further liberation occurred when the database systems started
to deal with variable length fields.

Despite the preceding advances, and the subsequent introduction of data independence, where one did not
have to know the physical representation of data in order to query and update it, we continued to rely on com-
plete knowledge of how data was laid out, what the attribute names and types were, indeed complete syntactic
knowledge of the data. But times change. Our prior world of structured data depended upon our controlling the
definition of the data and hence its structure. Today’s web-ish, XML-ish world is clearly not under our control.
So if the database field is to contribute to this new world, we need to meet it at least half way. One way to do
this, so as to leverage our strengths in structured data, is to discover or impose structure on this new world’s
data.

The current issue presents a number of ways of attacking the problem of structure discovery. Given the great
diversity of data, there is probably no one golden road to success in this endeavor. The current issue explores
a number of interesting and widely varying approaches. Renee Miller, who herself structures her share of data,
has brought together an interesting cross-section of methods for finding the structure that is in data. I want to
thank Renee for the fine job she has done in producing an issue on structure discovery that should stimulate
lively discussions in many parts of our field.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editor

In preparing this special issue on structure discovery, I was motivated by the observation thatunstructured data
is often not unstructured at all. It may possess a rich (though perhaps irregular) structure. Often, it is the absence
of known structure rather than the absence of structure that leads to a data-set being characterized as “unstruc-
tured” or “semi-structured”. Web data and data represented in XML (a semi-structured data model) is often
(though certainly not always) highly structured. Similarly, I have found in my own work on integrating and
transforming structured data sources, that effective integration exploits not only the given (“imposed”) structure
of a schema, but also implicit structure within the data. These observations were reinforced by an entertain-
ing keynote by Joe Hellerstein at the recent 2003 SIGMOD WebDB Workshop that elaborated on techniques
that exploit “engineered” structure in data (as done in traditional database management where a data design or
schema is imposed and enforced) and those that exploit found structure (as done in information retrieval where
unstructured documents are managed without a constricting schema). However, data rarely resides neatly in
one of these two camps. Unstructured data may possess structure that could be exploited in its management.
Similarly, the imposed schema of a structured data-set may not always do it justice as it may be incomplete or
even inaccurate.

The articles in this special issue explore the question of how to find new and unknown structure in data.
Notice that I have purposely not defined precisely what I mean by structure. Each article takes a different
view of this, focusing on structure that can be exploited in different classes of data management applications.
The articles also present techniques drawn from a variety of disciplines. It is my hope that collecting these short
position statements together in one volume will illustrate the problems, permit comparisons, highlight synergies,
and inspire more work in what I believe to be a very promising research direction.

Renée J. Miller
Department of Computer Science

University of Toronto

2

Learning and Discovering Structure in Web Pages

William W. Cohen
Center for Automated Learning & Discovery

Carnegie Mellon University
Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Abstract

Because much of the information on the web is presented in some sort of regular, repeated format,
“understanding” web pages often requires recognizing and using structure, where structure is typically
defined by hyperlinks between pages and HTML formatting commands within a page. Wesurvey some
of the ways in which structure within a web page can be used to help machines understand pages.
Specifically, we review past research on techniques that automatically learn and discover web-page
structure. These techniques are important for wrapper-learning, an important and active research area,
and can be beneficial for tasks as diverse as classification of entities mentioned on the web, collaborative
filtering for music, web page classification, and entity extraction from web pages.

1 Introduction

In spite of recent progress on the semantic web and interchange formats like XML, most of the information
available today on the world wide web is targeted at people, not machines. Because of this, the problem of auto-
matically aggregating information from the web [3, 4, 11, 18, 21, 23, 24] is technically difficult: simply put, in
order to make web information machine-readable, it is usually necessary to design a program that “understands”
web pages the same way a human would—at least within some narrow domain.

The task of “understanding” web pages is broadly similar to classical problems in natural language under-
standing. One important difference is that most of the information on the web is not presented in smoothly
flowing grammatical prose; instead, web information is typically presented in some sort of tabular, structured
format. Hence understanding web pages often requires recognizing and using “structure”—a structure typically
being defined by hyperlinks between pages, and HTML formatting commands (e.g., tables and lists) within a
page. In this paper, we will survey some of the ways in which structure can be used to help machines understand
web pages. We will focus on techniques that exploit HTML formatting structure within a page, rather than link
structure between pages.

Broadly speaking, there are two ways in which such structure can be used. It may be useddirectly to
accomplish some task; typically, to determine how to extract data from a page. As an example, consider the
imaginary web page shown in Figure 1. (The markers near the words “Customers”, “Mr. Peabody”, etc will
be explained below.) To populate the relationtitleOf(personName, jobTitle)from this page, one might extract

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

“Our products make a temporal difference!”

TD-Lambada, Inc: Our Management Team

Home Bullwinkle Moose+, Mr. Peabody
Products President and CEO A former founder and CEO

Customers+ of Wayback Inc, Peabody
Careers Boris Badinov, is one of the best-known

Our Team VP, International Sales researchers in the area of
Contact Us temporal alteration and

�� Mr. Peabody,+ improbability extremata.
Chief Scientist Most non-pharmaceutical work

in this area stems from his
Dudley Do-Right+, 1959 Master’s thesis at MIT
Chief Operations Officer under Prof. J. Ward.

[Home| Products| Customers| Careers| Our Team| Contact Us]

Figure 1: An imaginary web page containing non-trivial regular structure

names and titles from alternate non-blank positions in the second column; thus extraction would be based on the
formatting used on the page.

Structure might also be used as one input among many that collectively guide a more complex process. For
instance, consider using a statistical machine learning algorithm to identify job-title phrases on web pages. Such
an algorithm might exploit content features (like “x contains the word ‘CFO’ ”), formatting features (like “x
is rendered in boldface”) or structural features (like “x appears in the same table column as a known job-title
word”). We will call this sort of use of structureindirect, since structure is only one of several factors that affects
the learning algorithm.

In this paper, we will focus on techniques that involve learning structure from examples, or automatically
discovering possible structure using heuristics. We will also discuss how learned or discovered structure can be
used—both directly and indirectly.

2 Learning structure for direct use

A program that derives a database relation from a specific website is called awrapper, andwrapper learningis
the problem of learning website wrappers from examples. For instance, a wrapper for the website of Figure 1
might produce the relationtitleOf(personName, jobTitle)described above.

As an alternative to explicit programming, such a wrapper might be learned from a handful of user-provided
examples. As a very simple example, the four job titles on this page might be learned from the two examples
“President and CEO” and “VP, International Sales”. (Notice that these strings arepositiveexamples,i.e., in-
stances of strings thatshouldbe extracted; most learning systems also requirenegativeexamples,i.e., strings
that should notbe extracted. A common convention in wrapper-learning is for a user to provideall positive
examples in some prefix of the document being labeled. A set of negative examples then can be derived by using
a sort of closed world assumption.)

Wrapper learning has been an active area from the mid-nineties [20] through the present (e.g., [2, 15, 25]).

4

Typically a wrapper is defined in terms of the format used on a particular web site: in Figure 1, for instance, a
wrapper might extract as job titles “all boldfaced strings in the second column”. Hence wrapper-learning is a
prototypical example of learning a structure for direct use. By way of an introduction to this active area of work,
we will discuss below a few successful wrapper-learning systems.

Kushmeric’s seminal WIEN system [19, 20] was based on a handful of carefully crafted wrapper languages
with very restricted expressive power. For example, one such language was HLRT. An HLRT wrapper for a
one-field relation is defined by four strings: a stringh that ends the “header” section of a web page, two strings
� andr that precede and follow each data field, and a stringt that begins a “tail” section of a web page. (The
“head” and “tail” sections of a page contain no data fields.) For instance, a plausible HLRT wrapper for job-
title strings in an HTML version of the page of Figure 1 might beh =“Contact Us〈/A〉”, � =“〈B〉”, r=“〈/B〉”,
and t=“〈/B〉〈/LI〉〈/UL〉”. By limiting a wrapper-learner to explore this restricted set of possible structures,
Kushmeric was able to use a learning algorithm that was elegant and well-grounded formally (for instance, it
was guaranteed to converge after a polynomial number of examples). The disadvantage of this approach was
that some wrappers could not be learned at all by WIEN.

Later wrapper-learning systems such as STALKER [26] and BWI [14] used more expressive languages for
wrappers: for instance, the start of a field might be identified by the disjunction of a set of relatively complex
patterns, rather than a single fixed string�. Surprisingly, these broader-coverage systems didnot require more
examples to learn simple structures, such as those considered by WIEN; instead the learning algorithms used
were designed to propose simpler structures first, and fall back on more complex structures only if necessary.
The disadvantage of these systems (relative to WIEN) is greater complexity, and weaker performance guarantees.

In our own previous work, we developed a wrapper-learning system called WL2 [16, 9]. Like WIEN,
WL2 exploits the fact that many wrappers are based on a few simple structures, and that it is often possible
to design restricted languages that capture these common cases. Like STALKER and other systems, WL2 can
find complex wrappers when simple ones are inadequate. Unlike previous wrapper-learners, WL2 is modular,
and designed to be easily extended to accomodate new classes of structures (perhaps structures common in a
particular domain). The learning system in WL2 is based on an ordered set ofbuilders. Each builderB is
associated with a certain restricted languageLB. However, the builder forLB is not a learning algorithm for
LB. Instead, to facilitate implementation of new “builders”, a separate master learning algorithm handles most
of the real work of learning, and the builderB need support only a small number of operations onLB—the
principle one being to propose a single “least general” structure given a set of positive examples. Builders can
also be constructed by composing other builders in certain ways. For instance, two builders for languagesLB1

andLB2 can be combined to obtain builders for the language(LB1 ◦ LB2), or the language(LB1 ∧ LB2).
WL2 included builders that detected structures of various kinds. Some structures were defined in terms of

string-matches, like HLRT; some were defined in terms of the HTML parse tree for a page; and some were
defined in terms of the geometrical properties of the rendered page. The master learning algorithm can find
extraction rules based on any of these sorts of structures; or, it can combine structures produced by different
builders to form new, more complex extraction rules (e.g., “extract all table cells vertically below a cell con-
taining the words “Job Title” that will be rendered in bold with a font size of 2”). Experiments conducted with
a large number of practical extraction problems showed that WL2 could learn to extract many data fields with
three positive examples or less.

3 Discovering structure for direct use

In wrapper learning, a user gives explicit information about each structure. Even if wrapper-learning is very
efficient, a system that requires information from many web sites will still be expensive to train. A natural
question to ask is: can structure be recognized (and used) without training data?

In some situations, the answer is “yes”. For instance, Kushmericet al [20] described ways in which au-

5

tomatic but imperfect entity recognizers could be used to drive wrapper learning; Embleyet al [12] described
accurate and page-independent heuristics for recognizing strings that separate one data record from another in
web pages; and other researchers [13, 22] have described techniques for finding logically meaningful facts from
HTML lists and tables without training data. Below we will summarize some of our own work on automatically
discovering useful structure.

One difficulty with evaluating such a discovery system is that, in general, it is unclear what structures are
“useful”. One definition of “useful” is “structure that could be used to guide web-site wrapping”. In previous
work [5], we evaluated the performance of a structure-discovery algorithm by using it to propose structures for
82 previously-wrapped web pages, and measuring the fraction of the time that the discovered structure coincided
with the wrapper for that page.

The algorithm proposes two types of structures, calledsimple listsandsimple hotlists, which have the prop-
erty that only a polynomial number of possible structures can appear on any given web page; this means that
finding the best structure can be reduced to generating all simple lists or hotlists, and then ranking them. One
simple ranking scheme is to score a structure by the number of elements extracted by the the structure; on this
dataset, this heuristic ranked the correct structure highest about 20% of the time. If more information is avail-
able, then more powerful heuristics can be used. For instance, if a large list of “seed” items of the correct type
are available, then ranking lists according to the an aggregate measure of the distance from extracted items to
“seeds” (using an appropriate similarity metric) ranks the correct structure highest about 80% of the time.

This algorithm could thus be used as the basis for a wrapper “learning” algorithm that uses no explicit user
examples. Instead wrappers would be constructed as follows:

• The system generates, ranks, and presents to the user an ordered list of possible structures. For instance,
given a set of person-name seeds and the web page of Figure 1 as input, the system might produce these
candidate lists:

1. “Bullwinkle Moose”, “Boris Badinov”, “Mr. Peabody”, . . .

2. “Bullwinkle Moose, President and CEO”, “Boris Badinov VP, International Sales”, . . .

3. “Home”, “Products”, “Customers”, “Careers”, . . .

4. “President and CEO”, “VP, International Sales”, “Chief Scientist”, . . .

The ranking shown is reasonable, as structures containing words like “Mr.” and “Boris” (which are likely
to appear in some seed) should be ranked higher than structures containing only phrases like “Home” and
“Chief Scientist”.

• The user picks a candidate structure from the ranked list (say, the first one) that contains the items to be
extracted.

• The user specifies semantically how these items will be stored in the database being populated; e.g., by
specifying that they are the set of “people employed by TD-Lambada, Inc”.

4 Discovering simple structure for indirect use

We emphasize that the 80% figure reported in the section above is relative to the set of 82 wrappers used in these
experiments, all of which could actually be represented as simple lists or hotlists. Of course, many wrappers are
more complex. For appropriately simple wrappers, less user intervention is required using the method described
above than with than learning techniques like WL2; however, the user is still needed to (a) verify the correctness
of a proposed structure and (b) ascribe the appropriate semantics to the structure.

One way to exploit structure without involving the user at all is to use discovered structure indirectly. As an
example, consider the task of classifying musical artists by genre given only their names: thus “John Williams”

6

would be classified as “classical” and “Lucinda Williams” as “country”. This is difficult to do accurately without
some background knowledge about the artists involved. Such background knowledge might be obtained by
manually training (and then executing) wrappers for some appropriate set of web sites—can one obtain similarly
useful background knowledge usingautomaticallydiscovered structure?

In another set of experiments [6], we used structure discovery algorithms to find features useful for learning.
One task we explored was learning to classify musical artists by genre. We took a large list of musical artists and
labeled a subset to use as training data. We then used the complete list of artists as seeds for (a variant of) the
structure-discovery algorithm described above. Applied to a large set of web pages, this produces many possible
structures. Without user filtering, many of these structures are meaningless, and other structures correspond to
sets that are completely uncorrelated with genre (like “artists with names starting with ‘A’ that have CDs on sale
at Bar.com”). However, may of the discovered structuresare correlated with genre, and hence can be exploited
by a statistical learner.

Specifically, we associated each discovered structureD with a matching subsetSD of the complete artist list.
We then introduced, for every structureD, a new binary featurefD which was true for every examplex ∈ SD

and false for every other example. Finally we applied traditional feature-based statistical learning algorithms to
the augmented examples. In our experiments, the new structure-based features improved performance on several
benchmark problems in a wide variety of situations, and performance improvements were sometimes dramatic:
on one problem, the error rate was decreased by a factor of ten. Similar features can be used for other tasks—for
instance, we also experimented with an analogous system that uses features based on discovered structure to
guide a collaborative recommendation system [8].

5 Discovering complex structure for indirect use

Using structure indirectly (rather than directly) avoids many of the problems associated with discovering (rather
than learning) structure. Meaningless structures can be filtered out by the statistical learning system—which
is, after all, designed to handle irrelevant and noisy features. Importantly, structures can be used even if their
precise semantics are unknown—meaningful structures can be exploited whenever they are correlated with the
class to be predicted. In the settings described above, discovery algorithms that consider only a few types of
structures are also less problematic; in principle, one need only run the discovery algorithm on more web pages
to compensate for limited coverage.

For other applications, however, algorithms that can only discover simple structures from a limited class are
much less useful. Consider the task of learning to identify executive biography pages (like the one shown in
Figure 1) on company sites. One approach would be to train a classifier that uses as features the words in the
page. Such a classifier might be trained by labeling pages from a number of representative company web sites,
and then used to identify executive biography pages on new sites, such as the one of Figure 1.

This approach, however, ignores possibly useful structural information. For instance, on the web site for
Figure 1, it might be that the executive biography pages areexactly those pages linked to by the anchors in
the second column: in other words, the site might contain a structure that accurately identifies the target pages.
Unfortunately, this structure cannot be used as a feature of the classifier, since it does not appear in the training
data at all (recall the training data is taken from other web sites); it can only be used if it is somehow discovered
“on the fly” when the pages on this site are encountered by the classifier.

Notice that in this setting, a algorithm that discovers only simple structures is of limited use: since only a
few structures on a site will be informative, it is essential to be able to find all of them. This suggests adapting
wrapper-learning machinery for finding complex structures to this task. In previous work [7], we proposed the
following method for processing a web site.

First, all pages on a site are classified using a word-based classifier, and all anchors that point to an “executive
biography” page are marked as positive. These markings are shown in Figure 1 with “’+” signs, and some errors

7

are likely to be made. In the figure, the link to “Customers” is mistakenly marked positive, and the link to “Boris
Badinov” is mistakenly unmarked.

Next, all sets of at mostk nearby positive anchors are generated, fork = 1, 2, 3, and each such set is passed
as input to each of the builders of WL2. This produces a large number of structuresD: some simple structures,
produced from a single positive examples, and some more complex ones, produced from two or three nearby
examples. Each discovered structureD is then used to generate new a featurefD, which is true for all pages
pointed to by some anchor in structureD. Finally, a new classifier is learned for this site, using the predictions
provided by the original word-based classifier as labels, and using the new structure-based features to represent
a page. The overall effect of this process is to smooth the predictions made by the word-based classifier toward
sets of pages that are easily described by structures on the site. In our experiments, this smoothing process
decreased the error rate of the original word-based page classifier by a factor of about half, on average.

In previous work, a number of other researchers have used hyperlink structure (hubs) to improve page
classifiers [10, 17, 27] in a similar manner. Bleiet al [1] also used the same structure-discovery algorithms
in conjunction with a more complex probabilistic scheme for combining structural features with word-based
predictions, and achieved a significant reduction in error rate on entity extraction tasks.

6 Conclusion

‘
Techniques that automatically learn and discover web-page structure are important for efforts to “under-

stand” web pages. Techniques for learning web page structure are crucial for wrapper-learning, an important
and active research area. They can also be beneficial for tasks as diverse: as classification of entities mentioned
on the web; collaborative filtering for music; web page classification, and entity extraction from web pages.

References

[1] David M. Blei, J. Andrew Bagnell, and Andrew K. McCallum. Learning with scope, with application to information
extraction and classification. InProceedings of UAI-2002, Edmonton, Alberta, 2002.

[2] Boris Chidlovskii. Information extraction from tree documents by learning subtree delimiters. InProceedings of
the 2003 Workshop on Information Integration on the Web (IIWeb-03), Acapulco, Mexico, August 2003. On line at
http://www.isi.edu/info-agents/workshops/ijcai03/proceedings.htm.

[3] William Cohen, Andrew McCallum, and Dallan Quass. Learning to understand the web.IEEE Data Engineering
Bulletin, 23:17–24, September 2000.

[4] William W. Cohen. Reasoning about textual similarity in information access.Autonomous Agents and Multi-Agent
Systems, pages 65–86, 1999.

[5] William W. Cohen. Recognizing structure in web pages using similarity queries. InProceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-99), Orlando, FL, 1999.

[6] William W. Cohen. Automatically extracting features for concept learning from the web. InMachine Learning:
Proceedings of the Seventeeth International Conference, Palo Alto, California, 2000. Morgan Kaufmann.

[7] William W. Cohen. Improving a page classifier with anchor extraction and link analysis. InAdvances in Neural
Processing Systems 15, Vancouver, British Columbia, 2002.

[8] William W. Cohen and Wei Fan. Web-collaborative filtering: Recommending music by crawling the web. InPro-
ceedings of The Ninth International World Wide Web Conference (WWW-2000), Amsterdam, 2000.

[9] William W. Cohen, Lee S. Jensen, and Matthew Hurst. A flexible learning system for wrapping tables and lists
in HTML documents. InProceedings of The Eleventh International World Wide Web Conference (WWW-2002),
Honolulu, Hawaii, 2002.

8

[10] David Cohn and Thomas Hofmann. The missing link - a probabilistic model of document content and hypertext
connectivity. InAdvances in Neural Information Processing Systems 13. MIT Press, 2001.

[11] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learning to extract
symbolic knowledge from the world wide web. InProceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), Madison, WI, 1998.

[12] D.W. Embley, Y.S. Jiang, and W.-K. Ng. Record-boundary discovery in web documents. InSIGMOD’99 Proceed-
ings, 1999.

[13] D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically specified data from html tables with
unknown structure. InProceedings of the 21st International Conference on Conceptual Modeling, Tampere, Finland,
October 2002.

[14] D. Freitag and N. Kushmeric. Boosted wrapper induction. InProceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), Austin, TX, 2000.

[15] Chun-Nan Hsu, Chia-Hui Chang, Harianto Siek, Jiann-Jyh Lu, and Jen-Jie Chiou. Reconfigurable web
wrapper agents for web information integration. InProceedings of the 2003 Workshop on Information In-
tegration on the Web (IIWeb-03), Acapulco, Mexico, August 2003. On line at http://www.isi.edu/info-
agents/workshops/ijcai03/proceedings.htm.

[16] Lee S. Jensen and William W. Cohen. Grouping extracted fields. InProceedings of the IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, Seattle, WA, 2001.

[17] T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hypertext categorisation. InProceedings of
the International Conference on Machine Learning (ICML-2001), 2001.

[18] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Pragnesh Jay Modi, Ion Muslea, Andrew G.
Philpot, and Sheila Tejada. Modeling web sources for information integration. InProceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), Madison, WI, 1998.

[19] N. Kushmeric. Wrapper induction: efficiency and expressiveness.Artificial Intelligence, 118:15–68, 2000.

[20] Nicholas Kushmeric, Daniel S. Weld, and Robert Doorenbos. Wrapper induction for information extraction. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence, Osaka, Japan, 1997.

[21] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and autonomous citation indexing.IEEE Com-
puter, 32(6):67–71, 1999.

[22] Kristina Lerman, Craig A. Knoblock, and Steven Minton. Automatic data extraction from lists and tables in web
sources. InProceedings of the Automatic Text Extraction and Mining Workshop (ATEM-01), Seattle, WA, August
2001. Held in conjunction with IJCAI-01.

[23] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query answering algorithms for information agents. In
Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, Oregon, august 1996.

[24] A. K. McCallum, K. Nigam, J. Rennie, , and K. Seymore. Automating the construction of internet portals with
machine learning.Information Retrieval Journal, 3:127–163, 2000.

[25] Steven N. Minton, Sorinel I. Ticrea, and Jennifer Beach. Trainability: Developing a responsive learning system. In
Proceedings of the 2003 Workshop on Information Integration on the Web (IIWeb-03), Acapulco, Mexico, August
2003. On line at http://www.isi.edu/info-agents/workshops/ijcai03/proceedings.htm.

[26] Ion Muslea, Steven Minton, and Craig Knoblock. Wrapper induction for semistructured information sources.Journal
of Autonomous Agents and Multi-Agent Systems, 16(12), 1999.

[27] S. Slattery and T. Mitchell. Discovering test set regularities in relational domains. InProceedings of the 17th
International Conference on Machine Learning (ICML-2000), June 2000.

9

Structure Discovery using Statistical Relational Learning

Lise Getoor
Computer Science Department & UMIACS

University of Maryland
College Park, MD 20912

getoor@cs.umd.edu

Abstract

Statistical relational learning is a newly emerging area of machine learning that combines statistical
modeling with relational representations. Here we argue that it provides a unified framework for the
discovery of structural information that can be exploited by a data management system. The categories
of structure that can be discovered include: instance-level dependencies and correlations, for example
intra-table column dependencies and inter-table join dependencies; record linkages and duplicates; and
schema matching and schema discovery from unstructured and semi-structured data.

1 Introduction

Combining statistical approaches to machine learning with relational learning methods is receiving increasing
attention. There have been several recent workshops held, including two on “Learning Statistical Models from
Relational Data” [25, 26], two on “Multi-relational Data Mining” [18, 19] and a summer school on relational
data mining [20].

Statistical relational learning allows the combination of meta-information given by the domain schema and
other background knowledge with principled approaches to model construction and inference based on statistical
machine learning theory. A number of different models and formalisms have been proposed. One approach is
probabilistic relational models (PRMs) [34]. Other approaches include Bayesian Logic Programs [33], Stochas-
tic Logic Programs [42] and others. Here, we give a brief introduction to PRMs (for more details see [23]).
First, we focus on their application to the discovery of instance-level structure. Next, we propose ways that they
can be used to discover additional meta-level structure such as mappings and transformations. A key advantage
is the ability to have a unified probabilistic framework for reasoning about data and meta-data together.

2 Probabilistic Relational Models

Probabilistic relational models(PRMs) are a recent development [34, 48, 53] that extend the standard attribute-
based Bayesian network representation to incorporate a much richer relational structure. These models allow
the specification of a probability model forclassesof objects rather than for simple attributes; they also allow
properties of an entity to depend probabilistically on properties of otherrelatedentities. The probabilistic class

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

10

WroteWrote

Paper
Topic
Word1

WordN
…

Word2

Paper
Topic
Word1

WordN
…

Word2

Cites

Count
Cites

Count

Citing
Paper

Cited
Paper

Author

Institution
Research Area

Paper

Word1

Topic

WordN

Author

...

Research Area

P(WordN | Topic)

P(Topic |
Paper.Author.Research Area

Institution P(Institution |
Research Area)

Cites

Paper
Topic
Words

Paper
Topic
WordsExists

Citer.Topic Cited.Topic

0.995 0005Theory Theory 0.995 0005Theory Theory

False True

DBTheory 0.999 0001DBTheory 0.999 0001

DBDB 0.993 0008DBDB 0.993 0008

DB Theory 0.997 0003DB Theory 0.997 0003

(a) (b) (c)

Figure 1: (a) The relational schema for a simple bibliographic domain. (b) The probabilistic dependencies for a
simple bibliographic domain. (c) A probabilistic model for the existence of a citation.

model represents a generic dependence, which is then instantiated for specific circumstances, i.e., for particular
sets of entities and relations between them.

As in the case of Bayesian networks, a key advantage of the models is that they provide a compact represen-
tation for a joint distribution over a set of random variables. The key that allows this compression is the discovery
of independencies, and more importantly, conditional independencies, that hold in the joint distribution. Condi-
tional independence is structure that can be discovered in the data; once discovered, it gives guidance in factoring
the distribution. The collection of conditional independencies are constraints (or approximate constraints) that
we can discover and exploit.

One component of a PRM is a relational schema for the domain, describing the tables, the attributes
(columns) in the tables and the possible foreign-key joins between tables. Figure 1(a) shows a simplified re-
lational schema for a bibliographic domain. The relational schema describes the categories of objects in the
domain (here we have Papers, Authors, and Citations), the attributes of the objects (words, topic, count, in-
stitution and research area) and the foreign-key joins between the objects (written-by, citing paper and cited
paper).

In addition to the relational component, the PRM describes the probabilistic relationships between attributes.
Figure 1(b) shows a portion of the probabilistic dependency model. The direct probabilistic dependencies are
indicated by arrows in the figure. Attributes are potentially correlated when there is a path between them. In
addition, the probabilistic component also describes how the attributes interact by providing a local probability
model or conditional probability distribution (CPD) for an attribute given its parents. These are indicated by the
callouts in the figure. The local probability model describes the distribution of the child attribute given different
values of the parents. In the case where the attributes are categorical, the local probability model is commonly a
multinomial, or a tree-structured representation of the conditional distribution [8].

Importantly, PRMs can also model the probability of the existence of links between entities. In [24], we
describe several approaches. One of these is to directly model the probability of the existence of a link. However,
rather than build a model that uses the identity or key of the individual objects, which would be both unwieldy
and would not support generalization, we base our probability model on attributes of the objects. Figure 1(c)
shows a simple model for the existence of a citation between two papers. In this case the probability is based on
the topics of the papers; papers that are on the same topic are more likely to cite each other.

A relational skeletonσ specifies the objects in our distribution. It defines the set of random variables of
interest. A PRM describes the dependency structureS between the attributes, and the parameters of the CPDs in
the model,θS . The semantics of a PRM specifies a probability distribution over the possible joint assignments
I to the random variables ofσ. As with Bayesian networks, the joint distribution over these assignments can be
factored. That is, we take the product, over allx.A, of the probability in the CPD of the specific value assigned

11

by the instance to the attribute given the values assigned to its parents. Formally, this is written as follows:

P (I | σ,S, θS) =
∏

Xi

∏

A∈A(Xi)

∏

x∈σ(Xi)

P (Ix.A | IPa(x.A)) (1)

whereIx.A, andIPa(x.A) are the values of a particular attribute and the values of its parent inI. This expression
is very similar to the chain rule for Bayesian networks. There are two primary differences. First, our random
variables are the attributes of a set of objects. Second, the set of parents of a random variable can vary according
to the relational context of the object — the set of objects to which it is related.

Learning Probabilistic Relational Models In order to learn a PRM from an existing database, we adapt
and extend the machinery that has been developed over the years for learning Bayesian networks from data
[30, 9, 35, 13] to the task of learning PRMs from structured data [21, 23]. In the learning problem, our input
contains a relational schema that specifies the basic vocabulary in the domain — the set of tables, the attributes
of each table and the possible foreign-key joins between tuples in the different tables. Our training data consists
of a fully specified instance of that schema stored in a database.

There are two components of the learning task: parameter estimation and structure learning. In the parameter
estimation task, we assume that the qualitative dependency structure of the PRM is known; i.e., the input consists
of the schema and training database (as above), as well as a qualitative dependency structureS. The learning
task is only to fill in the parameters that define the CPDs of the attributes. In the structure learning task, we must
discover the dependency structureS as well.

Parameter Estimation We are given the structureS that determines the set of parents for each attribute, and
our task is to learn the parametersθS that define the CPDs for this structure. The key ingredient in parameter
estimation is thelikelihood function, the probability of the data given the model. This function measures the
extent to which the parameters provide a good explanation of the data. Intuitively, the higher the probability of
the data given the model, the better the ability of the model to predict the data. The likelihood of a parameter
set is defined to be the probability of the data given the model:L(θS | I, σ,S) = P (I | σ,S, θS). We can
performmaximum likelihoodparameter estimation or we can take aBayesian approachto parameter estimation
by incorporating parameter priors. For an appropriate form of the prior and by making standard assumptions,
we can get a closed form solution for either of these estimates. The key computation required is the calculation
of the sufficient statistics, or counts, for each CPDs in the PRM. The straightforward implementation for this
requires a pass over the database; intelligent use of previously computed statistics can have significant impact
on efficiency when more than one model must be evaluated.

Structure Learning Next we are faced with the more challenging problem of learning a dependency structure
automatically. The main problem here is finding a good dependency structure among the huge number of many
possible ones. As in most learning algorithms, there are three important components that need to be defined:
thehypothesis space which specifies which structures are candidate hypotheses that our learning algorithm can
return; ascoring function that evaluates the “goodness” of different candidate hypotheses relative to the data;
and thesearch algorithm, a procedure that searches the hypothesis space for a structure with a high score. We
use a greedy local search; see [21, 22] for more detail. This search is heuristic; the algorithm is not guaranteed
to find a global optima. The computational complexity of the algorithm depends of the size of the hypothesis
space and the score landscape. In practice, we have found for medium-size data sets (that fit in main memory),
the running time for the learning algorithms are quite reasonable, ranging from a few minutes to a half hour.

Making use of a Learned Probabilistic Relational Model A learned PRM provides a statistical model that
can uncover and discover many interesting probabilistic dependencies that hold in a domain. Unlike a set of

12

(probabilistic) rules for classification, PRMs specify a joint distribution over a relational domain. Thus, like
Bayesian networks, they can be used for answering queries about any aspect of the domain given any set of
observations. Furthermore, rather than trying to predict one particular attribute, the PRM learning algorithm
attempts to tease out the most significant direct dependencies in the data. The resulting model thus provides a
high-level, qualitative picture of the structure of the domain, in addition to the quantitative information provided
by the probability distribution. Thus, PRMs are ideally suited to exploratory analysis of a domain and relational
data mining.

We have applied these techniques with great success in a variety of domains. One of the interesting domains
has been a study of tuberculosis patients, along with their contacts and genetic information about the TB strains
[28]. Another very different application of these methods is to the classic problem of selectivity estimation in
databases. We have shown that these structured relational models can be constructed and used to give very
accurate estimates for a wide class of queries [29].

3 Identity Uncertainty

The above describes how probabilistic models can be used to discover structure in the data; both structure in
the distribution of attribute values, and structure in the existence of links, or joins, between elements. Another
structure that probabilistic relational models can discover is instance-level dependencies, for example when two
records refer to the same individual. In many practical problems, such as information extraction, duplicate
elimination and citation matching, objects may not have unique identifiers. The challenge is to determine when
two similar-looking items in fact refer to the same object. This problem has been studied in statistics under the
umbrella of record linkage [61, 62]; in the database community for the task of duplicate elimination [57]; and in
the artificial intelligence community as identity uncertainty [56, 50, 5].

In the statistical relational learning setting, it is important to take into account not just the similarity of objects
based on their attributes, but also based on their links. In a bibliographic setting, this means taking into account
the citations of a paper. Note that as matches are identified, new matches may become apparent. Pasula et al.
[50, 39] have studied the use of probabilistic relational models for citation matching. They are able to explicitly
reason about the individuals in the domain, and whether two citations actually refer to the same individual. This
becomes a complex inference task, but they are able to solve it using Markov chain Monte Carlo techniques.

4 Schema Matching and Mapping

Interest in applying machine learning to schema matching has been growing [17, 16]. Statistical relational
learning can also be used for schema mapping and discovery. By making full use of the data distribution, the
meta information, we can perform more accurate mappings. Rahm et al. [55] give a taxonomy of schema
matching approaches. Probabilistic approaches can provide the foundation on which to combine element and
structure-level schema matching with element and instance-based data content matching. Because they consider
instance-level semantics, probablistic approaches also show promise in developing not just syntactic matchings
between schemas, but mappings with a well-founded data semantics such as those used in the Clio system [40].

5 Schema Discovery

Applications of statistical relational learning to semi-structured and unstructured data range from information
extraction from unstructured text to complex wrapper generation [12]; however the majority of these approaches
assume that some schema information is given.

13

Automatic schema extraction from lists and tables is ideally suited to the use of probabilistic models. Prob-
abilistic models can reason over different segmentations of the data, and can find the appropriate number of
elements. Lerman et al. [37] describe a heuristic approach that automatically learns a schema using information
from list and detail pages on web sites. A probabilistic approach can also be taken. The probabilistic method
has the advantage that it can more easily handle noise (missing fields) and it can combine the evidence from
multiple sources (i.e. the list and detail pages) in a principled manner.

6 Statistical Modeling Challenges

Statistical machine learning provides the theory for parameter estimation, model selection, prediction and in-
ference. Regardless of the particular model family, there are some unique challenges to applying statistical
modeling techniques to structure discovery in multi-relational domains.

Logical versus Statistical Dependencies: The first challenge in structure discovery is coherently handling two
different types of dependence structures:

• relational or link structure - the logical relationships between objects

• probabilistic dependency - the statistical relationship between attributes of objects.

In learning statistical models for relational data, we must not only search over probabilistic dependencies, as
is standard in any type of statistical model selection problem, but potentially we must search over the different
possible logical relationships between objects. This search over logical relationships has been a focus of research
in inductive logic programming [41, 36] and some of the methods and machinery developed in this community
may be applicable here. Methods for inferring functional dependencies and multi-valued dependencies [32, 2,
1, 3] are also important. The search over probabilistic dependencies has been studied, for example in structure
learning for Bayesian networks [13, 30] and in the work described earlier on learning probabilistic relational
models. There is an opportunity to integrate these more tightly.

Feature Construction: A second challenge is feature construction in the relational setting [14, 52, 51]. The
attributes of an object provide a basic description of the object. Traditional classification algorithms are based on
these types of object features. In a relational approach, it may also make sense to use attributes of linked objects.
Further, if the links themselves have attributes, these may also be used. However, as others have noted, simply
flattening the relational neighborhood around an object can be problematic. For example in hypertext domains,
simply including words from neighboring pages degrades classification performance [10, 49]. A further issue
is how to deal appropriately with relationships that are not one-to-one. In this case, it may be appropriate to
computeaggregatefeatures over the set of related objects. We have shown that this works well for learning
probabilistic relational models [23]; others have examined it in the context of ILP approaches [51]. In [38], we
show that some simple link statistics computed based on an object’s links can improve predictive accuracy. The
feature construction in relational domains can be used by a range of statistical models, including the models
described above, first-order decision trees [7, 47], relational neural networks [6] and others.

Collective Classification: A third challenge is statistical inference using a learned statistical relational model. A
learned model specifies a distribution over link and content attributes, which may be correlated based on the links
between them. Intuitively, for linked objects, making a prediction for the category of one object can influence
the inferred categories of its linked neighbors. This requires a more complex classification algorithm than for
a traditional non-relational statistical model. The predictions that need to be made are all correlated. This is
one of the fundamental reasons why one cannot simply convert a relational learning problem into a collection of
independent propositional inference tasks.

This complicates things, but at the same time allows for more accurate inferences to be made. Iterative
classification algorithms have been proposed for hypertext categorization [10, 49] and for relational learning

14

[46, 59, 58]. The general approach of iterative classification has been studied in numerous fields, including
relaxation-labeling in computer vision [31], inference in Markov random fields [11] and loopy belief propagation
in Bayesian networks [44]. Some approaches make assumptions about the influence of the neighbor’s categories
(such as that linked objects have similar categories); we believe it is important tolearn how the link distribution
affects the category. Other approaches to collective classification assume a very regular logical structure, for
example either a chain, such as HMMs [54] or a dynamic Bayesian network [43], or a grid. Approaches that can
handle more general relational structures are needed.

Instances versus Classes: A final modeling challenge is whether our statistical models refer explicitly to indi-
viduals, or only to classes or categories of objects [27, 15]. In many cases, we’d like to model that a connection
to a particular object or individual is highly predictive; on the other hand, if we’d like to have our models gener-
alize and be applicable to new, unseen objects, we also have to be able to model with and reason about generic
collections of objects. The need to reason explicitly about individuals is a fundamental element of link-based
object identification. But it also ties back to the feature construction problem; it may be useful to have features
that refer to particular individuals. The majority of current approaches either only model classes of objects [21],
or only reason about individuals [60, 4]. We have some initial results in the context of probabilistic relational
models [22]. This is a general issue that is not specific to any particular model choice.

Computational Complexity and Scaling: The scale and dimensionality of statistical models that can be tackled
has increased by several orders of magnitude in recent years. Models that were considered too complex for
analysis just a decade ago are now routinely solved using large scale Markov chain Monte Carlo simulations
[45].

While there have been great strides made in the size and complexity of models now amenable to computa-
tional analysis, the size of data bases and corpora has grown even faster. There is gap, and it is not clear that
whether the gap is getting wider or narrowing. Regardless, it is our opinion that the use of coherent complete
probabilistic frameworks hold greater promise for scaling than collections of independent ad-hoc procedures.
Even in cases where the complete framework proves intractable, analysis of the complete framework will give
guidance for the best places to make approximations, and will give tools to do analysis and comparison to see
the effect of the approximations.

7 Conclusion

We have given a brief introduction to statistical relational learning, and have argued that it is ideally suited to
data source structure discovery. Probabilistic models that support both data-level and meta-level representation
and reasoning provide a unified framework for representing instance-level structure, object-level structure (for
record consolidation) and schema- level structure (for schema mapping and schema discovery).

References
[1] S. Bell. Discovery and maintenance of functional dependencies by independencies. InProceedings of the Workshop on Knowledge

Discovery in Databases, pages 27–32. AAAI Press, 1995.

[2] S. Bell. Dependency mining in relational databases. In Dov M. Gabbay, Rudolf Kruse, Andreas Nonnengart, and Hans J¨urgen
Ohlbach, editors,Proceedings of the First International Joint Conference on Qualitative and Quantitative Practical Reasoning,
volume 1244 ofLNAI, pages 16–29, Berlin, June9–12 1997. Springer.

[3] S. Bell and P. Brockhausen. Discovery of constraints and data dependencies in relational databases. In Nada Lavra˘c and Stefan
Wrobel, editors,Proceedings of the 8th European Conference on Machine Learning, volume 912 ofLNAI, pages 267–270, Berlin,
April 1995. Springer.

[4] A. Bernstein, S. Clearwater, and F. Provost. The relational vector-space model and industry classification. InProceedings of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, pages 8–18, 2003.

15

[5] M. Bilenko and R. Mooney. On evaluation and training-set construction for duplicate detection. InProceedings of Knowledge
Discovery and Data Mining, pages 39–48, 2003.

[6] H. Blockeel and M. Bruynooghe. Aggregation versus selection bias, and relational neural networks. InProceedings of the IJCAI-
2003 Workshop on Learning Statistical Models from Relational Data, pages 22–23, 2003.

[7] H. Blockeel and L. DeRaedt. Top-down induction of first-order logical decision trees.Artificial Intelligence, 101(1-2):285–297,
1998.

[8] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian networks. InProceedings of
the Conference on Uncertainty in Artificial Intelligence, pages 115–123. Morgan Kaufman, August 1996.

[9] W. Buntine. Operations for learning with graphical models.Journal of Artificial Intelligence Research, 2:159–225, 1994.

[10] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks. InProceedings of ACM SIGMOD
International Conference on Management of Data, pages 307–318, Seattle, Washington, 1998.

[11] R. Chellappa and A.K. Jain.Markov random fields: theory and applications. Academic Press, Boston, 1993.

[12] W. Cohen. Learning and discovering structure in web pages.Data Engineering Bulletin, 2003. in this volume.

[13] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data.Machine Learning,
9:309–347, 1992.

[14] C. Cumby and D. Roth. Feature extraction languages for propositionalized relational learning. InProceedings of the IJCAI-2003
Workshop on Learning Statistical Models from Relational Data, pages 24–31, 2003.

[15] J. Cussens. Individuals, relations and structures in probabilistic models. InProceedings of the IJCAI-2003 Workshop on Learning
Statistical Models from Relational Data, pages 32–26, 2003.

[16] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources: A machine-learning approach. InProc. of
ACM SIGMOD Conf. on Management of Data, pages 509–520, 2001.

[17] A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data sources: a multistrategy approach.Machine
Learning Journal, 50(3):279–301, 2003.

[18] S. Dzeroski, L. De Raedt, and S. Wrobel.Proc. KDD-2002 Workshop on Multi-Relational Data Mining. ACM Press, 2002.

[19] S. Dzeroski, L. De Raedt, and S. Wrobel.Proc. KDD-2003 Workshop on Multi-Relational Data Mining. ACM Press, 2003.

[20] S. Dzeroski and B. Zenko. A report on the summer school on relational data mining.SIGKDD Explorations, 5:100–102, 2003.

[21] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 1300–1307, Stockholm, Sweden, 1999. Morgan Kaufman.

[22] L. Getoor.Learning Statistical Models of Relational Data. PhD thesis, Stanford University, 2001.

[23] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In S. Dzeroski and N. Lavrac, editors,
Relational Data Mining, pages 307–335. Kluwer, 2001.

[24] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link structure.Journal of Machine Learning
Research, 3:679–707, 2002.

[25] L. Getoor and D. Jensen.Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data. AAAI Press, 2000.

[26] L. Getoor and D. Jensen.Proc. IJCAI-2003 Workshop on Learning Statistical Models from Relational Data. AAAI Press, 2003.

[27] L. Getoor, D. Koller, and N. Friedman. From instances to classes in probabilistic relational models. InProceedings of the ICML-
2000 Workshop on Attribute-Value and Relational Learning: Crossing the Boundaries, pages 25–34, 2000.

[28] L. Getoor, J. Rhee, D. Koller, and P. Small. Understanding tuberculosis epidemiology using probabilistic relational models.
Artificial Intelligence in Medicine Journal, 2003. to appear.

[29] L. Getoor, B. Taskar, and D. Koller. Using probabilistic models for selectivity estimation. InProceedings of ACM SIGMOD
International Conference on Management of Data, pages 461–472. ACM Press, 2001.

[30] D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor,Learning in Graphical Models, pages
301–354. MIT Press, Cambridge, MA, 1998.

[31] R. Hummel and S. Zucker. On the foundations of relaxation labeling processes.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(5):267–287, 1983.

[32] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola. Discovering Functional and Inclusion Dependencies in Relational Databases.
International Journal of Intelligent Systems, 7(7):591–607, September 1992.

[33] K. Kersting, L. de Raedt, and S. Kramer. Interpreting Bayesian logic programs. InProceedings of the AAAI-2000 Workshop on
Learning Statistical Models from Relational Data, pages 29–35. AAAI Press, 2000.

16

[34] D. Koller and A. Pfeffer. Probabilistic frame-based systems. InProceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 580–587, Madison, WI, 1998. AAAI Press.

[35] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL principle.Computational Intelli-
gence, 10:269–293, 1994.

[36] N. Lavrac and S. Dzeroski.Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York, NY, 1994.

[37] K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction from lists and tables in web sources. InIJCAI Workshop on
Automatic Text Extraction and Mining, 2001.

[38] Q. Lu and L. Getoor. Link-based classification. InProceedings of the Twentieth International Conference on Machine Learning,
Washington, DC, 2003.

[39] B. Marthi, B. Milch, and Stuart Russell. First-order probabilistic models for information extraction. InProceedings of the IJCAI-
2003 Workshop on Learning Statistical Models from Relational Data, 2003.

[40] R. J. Miller, L. M. Haas, and M. Hern´andez. Schema Mapping as Query Discovery. InProc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pages 77–88, Cairo, Egypt, September 2000.

[41] S. Muggleton, editor.Inductive Logic Programming. Academic Press, London, UK, 1992.

[42] S.H. Muggleton. Learning stochastic logic programs. InProceedings of the AAAI-2000 Workshop on Learning Statistical Models
from Relational Data, pages 36–41. AAAI Press, 2000.

[43] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, Computer Science Dept, UC
Berkeley, 2002.

[44] K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: an empirical study. InProceedings of the Conference
on Uncertainty in Artificial Intelligence, pages 467–475. Morgan Kaufman, 1999.

[45] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, University of
Toronto, 1993.

[46] J. Neville and D. Jensen. Iterative classification in relational data. InProc. AAAI-2000 Workshop on Learning Statistical Models
from Relational Data, pages 13–20. AAAI Press, 2000.

[47] J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability trees. Technical Report 02-55, University of
Massachusetts Amherst, 2002.

[48] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases.Theoretical Computer Science,
171:147–177, 1996.

[49] H. Oh, S. Myaeng, and M. Lee. A practical hypertext categorization method using links and incrementally available class infor-
mation. InProc. of SIGIR-00, pages 264–271, 2000.

[50] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty and citation matching. InAdvances in Neural
Information Processing Systems 15 (NIPS 2002). MIT Press, 2003.

[51] C. Perlich and F. Provost. Aggregation-based feature invention and relational concept classes. InProceedings of Knowledge
Discovery and Data Mining, pages 167–176, 2003.

[52] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(4):380–393, 1997.

[53] D. Poole. Probabilistic Horn abduction and Bayesian networks.Artificial Intelligence, 64:81–129, 1993.

[54] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.Proceedings of the IEEE,
77(2):257–286, 1989.

[55] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.VLDB Journal: Very Large Data
Bases, 10(4):334–350, 2001.

[56] S. Russell. Identity uncertainty. InProc. of IFSA-01, Vancouver, 2001.

[57] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. InProceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-2002), pages 269–278, 2002.

[58] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data. InProc. of UAI-02, pages 485–492,
Edmonton, Canada, 2002.

[59] B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clustering in relational data. InProceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, pages 870–876, Seattle, Washington, 2001. Morgan Kaufman.

[60] S. Wasserman and K. Faust.Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.

[61] W. E. Winkler. Advanced methods for record linkage. Technical report, Statistical Research Division, U.S. Census Bureau, 1994.

[62] W. E. Winkler. Methods for record linkage and bayesian networks. Technical report, Statistical Research Division, U.S. Census
Bureau, 1994.

17

DTD Inference from XML Documents: The XTRACT Approach

Minos Garofalakis
Bell Laboratories

minos@bell-labs.com

Aristides Gionis∗

University of Helsinki
gionis@cs.helsinki.fi

Rajeev Rastogi
Bell Laboratories

rastogi@bell-labs.com

S. Seshadri∗

Strand Genomics
seshadri@strandgenomics.com

Kyuseok Shim
SNU and AITrc†

shim@ee.snu.ac.kr

Abstract

XML is rapidly emerging as the new standard for data representation and exchange on the Web. Doc-
ument Type Descriptors (DTDs) contain valuable information on the structure of XML documents and
thus have a crucial role in the efficient storage andquerying of XML data. Despite their importance,
however, DTDs are not mandatory, and it is quite possible for documents in XML databases to not have
accompanying DTDs. In this paper, we present an overview of XTRACT, a novel system for inferring a
DTD schema for a database of XML documents. Since the DTD syntax incorporates the full expressive
power of regular expressions, naive approaches typically fail to produce concise and intuitive DTDs.
Instead, the XTRACT inference algorithms employ a sequence of sophisticated steps that involve: (1)
finding patterns in the input sequences and replacing them with regular expressions to generate “gen-
eral” candidate DTDs, (2) factoring candidate DTDs using adaptations of algorithms from the logic
optimization literature, and (3) applying the Minimum Description Length (MDL) principle to find the
best DTD among the candidates.

1 Introduction

The genesis of the eXtensible Markup Language (XML) was based on the thesis that structured documents can
be freely exchanged and manipulated, if published in a standard, open format. Indeed, as a corroboration of
the thesis, XML today promises to enable a suite of next-generation web applications ranging from intelligent
web searching to electronic commerce. XML documents comprise hierarchically nested collections ofelements,
where each element can be either atomic (i.e., raw character data) or composite (i.e., a sequence of nested
subelements). Further,tagsstored with elements in an XML document describe the semantics of the data. Thus,
XML data is hierarchically structured and self-describing.

A Document Type Descriptor (DTD)may optionally accompany an XML document and essentially serves
the role of a schema specifying the internal structure of the document. Briefly , a DTD specifies for every

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was done while the author was with Bell Laboratories.
†Seoul National University and Advanced Information Technology Research Center.

18

element, theregular expressionpattern that subelement sequences of the element need to conform to. In addition
to enabling the free exchange of electronic documents through industry-wide standards, DTDs also provide the
basic mechanism for defining the structure of the underlying XML data. As a consequence, DTDs play a crucial
role in the efficient storage of XML data as well as the formulation, optimization, and processing of queries over
a collection of XML documents [3, 4, 7]. Despite their importance, however, DTDs arenot mandatoryand an
XML document may not always have an accompanying DTD. This is typically the case, for instance, when large
volumes of XML documents are automatically generated from data stored in relational databases, flat files (e.g.,
HTML pages, bibliography files), or other semistructured data repositories.

Based on the above discussion on the virtues of a DTD, it is important to devise algorithms and tools
that can infer an accurate, meaningful DTD for a given collection of XML documents (i.e.,instancesof the
DTD). This isnot an easy task. In contrast to simple structural descriptions or typings (e.g., [7, 11]), the DTD
syntax incorporates the full specification power of regular expressions; thus, manually deducing such a DTD
schema for even a small set of XML documents created by a user could prove to be a process of daunting
complexity. Furthermore, naive approaches typically fail to deliver meaningful and intuitive DTD descriptions
of the underlying data. Both problems are, of course, exacerbated forlarge XML document collections.

In this paper, we provide an overview of the architecture of XTRACT [5, 6], a novel system for inferring an
accurate, meaningful DTD schema for a repository of XML documents. A naive and straightforward solution
to our DTD-extraction problem would be to infer as the DTD for an element, a “concise” expression which
describesexactlyall the sequences of subelements nested within the element in the entire document collection.
However, DTDs generated by this approach tend to be voluminous and unintuitive. In fact, we discover that
accurate and meaningful DTD schemas that are also intuitive and appealing to humans tend togeneralize. That
is, “good” DTDs are typically regular expressions describing subelement sequences thatmay not actually occur
in the input XML documents. (Note that this, in fact, is always the case for DTD regular expressions that
correspond to infinite regular languages, e.g., DTDs containing one or more Kleene stars (∗) [9].) In practice,
however, there are numerous such candidate DTDs that generalize the subelement sequences in the input, and
choosing the DTD that best describes the structure of these sequences is a non-trivial task. The XTRACT
inference algorithms employ the following novel combination of sophisticated techniques to generate DTD
schemas that effectively capture the structure of the input sequences.

• Generalization. As a first step, XTRACT employs novel heuristic algorithms for finding patterns in each
input sequence and replacing them with appropriate regular expressions to produce more general candidate
DTDs. The main goal of the generalization step is to judiciously introduce metacharacters (like Kleene
stars) to produce regular subexpressions that generalize the patterns observed in the input sequences. Our
generalization heuristics are based on the discovery of frequent, neighboring occurrences of subsequences
and symbols within each input sequence. To avoid an explosion in the number of resulting patterns, our
techniques are inspired by practical, real-life DTD examples.

• Factoring. As a second step, XTRACTfactorscommon subexpressions from the generalized candidate
DTDs obtained in the generalization step, in order to make them more concise. The factoring algorithms
applied are appropriate adaptations of techniques from the logic optimization literature [1, 14].

• Minimum Description Length (MDL) Principle. In the final and most important step, XTRACT em-
ploys Rissanen’sMinimum Description Length(MDL) principle [13] to derive an elegant mechanism for
composing a near-optimal DTD schema from the set of candidate DTDs generated by the earlier two
steps. (Our MDL-based notion of optimality is described later in the paper.) The MDL principle has
its roots in information theory and, essentially, provides a principled, scientific definition of the optimal
“theory/model” that can be inferred from a set of data examples [12]. Using MDL allows XTRACT to
control the amount of generalization introduced in the inferred DTD in a principled and, at the same
time, intuitively-appealing fashion. We demonstrate that selecting the optimal DTD based on the MDL
principle has a direct and natural mapping to theFacility Location Problem (FLP), which is known to be

19

<article>
<title> A Relational Model for

Large Shared Data Banks </title>
<author>

<name> E. F. Codd </name>
<affil> IBM Research </affil>

</author>
</article>

<!ELEMENT article(title, author*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author(name, affil)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT affil (#PCDATA)>

(a) (b)

Figure 1: (a) An Example XML Document. (b) An Example DTD.

NP-complete [8]. Fortunately, efficient approximation algorithms with guaranteed performance bounds
have been proposed for the FLP in the literature [2], thus allowing us to efficiently compose the final DTD
in a near-optimal manner.

We have implemented our XTRACT DTD-derivation algorithms and conducted an extensive experimental
study with both real-life and synthetic DTDs that demonstrates the effectiveness of our approach. Due to space
constraints, the discussion of our experimental findings as well as most of the details of the XTRACT algorithms
have been omitted from this overview paper; interested readers are referred to [5, 6].

2 Formulating the DTD-Inference Problem

Quick Overview of XML and DTDs. An XML document, like an HTML document, consists of nested element
structures starting with a root element. Subelements of an element can either be elements or simply character
data. Figure 1(a) illustrates an example XML document, in which the root element (article) has two nested
subelements (title andauthor), and theauthor element in turn has two nested subelements. Thetitle
element contains character data denoting the title of the article while thename element contains the name of the
author of the article. The ordering of subelements within an element is significant in XML. Elements can also
have zero or more attribute/value pairs that are stored within the element’s start tag.

A DTD is a grammar for describing the structure of an XML document. A DTD constrains the structure of
an element by specifying a regular expression that its subelement sequences have to conform to. Figure 1(b)
illustrates a DTD that the XML document in Figure 1(a) conforms to. The DTD declaration syntax uses commas
for sequencing,| for (exclusive)OR, parenthesis for grouping and the meta-characters?,∗ ,+ to denote, respec-
tively, zero or one, zero or more, and one or more occurrences of the preceding term. As a special case, the DTD
corresponding to an element can beANY which allows an arbitrary XML fragment to be nested within the ele-
ment. We should point out that real-life DTDs can get fairly complex and can sometimes contain several regular
expressions terms with multiple levels of nesting (e.g.,((ab)∗c)∗). (For brevity, we denote XML elements by a
single lower-case letter; we also omit explicit commas in element sequences and regular expressions.)

Problem Formulation. Our goal is to infer a DTD for a collection of XML documents. Thus, for each element
that appears in the XML documents, we aim to derive a regular expression that subelement sequences for the
element (in the XML documents) conform to. Note that an element’s DTD is completely independent of the
DTD for other elements, and only restricts the sequence of subelements nested within the element. Therefore,
for simplicity of exposition, we concentrate on the problem of extracting a DTD for a single element.

Let e be an element that appears in the XML documents for which we want to infer the DTD. It is straight-
forward to compute the sequence of subelements nested within each< e >< /e > pair in the XML documents.
Let I denote the set ofN such sequences, one sequence for every occurrence of elemente in the data. The
problem we address in this paper can be stated as follows:“Given a setI of N input sequences nested within
elemente, compute a DTD fore such that every sequence inI conforms to the DTD.”

20

As stated, an obvious solution to the problem is to find the most “concise” regular expressionR whose
language isI. One mechanism to find such a regular expression is to factor as much as possible, the expression
corresponding to theOR of sequences inI. Factoring a regular expression makes it “concise” without changing
the language of the expression. For example,ab|ac can be factored intoa(b|c). An alternate method for com-
puting the most concise regular expression is to first find the automaton with the smallest number of states that
acceptsI and then derive the regular expression from the automaton. Such concise regular expressions whose
language is exactlyI, are unfortunately not “good” DTDs, in the sense that they tend to be voluminous and
unintuitive. We illustrate this using the DTD of Figure 1(b). Suppose we have a collection of XML documents
that conform to this DTD. Abbreviating thetitle tag by t, and theauthor tag bya, it is reasonable to
expect the following sequences to be the subelement sequences of thearticle element in the collection of
XML documents:t, ta, taa, taaa, taaaa. Clearly, the most concise regular expression for the above language
is t|t(a|a(a|a(a|aa))) which is definitely much more voluminous and lot less intuitive than a DTD such asta∗.

In other words, the obvious solution above never “generalizes” and would therefore never contain metachar-
acters like∗ in the inferred DTD. Clearly, a human being would at most times want to use such metacharacters in
a DTD to succinctly convey the constraints he/she wishes to impose on the structure of XML documents. Thus,
the challenge is to infer, for the set of input sequencesI, a “general” DTD which is similar to what a human
would come up with. However, as the following example illustrates, there can be several possible “generaliza-
tions” for a given set of input sequences and thus we need to devise a mechanism for choosing the one that best
describes the sequences.

Example 1: ConsiderI = {ab, abab, ababab}. A number of DTDs match sequences inI – (1) (a | b)∗, (2)
ab | abab | ababab, (3) (ab)∗, (4) ab | ab(ab | abab), and so on. DTD (1) is similar toANY in that it allows any
arbitrary sequence ofas andbs, while DTD (2) is simply anOR of all the sequences inI. DTD (4) is derived
from DTD (2) by factoring the subsequenceab from the last two disjuncts of DTD (2). The problem with DTD
(1) is that it represents a gross over-generalization of the input, and the inferred DTD completely fails to capture
any structure inherent in the input. On the other hand, DTDs (2) and (4) accurately reflect the structure of the
input sequences but do not generalize or learn any meaningful patterns which make the DTDs smaller or simpler
to understand. Thus, none of the DTDs (1), (2), or (4) seem “good”; on the other hand, DTD (3) has great
intuitive appeal since it is succinct and it generalizes the input sequences without losing too much information
about their structure.

Based on the discussion in the above example, we can characterize the set of desirable DTDs by placing the
following two qualitative restrictions on the inferred DTD:(R1) The DTD should be concise (i.e., small in size);
and,(R2) The DTD should be precise (i.e, not cover too many sequences not contained inI). Restriction (R1)
above ensures that the inferred DTD is easy to understand and succinct, thus eliminating, in many cases, exact
solutions, i.e., regular expressions whose language isexactlyI. Restriction (R2), on the other hand, attempts
to ensure that the DTD is not too general and captures the structure of input sequences, thus eliminating trivial
DTDs such asANY. While the above restrictions seem reasonable at an intuitive level, there is a problem with
devising a solution based on the above restrictions. The problem is that restrictions (R1) and (R2) conflict with
each other. In our earlier example, restriction (R1) would favor DTDs (1) and (3), while these DTDs would not
be considered good according to criterion (R2). The situation is exactly the reverse when we consider DTDs (2)
and (4). Thus, in general, there is a tradeoff between a DTD’s “conciseness” and its “preciseness”, and a good
DTD is one that strikes the right balance between the two. The problem here is that conciseness and preciseness
are qualitative notions – in order to resolve the tradeoff between the two, we need to devise quantitative measures
for mathematically capturing the two qualitative notions.

Using the MDL Principle to Define a Good DTD. We use the MDL principle [13] to define an information-
theoretic measure for quantifying and thereby resolving the tradeoff between the conciseness and preciseness
properties of DTDs. The MDL principle has been successfully applied in the past in a variety of situations
ranging from constructing good decision tree classifiers [12] to learning common patterns in sets of strings [10].

21

Roughly speaking, the MDL principle states that the best theory to infer from a set of data is the one which
minimizes the sum of:(A) The length of the theory (in bits);and, (B) The length of the data (in bits), when
encoded with the help of the theory. We will refer to the above sum, for a theory, as theMDL cost for the
theory. The MDL principle is a general one and needs to be instantiated appropriately for each situation. In our
setting, the theory is the DTD and the data is the sequences inI. Thus, the MDL principle assigns each DTD
an MDL cost and ranks the DTDs based on their MDL costs (DTDs with lower MDL costs are ranked higher).
Furthermore, parts (A) and (B) of the MDL cost for a DTD depend directly on its conciseness and preciseness,
respectively. Part (A) is the number of bits required to describe the DTD and is thus a direct measure of its
conciseness. Further, since a DTD that is more precise captures the structure of the input sequences more
accurately, fewer bits are required to describe the sequences inI in terms of a more precise DTD; as a result,
part (B) of the MDL cost captures a DTD’s preciseness. The MDL cost for a DTD thus provides us with an
elegant and principled mechanism (rooted in information theory) for quantifying (and combining) the conflicting
concepts of conciseness and preciseness in a single unified framework, and in a manner that is consistent with
our intuition. By favoring concise and precise DTDs, and penalizing those that are not, it ranks highly exactly
those DTDs that would be deemed desirable by humans.

Note that the actual encoding scheme used to specify a DTD as well as the data (in terms of the DTD) plays
a critical role in determining the actual values for the two components of the MDL cost. The following example
uses a simple, coarse encoding scheme to illustrate how ranking DTDs based on their MDL cost closely matches
our intuition of their goodness; the details of XTRACT’s encoding scheme can be found in [5, 6].

Example 2: Consider the input setI and DTDs from Example 1. We rank our example DTDs based on their
MDL costs (DTDs with smaller MDL costs are considered better). (Our encoding assumes a cost of 1 unit for
each character.) DTD (1),(a | b)∗, has a cost of 6 for encoding the DTD. In order to encode the sequenceabab
using the DTD, we need one character to specify the number of repetitions of the term(a | b) that precedes
the ∗ (in this case, this number is 4), and 4 additional characters to specify which ofa or b is chosen from
each repetition. Thus, the total cost of encodingabab using (a | b)∗ is 5 and the MDL cost of the DTD is
6 + 3 + 5 + 7 = 21. Similarly, the MDL cost of DTD (2) can be shown to be 14 (to encode the DTD)+ 3 (to
encode the input sequences; we need one character to specify the position of the disjunct for each sequence) =
17. The cost of DTD (3) is 5 (to encode the DTD)+ 3 (to encode the input sequences – note that we only need
to specify the number of repetitions of the termab for each sequence) = 8. Finally, DTD (4) has a cost of 14 + 5
(1 character to encode sequenceab and 2 characters for each of the other two input sequences) = 19. Thus, DTD
(3) is the best (i.e., lowest MDL cost) DTD in our example instance – which matches our intuition.

The above example shows that the MDL principle indeed provides an elegant mechanism for quantifying
and resolving the tradeoff between the conciseness and preciseness properties of DTDs. More specifically: (1)
the“theory length” part of the MDL cost includes the number of bits required to encode the DTD – this ensures
that the inferred DTD is succinct; and, (2) the“data length” part of the MDL cost includes the number of bits
needed for encoding the input sequences using the DTD – usually, expressing data in terms of a more general
DTD (e.g.,(a | b)∗ in Example 2) requires more bits than describing data in terms of a more specific DTD (e.g.,
(ab)∗ in Example 2). Thus, using the MDL principle enables us to choose a DTD that strikes the right balance
between conciseness and preciseness.

3 Overview of the XTRACT System

The XTRACT system architecture is illustrated in Figure 2(a). XTRACT consists of three main components:
the generalization module, the factoring module, and the MDL module. Input sequences inI are processed by
the three subsystems one after another, the output of one subsystem serving as input to the next. We denote
the outputs of the generalization and factoring modules bySG andSF , respectively. Observe that bothSG and
SF contain the initial input sequences inI. This is to ensure that the MDL module has a wide range of DTDs

22

Module
MDL

S
G

S
G

S
F

bbd
bbbbe

ab
abab
ac

bc
bd

ad

I =

Inferred DTD: (ab)* | (a|b)(c|d) | b*(d|e)

(a) (b)

{ ab, abab, ac, ad, bc, bd, bbd, bbbbe }

Factoring
Module

Input Sequences

Module

I = U { (ab)*, (a|b)*, b*d, b*e }

= U { (a|b)(c|d), b*(d|e) }

MDL (FLP)ab
abab
ac

bc
bd

ad

bbd
bbbbe
(ab)*
(a|b)*
b*d
b*e
b*(d|e)

(a|b)(c|d)

Inferred DTD: (ab)* | (a|b)(c|d) | b*(d|e)

Generalization

Figure 2: (a) XTRACT System Architecture. (b) XTRACT’s MDL Subsystem.

to choose from that includes the obvious DTD which is simply anOR of all the input sequences inI. In the
following, we provide a brief description of each XTRACT subsystem; more details can be found in [5, 6].

The Generalization Subsystem. For each input sequence, the generalization module generates zero or more
candidate DTDs that are derived by replacing patterns in the input sequence with regular expressions containing
metacharacters like∗ and| (e.g.,(ab)∗, (a | b)∗). Note that the initial input sequences do not contain metachar-
acters and so the candidate DTDs introduced by the generalization module are more general. For instance, in
Figure 2(a), sequencesabab andbbbe result in the more general candidate DTDs(ab)∗, (a | b)∗ andb∗e to be
output by the generalization subsystem. Also, observe that each candidate DTD produced by the generalization
module may cover only a subset of the input sequences. Thus, the final DTD output by the MDL module may
be anOR of multiple candidate DTDs.

Ideally, in the generalization phase, we should consider all DTDs that cover one or more input sequences as
candidates so that the MDL step can choose the best among them. However, the number of such DTDs can be
enormous. For example, the sequenceababaabb is covered by the following DTDs in addition to many more –
(a | b)∗, (a | b)∗a∗b∗, (ab)∗(a | b)∗, (ab)∗a∗b∗. Therefore, XTRACT employs several novel heuristics, inspired
by real-life DTDs, for limiting the set of candidate DTDsSG output by the generalization module.

The Factoring Subsystem. The factoring component factors two or more candidate DTDs inSG into a new
candidate DTD. The length of the new DTD is smaller than the sum of the sizes of the DTDs factored. For
example, in Figure 2(a), candidate DTDsb∗d and b∗e representing the expressionb∗d | b∗e, when factored,
result in the DTDb∗(d | e); similarly, the candidatesac, ad, bc andbd are factored into(a | b)(c | d) (the pre-
factored expression isac | ad | bc | bd). Although factoring leaves the semantics of candidate DTDs unchanged,
it is nevertheless an important step. The reason being that factoring reduces the size of the DTD and thus the
cost of encoding the DTD, without seriously impacting the cost of encoding input sequences using the DTD.
Thus, since the DTD encoding cost is a component of the MDL cost for a DTD, factoring can result in certain
DTDs being chosen by the MDL module that may not have been considered earlier. We appropriately modify
factoring algorithms for boolean functions in the logic optimization area [1, 14] to meet our needs. However,
even though every subset of candidate DTDs can, in principle, be factored, the number of these subsets can be
large and only a few of them result in good factorizations. We propose novel heuristics to restrict our attention
to subsets that can be factored effectively.

The MDL Subsystem. The MDL subsystem finally chooses from among the set of candidate DTDsSF gen-
erated by the previous two subsystems, a (sub)set of DTDsS such that the final DTD (which is theOR of the
DTDs inS): (1) covers all the input sequences inI, and (2) has theminimum MDL cost. For the input sequences

23

in Figure 2(a), we illustrate (using solid lines) in Figure 2(b), the input sequences (in the right column) covered
by the candidate DTDs inSF (in the left column).

The above MDL-cost minimization problem naturally maps to theFacility Location Problem (FLP)[2, 8],
which can be stated as follows: LetC be a set of clients andJ be a set of facilities such that each facility “serves”
every client. There is a costc(j) of “choosing” a facilityj ∈ J and a costd(j, i) of serving clienti ∈ C by
facility j ∈ J . The problem definition asks to choose a subset of facilitiesF ⊂ J such that the sum of costs of
the chosen facilities plus the sum of costs of serving every client by its closest chosen facility is minimized.

Our problem of inferring the minimum MDL cost DTD can be reduced to FLP by lettingC be the setI of
input sequences andJ be the set of candidate DTDs inSF . The costc(j) of choosing a facilityj is the length
of the corresponding candidate DTD, whereas the costd(j, i) of serving clienti from facility j is the length of
the encoding of the sequence corresponding toi using the DTD corresponding to facilityj.

The FLP isNP-hard; however, it can be reduced toSet Coverand then approximated within a logarithmic
factor as shown in [8]. Our XTRACT implementation employs the randomized algorithm from [2], which
approximates the FLP to within a constant factor if the distance function is a metric. Even though our distance
function is not a metric, we have found the solutions produced by [2] for our problem setting to be very good in
practice. The final DTD inferred by XTRACT for our example instance is shown at the bottom of Figure 2(b).

4 Conclusions

In this paper, we have presented an overview of the XTRACT system [5, 6] for inferring a DTD for a database of
XML documents. The DTD-inference problem is complicated by the fact that DTD syntax incorporates the full
expressive power of regular expressions. Naive approaches that do not “generalize” beyond the input element
sequences fail to deduce concise and semantically meaningful DTDs. Instead, XTRACT applies sophisticated
algorithms that combine generalization and factorization steps with Rissanen’s MDL principle in order to com-
pute a DTD schema that is more along the lines of what a human would infer.

References
[1] R. K. Brayton and C. McMullen. The decomposition and factorization of boolean expressions. InIntl. Symp. on

Circuits and Systems, 1982.
[2] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In

40th Annual Symp. on Foundations of Computer Science, 1999.
[3] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with stored. InACM SIGMOD Intl. Conf. on

Management of Data, 1999.
[4] M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. InIntl. Conf. on Database

Theory (ICDT), 1997.
[5] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: Learning Document Type Descriptors

from XML Document Collections.Data Mining and Knowledge Discovery, 7(1):23–56, January 2003.
[6] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A System for Extracting Document

Type Descriptors from XML Documents. InACM SIGMOD Intl. Conf. on Management of Data, 2000.
[7] R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization in semistructured databases.

In 23rd Intl. Conf. on Very Large Data Bases, 1997.
[8] D. S. Hochbaum. Heuristics for the fixed cost median problem.Mathematical Programming, 22:148–162, 1982.
[9] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automaton Theory, Languages, and Computation. Addison-

Wesley, Reading, Massachusetts, 1979.
[10] P. Kilpeläinen, H. Mannila, and E. Ukkonen. MDL learning of unions of simple pattern languages from positive

examples. In2nd European Conf. on Computational Learning Theory, EuroCOLT, 1995.
[11] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured data. InACM SIGMOD Intl.

Conf. on Management of Data, 1998.
[12] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum description length principle.

Information and Computation, 80:227–248, 1989.
[13] J. Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.
[14] A. R. R. Wang.Algorithms for Multi-level Logic Optimization. PhD thesis, Univ. of California, Berkeley, 1989.

24

Discovering Structure in a Corpus of Schemas

Alon Y. Halevy
University of Washington

alon@cs.washington.edu

Jayant Madhavan
University of Washington

jayant@cs.washington.edu

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

Abstract

This paper describes a research program that exploits a large corpus of database schemas, possibly
with associated data and meta-data, to build tools that facilitate the creation, querying and sharing of
structured data. The key insight is that given a large corpus, we can discover patterns concerning how
designers create structures for representing domains. Given these patterns, we can more easily map
between disparate structures or propose structures that are appropriate for a given domain. We describe
the first application of our approach to the problem of semi-automatic schema matching.

1 Introduction

Database and knowledge base systems offer their users powerful mechanisms for querying their data. However,
such power comes with a significant upfront cost, namely, getting the data into structured form. A key compo-
nent of the cost is the effort involved in designing a database schema, and for the users, the effort of learning the
schema in order to be able to query it. It is instructive to compare the conceptual effort involved in dealing with
structured data versus the effort in dealing with text documents [HED+03]. In the latter case, authoring data is
a matter of writing coherent text and keyword querying is simple, though providing much less expressive power
and accuracy. The differences between the management of structured and unstructured data are exacerbated
when people try tosharedata (e.g., on the web, within enterprises and in large scientific projects). Mediat-
ing between disparate databases requires understanding the semantic relationships between the data sets which
usually involves a large cooperative effort.

The goal of the Revere Project [HED+03] at the University of Washington is to facilitate the activities of
authoring, querying and sharing of structured data, so they become palatable to non-expert users. The main
components of the project are (1) the Mangrove System [MEH+03], whose goal is to entice people to structure
their data, (2) the Piazza System [HITM03, HIST03, HIM+04, MH03] that allows large-scale sharing of struc-
tured data without any central mediation, and (3) a set of tools that facilitate the authoring of schemas and the
creation of semantic mappings between disparate schemas for data sharing.

This paper focuses on the latter component of Revere, which takes a new approach to developing tools for
aiding the management of structured data. The techniques are inspired by one of the main ideas in Information
Retrieval (IR), namely the statistical analysis of large corpora of text. Here we examine what we can do with a
large corpus of database schemas, possibly with associated data instances and meta-data.

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

25

We begin in Section 2 by describing the contents of such a corpus and what we aim to achieve with it. In
Section 3 we describe its first application to the problem of matching between disparate schemas. In Section 4 we
discuss other uses of corpus-based tools, and in Section 5 we describe the main challenges we face in pursuing
this approach.

2 A Corpus of Schemas

In Information Retrieval (IR), large corpora of text are analyzed for specific patterns: co-occurrences of terms
often indicate that the terms are related or synonymous; high frequency of a term in a particular document
(compared to the rest of the corpus) indicates the term’s importance to the document. More generally, IR tries
to glean clues from patterns in people’s use of natural language.

In our context, our goal is to use a corpus of schemas to find patterns inhow people build structures for data.
In particular, creating a database schema involves at least the following steps. In each of these we can search for
common patterns:

• Selecting entities and relationships between them: typically done using a conceptual entity/relationship
model.

• Naming: choose particular names for the entities, their properties and the relationships, and

• Structuring: take the conceptual model and translate it into a particular data model (e.g., relational tables,
object or XML hierarchies). While this step is aided by tools, there is still significant manual work.
Furthermore, in this step additional naming decisions are made (e.g., for table names, disambiguating
property names).

As in IR, patterns in the above processes cannot be written, but can only be discovered from a large collection
of database structures. Once we discover the patterns, we can build tools that assist designers in authoring new
schemas, querying schemas, and mapping between disparate schemas. We now briefly discuss the contents of a
corpus and the kinds of patterns we can mine from it.

2.1 Contents of a corpus

A corpus can include any kind of information related to structured data, and may give us cues as to the meaning
of the data. In particular, it includes the following.

1. Various forms of structures: on the less expressive end, the corpus can include relational and object-oriented
database schema or entity/relationship diagrams, XML DTDs or schemas, possibly with associated integrity
constraints (e.g., functional dependencies). On the more expressive end, the corpus can include terminologies in
a knowledge representation language (e.g., in OWL [DCvH+02]).

2. Instance data: it can include the actual rows of tables (or representative rows) or XML documents. In fact it
can include data sets that do not have a schema (e.g., certain file formats). Very often, elements in the schema of
one model are instance data in another model. Hence, the distinction between schema and instance data is not
clear cut.

3. Validated mappings: previously constructed mappings between different database structures provide signif-
icant clues as to how entities are represented differently in disparate models. Whenever we have such mappings,
they should be included in the corpus.

4. Queries: queries (posed by users or applications) provide important information about how certain data is
used. For example, when a database query performs a join over attributes of two different tables, that indicates

26

that the columns are modeling the same domain (and this often is not evident from the schema, which only
specifies the data type).

5. Other meta-data: there are many forms of meta-data that accompany database structures. They range from
text descriptions of the meaning of different fields to statistics about table cardinalities or histograms on the set
of possible values within a column.

It is important to emphasize that a corpus isnot a logically coherent universal database. Rather, it is a
collection of disparate uncoordinated structures. We expect that the structures of the corpus will be stored and
accessed using tools for model management [Ber03], which provide a set of operators for manipulating models
of data (as opposed to the data itself).

2.1.1 Statistics on the corpus

There is a plethora of possible analyses that can be performed on such a corpus in order to extract interesting
patterns. Finding the most effective ones is a long term research challenge. Below we describe certain kinds of
statistics that can be computed over the corpus. We classify them according to whether they apply to individual
words or terms, partial structures, or elements of particular schemas.

Word and term statistics: these statistics are associated with individual words (in any language) and with noun
or verb phrases. These statistics indicate how a word is used in different roles in structured data. For each
of these statistics, we can maintain different versions, depending on whether we take into consideration word
stemming, synonym tables, inter-language dictionaries, or any combination of these three. The statistics include:

1. Term usage: How frequently the term is used as a relation name, as an attribute name, or in data (as a
percentage of all of its uses or as a percentage of structures in the corpus).

2. Co-occurring schema elements: For each of the different uses of a term, which relation names and attributes
tend to appear with it? What tend to be the names of related tables and their attribute names? What tend to be the
join predicates on pairs of tables? Are there clusters of attribute names that appear together? Are there mutually
exclusive uses of attribute names? We can also learn from co-occurrence of terms incompositenames of schema
elements.

3. Similar names: For each of the uses of a term, which other words tend to be used with similar statistical
characteristics?

Composite statistics: the same statistics can be applied topartial structures. Examples of partial structures are
sets of data instances, relations with associated attribute names, a relation with some data (possibly with missing
values). In fact, the works in [HC03, KN03] are attempts to learn from partial structures.

Clearly, we need to significantly limit the number of partial structures for which we keep statistics (e.g.,
use techniques for discovering partial structures that occur frequently e.g., [PG02]). Given statistics for certain
partial structures, we can estimate the statistics for other related structures.

Statistics for schema elements: the same word, used in different structures, can have different meanings.
Hence, we may want to characterize the specific usages of terms in structures, and relate them to usage of terms
in other structures. For example, in [MBC+03] we learn a classifier for every relation and attribute name in the
corpus. Following [DDH01], we use meta-strategy learning. The training data used for learning is gleaned from
the schema to which the element belongs and the training data of elements that have been mapped to it by a
validated mapping in the corpus. Intuitively, the classifier is meant to recognize the particular usage of the term,
even if it appears differently in another structure.

27

3 Using a Corpus for Schema Matching

We now describe the first application of our corpus-based approach, schema matching. Sharing data among
multiple data sources and applications is a problem that arises time and again in large enterprises, B2B settings,
coordination between government agencies, large-scale science projects, and on the World-Wide Web. While
there are many architectures for sharing data (data warehousing, data integration systems [Len02, DHW01], mes-
sage passing systems (e.g., [MQS03]), web services, and peer-data management systems [HIST03, KNO+02,
BGK+02, NWQ+02, AK03, ACMH03, NOTZ03]), a key problem in all of them is the semantic heterogene-
ity between the structures (e.g., schemas) of data sources that were originally designed independently. Thus,
to obtain meaningful interoperation, one needs asemantic mappingbetween the schemas. A semantic map-
ping is a set of expressions that specify how the data in one database corresponds to the data in another
database [MBDH02]. While languages for specifying semantic mappings have been developed and are well
understood (see [Len02, Hal01] for surveys), the creation of semantic mappings has become a key bottleneck as
it is labor intensive and error-prone.

The goal of schema matching is to assist a human to relate two domain models. Complete automation of
the process is unlikely, so the goal is to significantly increase the productivity of human experts. The matching
problem is difficult because it requires understanding the underlying semantics of the schemas being matched.
While a schema (with its instance data) provides many clues to its intended semantics, it does not suffice in order
to relate it to a different schema.

The process of generating a semantic mapping has traditionally been divided into two phases. The first
phase finds amatchbetween the two schemas. The match result is a set ofcorrespondencesbetween elements
in the two schemas, stating that these elements aresomehowrelated. For example, a correspondence may
state thatbuyer in one schema model corresponds tocustomer in another. The second phase builds on the
correspondences by creating the mapping expressions. The mapping expressions, often expressed as queries or
rules, enable translating data from one data source to another, or reformulating a query over one data source
into a query on the other. A plethora of techniques have been proposed for schema matching: see [RB01] for
a survey, and [NM02, DMDH02, DR02] for some work since then. Collectively, these techniques mirror the
heuristics that a human designer may follow. For example, techniques have considered exploiting relationships
between names of elements in the schemas, structural similarities between them, similarities in data values, and
even correlations between values in different attributes. Several recent works on schema matching are based on
combiningmultiple techniques in a principled fashion [MBR01, DDH01, DR02].

Corpus-based matching

Schema matching is often facilitated by a detailed knowledge about the domain in which the matching is being
performed. However, creating a knowledge base is often hard, and furthermore, the result may be brittle in
the sense it only helps on its domain of coverage, and only provides asingleperspective on the domain. Our
approach, corpus-based matching, complements a knowledge base by gleaning relevant knowledge from a large
corpus of database schemas and previously validated mappings. There are two types of knowledge that we can
glean from such a corpus. First, we can learn the different ways in which words (or terms) are used in database
structures (i.e., as relation names, attribute names and data values). Second, the validated mappings show how
variations in term usages correspond to each other in disparate structures.

Although such a corpus is not easy to construct, it is a very different kind of activity than building a detailed
and comprehensive knowledge base. It does not require the careful ontological design as a knowledge base does,
nor the careful control of its contents, thereby removing key bottlenecks present in the design of knowledge
bases. The corpus offersmultiple perspectiveson modeling a particular domain, including different levels of
coverage of the domain. Thereby, it is more likely to provide knowledge that is useful for matching two disparate
schemas.

28

The LSD System [DDH01] investigated the benefit of learning from previously validated mappings. That
worked considered the case where multiple data sources are mapped to a singlemediated schema, on which
users pose queries. LSD was provided with the mediated schema and a set oftraining matchesfor some data
sources. LSD used these matches to learn models of the elements of the mediated schema. Since no single
learning algorithm captures all the cues from the domain, LSD used a multi-strategy approach that combined
the predictions of several learners. LSD was then asked to predict matches between the mediated schema and
a set of test schemas. The experiments in [DDH01] showed that (1) it is possible to achieve high accuracy
with multi-strategy learning, and (2) additional accuracy is obtained by considering domain constraints (i.e., a
simple form of domain knowledge). Overall, LSD achieved matching accuracy of 75-90% on small to medium
sized schemas of data sources on the Web. LSD was then extended to consider simple taxonomies of concepts
in [DMDH02].

In recent work [MBC+03], we investigate the benefit of a corpus of schemas and matches, and the ability
to use such a corpus to predict mappings between apair of schemas that have not been previously seen. Like
in LSD, we learn models for elements in the corpus, using both the information available in the schema and
validated matches that are provided in the corpus. Given two schemas,S1 andS2, we calculate for each element
in them asimilarity vectorw.r.t. the corpus, i.e., how similar each element inSi is to each element in the corpus.
Very roughly speaking, if the similarity vectors of two elementsa1 ∈ S1 anda2 ∈ S2 are similar to each other,
then we predict thata1 matchesa2. The results of our experiments show that (1) even with a modest corpus of
10 schemas we are able to achieve good accuracy, and (2) the correct matches found by using the corpus and
those found by other previously known techniques overlap, but have significant differences. Hence, the use of
the corpus is finding matches that would not have been predicted by other techniques.

4 Other Uses of the Corpus

While schema matching was the first application that motivated our corpus-based approach, we believe the
corpus is a general tool that is applicable elsewhere1 We now briefly describe some of these applications.

4.1 Creating and Querying Structured Data

As argued at the outset, one of the greatest impediments to using database and knowledge base technology is the
conceptual difficulty of dealing with structured data. Hence, we are faced with the challenge of creating tools
that facilitate the creation and querying of structured data.

One such tool would be aschema design advisor, which assists in the authoring of structured data, much
in the spirit of an auto-complete feature. A user of such a tool creates a schema fragment and some data in a
particular domain, and the tool then proposes extensions to the schema using the corpus. The user may choose
a schema from the list and modify it further to fit the local context. Note that besides time savings, such a tool
has other advantages, such as possibly resulting in better designs and helping users conform to certain standards,
when these are applicable.

On the querying side, the corpus-based approach can facilitate the querying of unfamiliar data. Specifically,
consider a tool that enables you to pose a query usingyour own terminologyto any database. The tool would then
use the corpus to propose reformulations of your query that are well formed w.r.t. the schemas of the database
at hand. The tool may propose a few such queries (possibly with example answers), and let you choose among
them or refine them.

1In [HM03] we argue that the corpus can form a basis for a new class of Knowledge Representation systems.

29

4.2 Web Search and Query Answering

Another class of applications concerns various information finding tasks on the Web (or intranet). The first
application isquery answering(e.g., [KEW01, RFQ+02]): a natural language query is posed to a web search
interface, and rather than finding relevant pages, the search engine tries to find the answers to the query. A
second, related application isfocused crawling(e.g., [SBG+03]), where the search engine is given a particular
topic and tries to find pages relevant to it by crawling from an initial set of pages. In both of these applications,
the presence of additional domain knowledge has been shown or argued to be useful. However, the cost of con-
structing knowledge bases with such wide domain coverage is prohibitive. In contrast, a corpus-based approach
can yield a more robust solution.

5 Challenges

Our initial work has revealed significant challenges to building corpus-based tools. We briefly describe some of
these challenges that provide many exciting research opportunities.

Creating the corpus: The first challenge is, of course, creating a corpus of interest. Naturally, organizations
will not be quick to freely share their schemas. Fortunately, there are many publicly available schemas that are
already useful. Furthermore, our initial experiments have shown that significant advantages can be obtained
even by learning from a relatively small number of schemas.

A more subtle issue is thefocusof the corpus – how closely do the domains of the schemas in the corpus need
to be related to the domain for which the corpus is being used. For example, if we are concerned with mapping
between disparate schemas of purchase orders, should our corpus include only schemas in this domain? Will
schemas in other domains help or detract from the effectiveness of the corpus-based methods? Ideally, we
would like to be able to collect a large corpus of schemas without carefully controlling their domains, and devise
methods that exploit only the relevant information from the corpus.

Granularity in the corpus: The corpus will include many disparate schemas. At one extreme, we can view
everyterm ineveryschema as a separate ’concept’ and try to learn patterns about its usage. However, such an
approach will quickly get out of hand. Instead, we need to devise techniques that cluster elements in the corpus
into larger concepts and learn patterns about these clusters.

Tuning the corpus: Whatever automatic methods we use to analyze the corpus, there is no doubt that manual
tuning of the corpus can be useful. The tuning can be of several forms: removing useless schemas, adding
particularly useful mappings between schemas in the corpus, helping in clustering terms in the corpus, etc. In
addition, combining the corpus with a manually constructed domain model raises interesting challenges.

In conclusion, while the challenges for corpus-based tools are enormous, we believe the payoffs could be
huge, and the results can profoundly impact how we create and use structured data.

Acknowledgments
Many colleagues have contributed to the ideas that led to corpus-based representation. We would like to thank
Anhai Doan, Pedro Domingos, Oren Etzioni, Zack Ives, Pradeep Shenoy, and Igor Tatarinov. Funding was
provided by an NSF CAREER/PECASE Grant IIS-9985114, ITR Grant IIS-0205635, a Sloan Fellowship, and
gifts from Microsoft Research, Intel, NEC and NTT.

References

[ACMH03] Karl Aberer, Philippe Cudre-Mauroux, and Manfred Hauswirth. The chatty web: Emergent se-
mantics through gossiping. InTwelfth International World Wide Web Conference, 2003.

30

[AK03] Rene J. Miller Anastasios Kementsietsidis, Marcelo Arenas. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. InSIGMOD ’03, 2003.

[Ber03] Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems. InProceed-
ings of the Conference on Innovative Data Systems Research (CIDR), 2003.

[BGK+02] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing : A vision. InProceedings of the WebDB Workshop, 2002.

[DCvH+02] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-
Schneider, and L. Stein. OWL web ontology language 1.0 reference, 2002. Manuscript available
from http://www.w3.org/2001/sw/WebOnt/.

[DDH01] Anhai Doan, Pedro Domingos, and Alon Halevy. Reconciling schemas of disparate data sources:
a machine learning approach. InProc. of SIGMOD, 2001.

[DHW01] Denise Draper, Alon Y. Halevy, and Daniel S. Weld. The nimble integration system. InProc. of
SIGMOD, 2001.

[DMDH02] Anhai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to map between
ontologies on the semantic web. InProc. of the Int. WWW Conf., 2002.

[DR02] Hong-Hai Do and Erhard Rahm. COMA - a system for flexible combination of schema matching
approaches. InProc. of VLDB, 2002.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey.VLDB Journal, 10(4), 2001.

[HC03] Bin He and Kevin Chen-Chuan Chang. Statistical schema integration across the deep web. In
Proc. of SIGMOD, 2003.

[HED+03] Alon Halevy, Oren Etzioni, Anhai Doan, Zachary Ives, Jayant Madhavan, Luke McDowell, and
Igor Tatarinov. Crossing the structure chasm. InProceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[HIM +04] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan Suciu, and Igor Tatarinov.
The piazza peer-data management system.Transactions on Knowledge and Data Engineering,
Special issue on Peer-dta management, to appear, 2004.

[HIST03] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation in peer data
management systems. InProc. of ICDE, 2003.

[HITM03] Alon Halevy, Zachary Ives, Igor Tatarinov, and Peter Mork. Piazza: Data management infrastruc-
ture for semantic web applications. InProc. of the Int. WWW Conf., 2003.

[HM03] Alon Y. Halevy and Jayant Madhavan. Corpus-based knowledge representation. InProceedings
of the International Joint Conference on Artificial Intelligence, pages 1567–1572, 2003.

[KEW01] Cody Kwok, Oren Etzioni, and Dan Weld. Scaling question answering to the web. InProc. of the
Int. WWW Conf., pages 150–161, 2001.

[KN03] Jaewoo Kang and Jeffrey Naughton. On schema matching with opaque column names and data
values. InProc. of SIGMOD, 2003.

31

[KNO+02] P. Kalnis, W. Ng, B. Ooi, D. Papadias, and K. Tan. An adaptive peer-to-peer network for distributed
caching of olap results. InProc. of SIGMOD, 2002.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. InProc. of PODS, 2002.

[MBC+03] Jayant Madhavan, Philip Bernstein, Kuang Chen, Alon Halevy, and Pradeep Shenoy. Matching
schemas by learning from others. InWorking notes of the IJCAI-03 workshop on Data Integration
on the Web, 2003.

[MBDH02] Jayant Madhavan, Philip Bernstein, Pedro Domingos, and Alon Halevy. Representing and reason-
ing about mappings between domain models. InProceedings of AAAI, 2002.

[MBR01] Jayant Madhavan, Phil Bernstein, and Erhard Rahm. Generic schema matching with cupid. In
Proceedings of the International Conference on Very Large Databases (VLDB), 2001.

[MEH+03] Luke McDowell, Oren Etzioni, Alon Halevy, Henry Levy, Steven Gribble, William Pentney,
Deepak Verma, and Stani Vlasseva. Enticing ordinary people onto the semantic web via instant
gratification. InProceedings of the Second International Conference on the Semantic Web, October
2003.

[MH03] Jayant Madhavan and Alon Halevy. Composing mappings among data sources. InProc. of VLDB,
2003.

[MQS03] http://www-3.ibm.com/software/ts/mqseries/, 2003.

[NM02] Natalya Noy and Mark A. Musen. PROMPTDIFF: A fixed-point algorithm for comparing ontology
versions. InProceedings of AAAI, 2002.

[NOTZ03] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. PeerDB: A P2P-based system
for distributed data sharing. InSIGMOD ’03, 2003.

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjorn Naeve,
Mikael Nilsson, Matthias Palmer, and Tore Risch. EDUTELLA: A P2P networking infrastruc-
ture based on RDF. InEleventh International World Wide Web Conference, pages 604–615, 2002.

[PG02] Neoklis Polyzotis and Minos N. Garofalkis. Statistical synopses for graph-structured XML
databases. InSIGMOD ’02, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

[RFQ+02] Dragomir R. Radev, Weiguo Fan, Hong Qi, Harris Wu, and Amardeep Grewal. Probabilistic
question answering on the web. InProc. of the Int. WWW Conf., pages 408–419, 2002.

[SBG+03] S. Sizov, M. Biwer, J. Graupmann, S. Siersdorfer, M. Theobald, G. Weikum, and P. Zimmer. The
BINGO! system for information portal generation and expert web search. InProceedings of the
First Biannual Conference on Innovative Data Systems Research (CIDR), Asilomar(CA), 2003.

32

Database Exploration and Bellman

Theodore Johnson, Amit Marathe, Tamraparni Dasu
AT&T Labs – Research

{johnsont,marathe,tamr}@research.att.com

Abstract

Large industrial-scale databases tend to be poorly structured, dirty, and very confusing. There are
many reasons for this disorder, not the least of which is that the application domains themselves are
poorly structured, dirty and confusing. As data analysts, we are often called upon to mine, clean, or oth-
erwise analyze these databases. In this article, we describe the types of problems we have encountered,
tools and techniques we have developed to address these problems, and directions for future work.

1 Introduction

As analysts at a very large information-intensive corporation, we are often called upon to analyze business data
sets. The analysis tasks range from data mining and analysis to assisting subject matter experts in data quality
improvement projects. The source data might be a set of extracted views delivered in delimited ASCII format,
or ODBC access to a dozen very large and complex databases which participate in a business process.

The most difficult aspect of these projects is to make sense of the available data. Because of the enormous
scope and complexity of AT&T’s services and offerings, these data sets would be challenging even if the data
were clean, well-organized, and well-documented. In general, they are not, and we spend a significant portion
of our time extracting metadata from the data set and from subject matter experts.

In this paper, we describe the kinds of problems we encounter in the data sets and the tools and techniques
that we have developed to overcome these problems. We conclude with directions for future research.

2 Problems with Data Interpretation

Understanding the structure and relationships in databases with thousands of tables is a difficult task even in the
best of conditions. We often encounter two problems which make the job even harder: poor documentation and
data quality problems.

Metadata When we get access to a data set for an analysis, we almost always discover that the documentation
and metadata is incomplete, inaccurate, or just plain missing. Sometimes the data set is provided as a collection
of delimited ASCII files (or perhaps spreadsheet files). In this case the metadata is often just the file names and
the field names. These data sets are either kept using an informal database (e.g. a spreadsheet), or are generated

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

33

as a query against a database. In either case we need to depend on the data provider to write documentation for
us — which is unlikely. A special problem occurs when the data is a query result: the query is a crucial piece
of metadata. However the query(s) which generated the data are usually not provided (and often the provider is
reluctant to reveal the query).

In other cases, we are provided with logins and programmatic access (e.g., ODBC) to the source databases
(or we are given a copy of the database backup). A commercial DBMS provides many facilities for recording
metadata. In addition to declaring keys and foreign key joins, we can examine which fields are indexed and what
domains, views, and stored procedures are defined. There might also be explanatory comments associated with
tables and fields. From the declared keys and foreign key joins, most DBMSs have tools which draw charts of
the database structure.

Unfortunately, these metadata are usually incomplete. DBAs rarely label tables with comments, and often
do not record keys, foreign key joins, and so on. There are several reasons for this lack of documentation. One is
that creating documentation is tedious and unrewarded. The DBA knows what the table means (at least, she does
when it is created), and why should she train her replacement? Enforcing key and foreign key join properties
can create a high overhead, and can also be dangerous. It can be easier to turn off consistency constraints to
make a data set load than it is to debug a data problem. Also, we have encountered serious data quality problems
which were caused by the unintended consequences of enforcing foreign key join constraints. Another factor is
that enterprise databases change frequently (i.e., because the modeled enterprise does), so the recorded metadata
quickly becomes out-of-date. This problem is another disincentive to recording metadata — since its likely to
be useless or misleading when the DBA needs it, why should she record it?

There is another reason why we usually find the metadata to be lacking. We are called upon to perform new
data mining and data quality studies, and therefore are making new uses of the data. Common uses of the data
are likely to be well documented, unusual uses aren’t.

Even if the conventional metadata were complete, it usually does not provide enough information to interpret
the data set. Some issues are:

• In textbooks, field names fully describe the field contents. The “natural join” makes a strong use of this
property — since fields with the same name mean the same thing, the join condition between two tables is
a test for equality between all fields with the same name. In practice, there are many names for fields with
values which describe the same things. Sometimes the heterogeneity is the result of small misspellings,
sometimes the field names are completely different. Often, fields with the same name have very different
contents (e.g.Addressin the IPCIRCUIT table versusAddressin the CUSTOMER table). Even if their
values are drawn from the same domain, the values might refer to very different things (e.g., customer
Namevs. salespersonName). When dealing with multiple databases, these problems are even worse.

• Databases often show a surprising degree of heterogeneity. We expect this kind of problem when inte-
grating multiple databases, but we encounter it even in a single database. A very large (1000 table or
more) database is often run by multiple DBAs and might refer to multiple logical entities. For example,
one group of tables might refer to customer accounts while another group of tables refers to invoices.
Names, keys, formats, conventions, normalization, and so on might be significantly different between
these different areas. Another cause of heterogeneity is the continual change in the enterprise. Although
the DBAs might design a schema which perfectly fits the current state of the enterprise, within six months
the database will be called upon to support entirely new types of customers and services. These are often
shoehorned into existing tables to the greatest degree possible. As a result, a table will often have multiple
disjoint sets of join paths, depending on the flavor of the tuple to be joined. We often find fields with very
heterogeneous contents (e.g., describing a customer by name or by numeric key).

• The data in these databases is not static, rather it used (or is generated) by some enterprise processes.
A proper interpretation of the data requires an understanding of these processes. However processes are

34

often even less documented than the database.

Data Quality Problems Compounding the difficulties cause by missing, incomplete, or ambiguous metadata
are data quality problems. We often find that a task which should be simple winds up being quite difficult
because of poor data quality. We need to diagnose the extent of the problems, then explore the database to
determine workaround procedures. A selection of the kinds of problems that we frequently encounter are:

Missing Data: We often find that important data does not exist in the database. Sometimes relevant fields are
sparsely populated or completely missing. For example, we might want to find predictors of high-revenue
customers. In this case we are certain to find that theRevenuefield of the CUSTOMER table is almost
completely NULL. If there is a CUSTOMERREVENUE table, it is certain to have only a few dozen
records. Perhaps the table is the result of a query and the DBA uses an inner join where an outer join
would be more appropriate.

Incorrect Values: Even if we were to find a well-populatedRevenuefield, it is quite likely to contain incorrect
data (or to be calculated in a way different that what we expect).

Poor Join Paths: Many times join paths are of poor quality – the foreign key join constraints are not maintained.
So if we have well-populated CUSTOMER and REVENUE tables, its likely that we can join these tables
for only a small fraction of the customers.

Duplicates in Key Fields: Finding a key for a table can be surprisingly difficult. Sometimes a key field (or
fields) will contain duplicates. This problem occurs for many reasons. Sometimes unique keys get recy-
cled (e.g., telephone numbers) and the table contains both old and current entities. The data might be the
result of a query in which a join creates multiple entries for a few records. Perhaps we are trying to write
an ad-hoc query and use a serendipitous join path.

In our experience, problems that we at first attribute to “poor quality data” often turn out to be problems
in our interpretation. The CUSTOMERREVENUE might be built only for customers of a particular class.
TheRevenuefield might not include rebates or other pricing adjustments. The CUSTOMER table might refer to
corporations as a while, while the REVENUE table refers to entities within corporations. To join these tables, we
might need to use a table which associates entities to their parent corporations (we might have a few successful
matches in the case of small businesses).

3 Tools and Techniques

Since we are naturally lazy, we have developed tools and techniques to make our jobs easier. The two that
we discuss here aredatabase browsingtools anddata quality metrics. Although they are quite different, these
tools have two things in common: they cut through the complexity of large systems, and they extract missing
metadata.

3.1 Database Browsing

Finding relevant data is difficult in very large (1000+ tables) complex databases. This task is even more difficult
when the data is dispersed among a dozen such databases. We found that we need advanced database browsing
tools which could help us understand what the database contents and structure are. For example, we usually find
“surprises” in the database, and we need to explore the database to determine if the surprise is a data quality
problem or a problem in our understanding of the database structure.

35

The tool we developed, Bellman,profiles the database [5] to develop compact statistical summaries of the
database contents. When a user browses a database, Bellman uses these summaries to provide informative
displays and powerful exploration queries in an interactive fashion.

Many of the facilities that Bellman provides are fairly simple, but surprisingly useful. Bellman collects and
interactively displays the number of rows in each table, and for each field the number of unique and null values.
This simple function immediately tells about missing data. Bellman also collects information about multiple
databases, and can manage multiple open connections to them. While Bellman does not yet support federated
queries, the ability to browse and query multiple databases simultaneously is very useful. Other simple but
useful tools are a collection of canned queries for sampling, summarizing, and visualizing a table’s contents.

Some tools use more sophisticated algorithms, developed by others. Bellman will find all minimal approx-
imate keys of up to four fields on all tables using an algorithm based in part on Tane [7]. We also collect the
most frequent values of a field (“heavy hitters”) using a sketch-based algorithm [1]. If a table has say 100 fields,
we compute the most common field values using a one pass algorithm instead of 100 group-by queries. Most
frequent value information is very useful because it gives a feel for the contents of a field, and also because
default NULL values are usually the most frequent values (often there is more than one default NULL value).
We are currently experimenting with using recently developed approximate string matching algorithms [6] to
implement an approximate join engine.

We developed a crucial technology for Bellman, as is described in [3]. For every field, we can interactively
compute theresemblanceof the set of field values (resemblance is the size of the set intersection divided by the
size of the set union). We use the resemblance find join paths, and to find data which is “similar” to a sample.
With augmented information, we can obtain good estimates of join sizes and whether the join is one-to-one,
one-to-many, or many-to-many. Many times two fields will match only after a small transformation. To help in
the search for these pairs, we also provide tools for interactive substring similarity queries.

A typical use of Bellman would be as follows. We are asked to make a study of some particular business
process. We obtain logins and ODBC access to the relevant databases, then use Bellman to collect database
profiles. By talking to Subject Matter Experts (SMEs), we get an understanding of the business process and
what our data targets are. Typically, we run into various problems — data is missing, join paths don’t work, data
mining analyses yield suspicious results, and so on. We begin a database exploration process to find solutions to
these problems. We might want to find all data related to frame relay circuits, in which case we will search for
frame relay circuit IDs by starting with a sample and using Bellman’s resemblance and substring similarity tools.
When we find these fields, we use Bellman to explore these tables to determine whether the information they
contain is relevant to our needs. We might want to find alternative join paths, either because the documented join
paths are broken or because we want a check on suspicious data (i.e., we want correlating information). We use
the approximate keys and field resemblance facilities to find the alternative join paths, and the general browsing
facilities to evaluate the results.

3.2 Data Quality Metrics

Data quality metrics are intended to assure the data user of the confidence he or she can place in the data. In
general, data quality metrics measure the reliability and usability of the data. However, they can also serve to
document critical metadata as well. The brief discussion here is taken from a recent book [2].

Conventionally, metrics have been designed forstatic views of the data, with time related aspects incorpo-
rated only tangentially, e.g., timeliness of the data. These metrics emphasize rigid constraints such as complete-
ness, accuracy and consistency. In reality, such constraints are often not enforceable. Verifying accuracy would
entail expensive inventory checking. Proxies such as sampling or tracking trouble tickets might be insufficient
with a potential for built-in bias. Consistency and uniqueness might be impossible to ensure. For instance, a
“customer” could mean a billing entity, a corporation, a contract of services , or a piece of equipment. Unique-
ness is a stumbling block if different systems require representing an entity with slight variations e.g., “New

36

Vernon, NJ and “New Vernon NJ. This is especially true of complex legacy systems, which have all kinds of
quirks hard coded into the system.

Modern uses and data applications require a much moredynamicdefinition of metrics to reflect accurate
conformance to process flows. For instance, there has been a recent focus on auditing databases that support
business operation for data quality issues. Such an audit often reveals flaws in the process, in addition to
any glitches the data. Based on this, we can define two categories of data quality metrics, —operational
anddiagnostic. Operational metrics identify unexpected divergence of process from specification, providing
guidance for fixing flaws that manifest as data quality issues. Diagnostic metrics on the other hand, merely
identify the flaws in the data and do not provide insight into how to fix them. Completeness is a good example.
“The data set has ten percent missing data” is informative but not useful for finding the problem that is causing
the data quality issue.

As mentioned earlier, the lack of metadata is a major issue in a data analysis project. Here, we make a
distinction between access and interpretation.Accessibilitycan be measured by seemingly bureaucratic criteria
such as number of calls, number of people contacted, level of escalation and total time taken from request for
access to data to actual physical access to data.Interpretability is more nuanced and harder to measure. The
schema might be accurate, but there might be hidden rules that are not documented. For example, the people
who created the data might have informally compressed the data with rules such as “if the resources allocated to
a customer have consecutive serial numbers, record the first and last serial number and set attribute Flag to Y”.
We cannot interpret the data if we do not know the rule. Another example in this context is that of censoring in
duration data. A call beyond 100 minutes might be censored, so that all we know is that it lasted beyond 100, we
cannot distinguish between calls of 101 minutes and 10001 minutes. Such rules are seldom documented and are
revealed only by browsing the data and validating the findings with SMEs. Hidden rules show up as glitches in
analysis (unexpected spikes in histograms) and data integration (only 10% of the records matched) . The number
of analytical passes needed to get reasonable results is a good metric to measure interpretability. Similarly in
the operations setting, the number of manual interventions needed (measures automation) and the proportion
of data that flows through the process successfully (end-to-end completion) are good metrics. Automation is
particularly important since many data quality glitches arise from manual intervention and workaround patches
to modify a process designed to automatically complete a multi-step task or transaction. A longer discussion of
data quality metrics can be found in [2].

Implementing data quality metrics in a data quality program involves three major stages: (a) data preparation
(gathering, storing, integration, manipulation etc.), (b) gathering domain knowledge through interaction with
SMEs, e.g., build business rules, devise appropriate metrics and (c) validating the data against the rules and
quantifying data quality using the metrics. The three stages are iterated until the experts and the users sign off
on the usability of the data. However, the second stage is surprisingly challenging. Subject matter experts are
hard to identify (scattered across the company, personnel and project transitions) and often have no incentive
to share their time or knowledge. Even if they cooperate, different experts frequently disagree on definitions
and details. Finally, there is often a disconnect between the articulation of the rules by the experts and the
implementation by the technical staff. A potential solution is offered in [4], where rule based programs are used
to encode the expert’s knowledge in a form that can be easily understood and verified by the expert. Such an
approach also allows for representing knowledge that is acquired piecemeal, out of sequence and that needs to
be updated frequently.

Despite the challenges of implementing data quality metrics as a part of a data quality or data auditing
program, there are significant benefits. First, the process of defining data quality metrics results in the creation of
metadata and documentation about the data and the process. Second, it puts in place a mechanism for conducting
frequent end-to-end audits to catch data quality issues as soon as they arise before they get entrenched and corrupt
large sections of the data. Finally, it increases the confidence in the data by putting in place objective, clearly
defined metrics that are transparent and cannot be manipulated easily for political ends.

37

4 Conclusions

The tools that we have developed are very useful in our analysis tasks, letting us quickly resolve seemingly
difficult problems. We have found that some of the simplest tools are often the most effective. However, we feel
that additional, more sophisticated tools are needed:

• Database structure mining, for example to find clusters of inter-related tables.

• Incorporating dynamic information, such as that extracted from query logs. However, we have found that
DBAs are (often justifiably) reluctant to share these logs.

• Integrating SME metadata with extracted metadata.

The digital revolution has only started, the volume and complexity of enterprise information will continue
to increase. Software engineers have faced the problem of developing very large scale interoperating code, and
in response have developed many design, analysis, and reverse engineering tools and techniques. Analogously,
database engineers need similar tool suites.

References

[1] G. Carmode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items dynamically.
In Proc. Principles of Database Systems, pages 296–306, 2003.

[2] T. Dasu and T. Johnson.Exploratory Data Mining and Data Cleaning. Wiley, 2003.

[3] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining database structure; or, how to build a
data quality browser. InProc. ACM SIGMOD Conf., pages 240–251, 2002.

[4] T. Dasu, G. Vesonder, and J. Wright. Data quality through knowledge engineering. InProf. Conf. Knowledge
Discovery and Data Mining, pages 705–710, 2003.

[5] Evoke Software. Data profiling and mapping, the essential first step in data migration and integration
projects. http://www.evokesoftware.com/pdf/wtpprDPM.pdf, 2000.

[6] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an rdbms for web data integration. In
Proc. Intl. world Wide Web Conf., pages 90–101, 2003.

[7] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Efficient discovery of functional dependencies and
approximate dependencies using partitions. InProc. IEEE Intl. Conf. on Data Engineering, pages 392–401,
1998.

38

On Schema Discovery∗

Renée J. Miller Periklis Andritsos
Department of Computer Science

University of Toronto
{miller,periklis}@cs.toronto.edu

Abstract

Structured data is distinguished from unstructured data by the presence of a schema describing the
logical structure and semantics of the data. The schema is the means through which we understand and
query the underlying data. The schema permits the more sophisticated structured queries that are not
possible over schema-less data. Most systems assume that the schema is predefined and is an accurate
reflection of the data. This assumption is often not valid in networked databases that may contain data
originating from many sources and may not be valid within legacy databases where the semantics of data
have evolved over time. As a result, querying and tasks that depend on structured queries (including
data integration and schema mapping) may not be effective. In this paper, we consider the problem of
discovering schemas from data. We focus on discovering properties of data that can be exploited in
querying and transforming data. Finally, we very briefly consider the suitability of mining approaches
to the task of schema discovery.

1 Introduction

As the size, number, and complexity of databases continues to grow, understanding their structure and semantics
gets more difficult. This, together with other associated problems such as the lack of documentation or the
unavailability of the original database designers can make the task of understanding the structure and semantics
of databases a very difficult one. At the same time, data sources may contain errors and may contain data that
was integrated from many sources. This integration may introduce additional anomalies or duplicate data values
and records. Fewer and fewer databases contain only raw data that has been put in electronic form for the first
time and that has been carefully designed and structured for a well-defined application task. Rather, modern
databases contain data that has been integrated and transformed, often many times, from other source(s).

No matter how principled or sophisticated the integration approach, we simply cannot always guarantee a
perfect integration. Similarly, no matter how carefully a database was designed in the past, the data semantics
may still evolve or errors may be introduced into the data. Hence, the data may be inconsistent or incomplete
with respect to its schema (where the schema may include structuring primitives such as table declarations along
with constraints). There are many forms of data inconsistency including incorrect or erroneous data values. A

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Funding provided by NSERC, MITACS, a Premier’s Research Excellence Award, and a gift from Microsoft.

39

data instance is typically said to be inconsistent if it does not conform to the constraints of the schema [ABC99].
Similarly, there are many forms of incompleteness including missing or unknown values or missing records
[Gra02]. As with inconsistency, incompleteness is usually studied with respect to a schema. Notice that the
assumption is that we trust the schema, that is, the schema is an accurate model of the time-invariant properties
of the data. However, in both legacy databases (where the semantics of the data may have evolved since the
schema was designed) and in integrated data (where data with different semantics may be added) this may not
be a valid assumption.

In this paper, we briefly consider a different approach. Rather than viewing the data as being inconsistent or
incomplete with respect to a given schema, we consider the schema to be potentially inconsistent or incomplete
with respect to a given data instance. With this view, we consider whether we can propose techniques for
discovering a better schema for the data. Of course, given a single data instance, we cannot be sure that the
properties we find will hold for all possible instances (that is, we cannot be sure that these are time invariant
properties). But we believe that automated techniques can be used to suggest potential schemas and that such
suggestions can be incorporated into physical and logical data design and integration tools.

Below, we consider how having a schema that is inaccurate with respect to a given data instance can hamper
both querying and the integration process itself. We then consider, in closer detail, the properties of schemas
with an eye toward developing algorithms for schema discovery. We present one application of these ideas
involving the clustering of tuples and values based on their structure.

2 Schema Properties

We use the term schema to refer to a set of structuring primitives (predicates), for example, relations or nested-
relations, and a set of constraints (logical statements) over these primitives. Examples of constraints include
key constraints and referential constraints. Constraints play an important role in data design and, as we will
argue below, they are integral in understanding what forms of learning approaches are most useful for schema
discovery. Before discussing the discovery problem, we examine in closer detail the role of schemas in providing
structural and semantic information about data. We also consider the role schemas have played in the integration
process.

Structured queries are by definition typed, that is, they take instances of a fixed schema (or type) and create
an instance of a fixed schema [AHV95].1 When schemas are inaccurate, queries can produce unexpected results.
Consider the following schema and instance.

title director actor genre release date
Godfather II M. Scorsese R. De Niro Crime 1974
Good Fellas F. F. Coppola R. De Niro Crime 1998

Vertigo A. Hitchcock J. Stewart Thriller 1958
N by NW A. Hitchcock C. Grant - 1959

Alexander the Great Baz Luhrmann - - -
Water Deepa Mehta - - -

My Life Without Me Isabel Coixet - - -

Table 1: An instance of the movie relation

Intuitively, the first four tuples of this relation correspond to movies that have already been released and
the last three tuples to movies that are currently being shot. We could imagine a situation where Table 1 has

1Of course, this analysis excludes work on higher-order or polymorphic queries [LSS01] which produces instances conforming to a
family of schemas.

40

been produced after integrating two separate relations, one for released movies and another for pre-release films
(which may include movies in production or movies that may never be shot or released) or a situation where
the original data requirements included only released movies, but later applications required information about
pre-release movies. In either case, the schema asserts that movies may have release dates and genres. A query
analyzing trends in the genre of movies may give very misleading results as this information is systematically
missing for pre-released films. Similarly, schemas in which constraints hold but are not expressed can lead to
query results that are much different than anticipated. In our movie database, films may be associated with
many companies which are responsible for various aspects of their production, financing, and release. However,
films produced under the old studio system may all be associated with exactly one company. We can view
such schemas as being incomplete (or more generally inaccurate) in that they fail to model important logical
distinctions.

In addition to the effect on queries, inaccurate schemas can influence the integration process. Traditional
integration approaches were very schema-centric [BLN86]. Given a set of schemas, these approaches would
create an integrated schema or view. In the above example, it is not apparent from the schema that the movie
relation contains two different types of movies. Hence, the integration of this database with another in which
movies are separated by their production stage may result in all movies from our database being incorrectly
assumed to belong to a single production stage (for example, they may all be assumed to be released movies).
In more recent work, the focus of integration methods has shifted away from the problem of creating integrated
schemas, to the problem of creating queries between independently created schemas [MHH00, HMN+99]. Such
approaches have been called query-centric [Ull03], to distinguish them from view-centric approaches which use
views as a means of integrating data and modeling the query capabilities of different sources [LRO96, Hal01].
Query-centric and view-centric approaches have been combined in approaches that create more general map-
pings (sometimes called GLAV, global-and-local-as-view, or BAV, both-as-view, mappings) [Len02, PVM+02,
MP02]. However, because these structured queries and views are inherently typed, the effectiveness of all of
these approaches depends to a large extent on the quality of the schemas being used. Logical semantics that are
not modeled in a schema cannot be exploited. Mappings created over inaccurate schemas, such as the schema in
Table 1, may incorrectly integrate or transform data (for example, by treating release and pre-released movies as
a homogeneous collection). These mappings may produce unexpected or undesired results including (possibly)
instances that do not conform to the target schema of the mappings.

In schema discovery, we will seek to discover logical structure that may be useful for integration or querying.
Before presenting examples of discovery techniques, we consider one additional property of schemas that will
be useful in designing and understanding schema discovery methods.

Schemas, like structured query languages that use them, treat data values largely as uninterpreted objects.
This property has been calledgenericity [AHV95] and is closely tied todata independence, the concept that
schemas should provide an abstraction of a data set that is independent of the internal representation of the
data. That is, the choice of a specific data value (perhaps “Coppola” or “F.F.C.” or “francis ford coppola” in
our example) has no inherent semantics and no influence on the schema used to structure director values. The
semantics captured by a schema is independent of such choices.2

For query languages, genericity is usually formalized by saying that a query must commute with all pos-
sible permutations of data values (where the permutations may be restricted to preserve a distinguished set of
constants) [AHV95]. Similarly, we can formalize the genericity of schemas in the following way.

Definition 1: A schemaS is said to begenericif for all instancesI of S and for all permutationsπ of values in
I, π(I) is also an instance ofS.

It is possible in SQL and other languages used in practice, to write non-generic queries (for example, using

2The termgenericis sometimes used to meandata model independent. In this paper, we will use the adjectivegenericto refer to
schemas that exhibit the genericity property.

41

user-defined functions) and non-generic constraints (for example,check release-date < 2004). How-
ever, such constraints are not foundational to structuring data and when used, are typically restricted to domains
with a known, application-specific semantics (such as the ordering of years in this example). A similar con-
straint on movie titles (check title < 2001) is likely to be meaningless with respect to the semantics of
movie data. Our thesis is not that such application-specific information is unimportant, but rather that it is often
unavailable or inconsistent across different data sources which may use different conventions for encoding data
values. Our techniques will therefore focus on the discovery of generic structure and constraints.

3 Schema Discovery Techniques

Schema discovery is not a new problem. Early approaches were motivated by the observation that an important
source of inaccuracy in relational schemas is incompleteness, particularly in the constraints. Techniques for
enumerating constraints that hold on a relational database include algorithms for finding dependencies (such
as functional and multivalued dependencies) [BB95, Bel95, Bel97, KMRS92, WBX98]. Given an instance of
a schema, the idea is to find all constraints within a specified class that describe the data. Of course, from a
single database instance, we cannot determine whether the constraint is a dependency, that is, whether it will
continue to hold as the data changes. However, these techniques can find a set of candidate dependendencies.
Furthermore, several approaches consider the constraint mining problem over dirty data and propose techniques
to find approximatedependencies that hold for most records [HKPT98]. The candidate dependencies found by
such algorithms can be examined by a user or provided as input to a data design tool.

Constraint mining has applications beyond schema discovery (for example, to semantic query optimization).
But certainly discovered constraints can be used to find “better” schemas. If additional constraints are found,
then we can apply normalization methods to produce a (vertically) decomposed schema. Such methods are
well-known to produce better schemas by reducing redundancy in the data and removing (or lessening) such
evils as update anomalies. Notice that such a discovery approach operates by finding redundancy (specifically
the redundancy that can be characterized by traditional relational dependencies) and removing this redundancy.
Also, all of the constraint mining techniques we have mentioned are generic in that they do not rely on any
application-specific semantics for the representation of data values.

Constraint mining looks to find a set of constraints (logical statements) that hold on a given data set and
structure. The set of predicates used in these constraints is fixed – where the set of predicates corresponds to the
set of tables defined in the schema. In our example, this means that the algorithms will search for constraints that
hold over all movies and will not consider separating movie tuples into different tables and finding constraints
that hold within each table. The re-structuring that is done is with respect to attributes. Attributes are regrouped
into (potentially overlapping) sets, each representing a new table.

Now consider the problem of producing better schemas even when the set of predicates is not fixed. Concep-
tually, we would like to find a clustering of tuples such that each cluster can be described by a good schema. So
we wish to find redundancy in the data, but redundancy that can be removed by partitioning tuples horizontally
rather than vertically. Our approach is based on a clustering method called LIMBO [ATMS03]. Clustering pro-
duces a partitioning of objects where objects within the same cluster are similar and objects in different clusters
are dissimilar. To apply clustering to this problem, we have to define a distance metric for relational tuples that
is generic. In our movie example, it is not obvious how to measure the similarity (or dissimilarity) of the values
“Coppola”, and “Scorsese”. Nor is it obvious how to define the distance between tuples “Vertigo” and “Good
Fellas”. If we are seeking to remove redundancy, intuitively we need a measure of similarity that reflects the
redundancy in these tuples. However, even with such a measure, it is not obvious how to define a quality mea-
sure for the clustering. Yet, for humans there is an intuitive notion of quality for clustering. A good clustering
is one where the clusters areinformativeabout the tuples they contain. Since tuples are expressed over attribute
values, we require that the clusters be informative about the attribute values of the tuples they hold. That is,

42

given a cluster, we should be able to predict the attribute values of the tuples in the cluster to the greatest degree
possible. Hence, highly redundant tuples will tend to be grouped together. The quality measure of the clustering
is the information that the clusters hold about the attributes. Since a clustering is a summary of the data, some
information may be lost. Our objective is to minimize this loss, or equivalently to minimize the increase in
uncertainty.

Consider again the data in Table 1 and the partitioning of tuples into two clusters. ClusteringC groups the
first four movies together into one cluster,c1, and the remaining three into another,c2. Note that clusterc2
preserves all information about the actor, genre and release date of the movies it holds. For clusterc2, we know
with certainty that these values are missing (or null). For clusterc1, we have lost some information about these
attributes so we have less certainty. But we do know, for example, that there is a 50% chance that the genre is
“Crime”. In this example, any other clustering will result in greater information loss. To see this, consider a
clusteringD again with two clusters. The first clusterd1 contains the first three tuples and the second cluster
d2 contains the last four (so unlike inC, the fourth tuple has be assigned to the second clusterd2). In d2, we
maintain certainty about the value of genre, but we lose information about actor and release date.

We have formalized this intuition and developed a scalable algorithm for clustering large categorical data
sets [ATMS03]. We have applied our techniques to clustering both relational data and web data. Furthermore,
LIMBO is a hierarchical algorithm that produces clusterings for a large range ofk values (wherek is the number
of clusters). This property is very important for schema discovery since we can evaluate differentk values
(among the many clusterings produced in a single application of the algorithm) to determine one that achieves
the best schema design.

We have argued that schema discovery involves characterizing (and eliminating) redundancy in the data.
Our approach to characterizing redundancy is similar in spirit to recent work on using information theory to
both characterize good schema designs and to compare the quality of different designs [AL03] (and to work
characterizing the information theoretic properties of dependencies [DR00]). However, this work defines the
information content of database elements with respect to a fixed set of constraints. Furthermore, the measure is
restricted to valid database instances that satisfy these constraints. In our work, we have characterized the infor-
mation content independent of constraints since such constraints are often unknown (or only partially known)
and the data may contain errors. Nonetheless, there are important synergies between these results.

4 Conclusions

Schemas are typically the result of a data design process (performed by a human designer or by an automated
tool). The choices made in data design are known to be highly subjective. A schema is inherently one out of
many possible choices for modeling a data set. To understand and reconcile heterogeneous data, we may need to
understand (and explicitly represent) some of the alternative design choices. Our current research focuses on the
development of schema discovery techniques for finding such alternative designs. Our long term research goal
is to find generic methods for discovering schemas that fit the data. Our work on LIMBO is a first step toward
this goal. This work is part of a broader research agenda designed to develop solutions for creating, managing
and transforming structure and meta-data, including schemas and mappings between schemas [AFF+02].

References

[ABC99] M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent Databases. InProc. of
the ACM Symp. on Principles of Database Systems (PODS), pages 68–79, 1999.

[AFF+02] P. Andritsos, R. Fagin, A. Fuxman, L. M. Haas, M. Hernandez, C.-T. Ho, A. Kementsietsidis, R. J. Miller,
F. Naumann, L. Popa, Y. Velegrakis, C. Vilarem, and L.-L. Yan. Schema Management.Data Engineering
Bulletin, 25(3), September 2002.

43

[AHV95] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison Wesley, 1995.

[AL03] M. Arenas and L. Libkin. An Information-Theoretic Approach to Normal Forms for Relational and XML
Data. InPODS, pp. 15-26, 2003.

[ATMS03] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik. Limbo: Scalable Clustering of Categorical Data.
Hellenic Database Symposium, 2003.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for Database Schema
Integration.ACM Computing Surveys, 18(4):323–364, December 1986.

[BB95] Siegfried Bell and Peter Brockhausen. Discovery of constraints and data dependencies in relational databases.
In Nada Lavra˘c and Stefan Wrobel, editors,Proceedings of the 8th European Conference on Machine Learn-
ing, volume 912 ofLNAI, pages 267–270, Berlin, April 1995. Springer.

[Bel95] S. Bell. Discovery and maintenance of functional dependencies by independencies. InProceedings of the
Workshop on Knowledge Discovery in Databases, pages 27–32. AAAI Press, 1995.

[Bel97] Siegfried Bell. Dependency mining in relational databases. In Dov M. Gabbay, Rudolf Kruse, Andreas Non-
nengart, and Hans J¨urgen Ohlbach, editors,Proceedings of the First International Joint Conference on Qual-
itative and Quantitative Practical Reasoning, volume 1244 ofLNAI, pages 16–29, Berlin, June9–12 1997.
Springer.

[DR00] M. M. Dalkilic and E. L. Robertson. Information Dependencies. InPODS, Dallas, TX, USA, 2000.

[Gra02] G. Grahne. Information Integration and Incomplete Information.IEEE Data Engineering Bulletin, 25(3):46–
52, 2002.

[HMN+99] L. M. Haas, R. J. Miller, B. Niswonger, M. Tork Roth, P. M. Schwarz, and E. L. Wimmers. Transforming
Heterogeneous Data with Database Middleware: Beyond Integration.IEEE Data Engineering, 22(1):31–36,
1999.

[Hal01] A. Y. Halevy. Answering Queries Using Views: A Survey.The Int’l Journal on Very Large Data Bases,
10(4):270–294, 2001.

[HKPT98] Y. Huhtala, J. K¨arkkäinen, P. Porkka and H. Toivonen. Efficient Discovery of Functional and Approximate
Dependencies Using Partitions.Int’l Conf. on Data Engineering, 392–401, 1998.

[KMRS92] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola. Discovering Functional and Inclusion Dependencies in
Relational Databases.International Journal of Intelligent Systems, 7(7):591–607, September 1992.

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. InProc. of the ACM Symp. on Principles of
Database Systems (PODS), pages 233–246, 2002.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information Sources Using Source
Descriptions. InProc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages 251–262, Bombay, India,
1996.

[LSS01] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. Schemasql: An extension to sql for
multidatabase interoperability.ACM Trans. on Database Sys. (TODS), 26(4):476–519, 2001.

[MHH00] R. J. Miller, L. M. Haas, and M. Hern´andez. Schema Mapping as Query Discovery. InProc. of the Int’l Conf.
on Very Large Data Bases (VLDB), pages 77–88, Cairo, Egypt, September 2000.

[MP02] Peter McBrien and Alexandra Poulovassilis. Schema Evolution in Heterogeneous Database Architectures, A
Schema Transformation Approach. InConference on Advanced Information Systems Engineering (CAISE),
pages 484–499, 2002.

[PVM+02] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating Web Data. InProc. of the
Int’l Conf. on Very Large Data Bases (VLDB), pages 598–609, Hong Kong SAR, China, August 2002.

[Ull03] J. D. Ullman. Where Is Database Research Headed? Keynote. InIEEE Conference on Database Systems for
Advanced Applications (DASFAA), Kyoto, Japan, 2003.

[WBX98] S. K. M. Wong, C. J. Butz and Y. Xiang. Automated Database Schema Design Using Mined Data Dependen-
cies.Journal of the American Society for Information Science, 49(5), pages 455–470, April 1998.

44

Sponsored by the

IEEE Computer Society

CALL FOR PARTICIPATION

20th International Conference on Data Engineering
March 30 - April 2, 2004

Omni Parker House Hotel, Boston, USA
http://www.cse.uconn.edu/icde04

Data Engineering deals with the use of engineering techniques and methodologies in the design,
development and assessment of information systems for different computing platforms and
application environments. The 20th International Conference on Data Engineering will be held in
Boston, Massachusetts, USA -- an academic and technological center with a variety of historical and
cultural attractions of international prominence within walking distance.

The ICDE 2004 International Conference on Data Engineering
provides a premier forum for:

 sharing research solutions to problems of today's
information society;

 exposing practicing engineers to evolving research, tools,
and practices and providing them with an early
opportunity to evaluate these;

 raising awareness in the research community of the
problems of practical applications of data engineering;

 promoting the exchange of data engineering technologies
and experience among researchers and practicing
engineers;

 identifying new issues and directions for future research
and development work.

ICDE 2004 invites research submissions on all topics related
to data engineering, including but not limited to those listed
below:

1. Indexing, access methods, data structures
2. Query processing (standard and adaptive) and query
 optimization
3. Data Warehouse, OLAP, and Statistical DBs
4. Mining Data, Text, and the Web
5. Semi-structured data, metadata, and XML
6. Web Data Management
7. Middleware, workflow, and security
8. Stream processing, continuous queries, and sensor DB’s
9. Database applications and experiences
10. Distributed, parallel and mobile DB’s
11. Temporal, Spatial and Multimedia databases
12. Scientific and Biological DBs; Bioinformatics

PROGRAM

• 63 research papers from 441 full submissions

• Three plenary speakers

• Four panels

• Three 3-hour seminars, four 1.5-hour seminars

• 21 poster papers

• 12 industrial papers

• 16 demos

GENERAL CHAIRS
Betty Salzberg, Northeastern University
Mike Stonebraker, MIT

PROGRAM CHAIRS
Meral Ozsoyoglu, Case Western Reserve
Stan Zdonik, Brown University

LOCAL ARRANGEMENTS
George Kollios, Boston U. (chair)
Betty O’Neil, U.Mass/Boston
Arnon Rosenthal, MITRE Corp.
Donghui Zhang, Northeastern University

PUBLICITY CHAIR
Dina Goldin, U. Conn.

TREASURER
Eric Hughes, MITRE Corp.

PROCEEDINGS CHAIR
Elke Rundensteiner, WPI

INDUSTRIAL PROGRAM CHAIR
Gail Mitchell, BBN Technologies

PANEL CHAIR
Pat O’Neil, U.Mass/Boston

SEMINAR CHAIR
Mitch Cherniack, Brandeis University

DEMONSTRATION CHAIR
Ugur Cetintemel, Brown University

AREA CHAIRS
Beng Chin Ooi, National U. of Singapore
Joe Hellerstein, UC Berkeley
Dimitrios Gunopulos, UC Riverside
Jiawei Han, UIUC
Yannis Papakonstantinou, UC San Diego
Mary Fernandez, AT&T
Ling Liu, Georgia Tech
Jeff Naughton, U. Wisc.
Guy Lohman, IBM Almaden
Panos Chrysanthis, U. Pittsburgh
Aidong Zhang, SUNY Buffalo
Louiqa Raschid, U. Md.

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

