
Benchmarking Data Curation Systems

Patricia C. Arocena∗

University of Toronto
Boris Glavic

Illinois Institute of Technology
Giansalvatore Mecca

University of Basilicata

Renée J. Miller∗

University of Toronto
Paolo Papotti

Arizona State University
Donatello Santoro

University of Basilicata

Abstract

Data curation includes the many tasks needed to ensure data maintains its value over time. Given the
maturity of many data curation tasks, including data transformation and data cleaning, it is surprising
that rigorous empirical evaluations of research ideas are so scarce. In this work, we argue that thorough
evaluation of data curation systems imposes several major obstacles that need to be overcome. First, we
consider the outputs generated by a data curation system (for example, an integrated or cleaned database
or a set of constraints produced by a schema discovery system). To compare the results of different
systems, measures of output quality should be agreed upon by the community and, since such measures
can be quite complex, publicly available implementations of these measures should be developed, shared,
and optimized. Second, we consider the inputs to the data curation system. New techniques are needed
to generate and control the metadata and data that are the input to curation systems. For a thorough
evaluation, it must be possible to control (and systematically vary) input characteristics such as the
number of errors in data cleaning or the complexity of a schema mapping in data transformation. Finally,
we consider benchmarks. Data and metadata generators must support the creation of reasonable gold-
standard outputs for different curation tasks and must promote productivity by enabling the creation of
a large number of inputs with little manual effort. In this work, we overview some recent advances in
addressing these important obstacles. We argue that evaluation of curation systems is itself a fascinating
and important research area and challenges the curation community to tackle some of the remaining
open research problems.

1 Introduction

A curated database is a valuable asset that has been created and maintained with a great deal of human effort [13].
The term data curation has been used as an umbrella term to encompass the activities required to maintain and
add value to data over its lifetime, and more specifically the tools and algorithms that attempt to reduce human
curation effort by automating some of these important activities. Some data curation tasks that have received
significant attention in the database literature include data cleaning (identifying and repairing errors in data),
entity resolution (identifying and resolving duplicates in data), data transformation (exchanging or translating

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Supported by NSERC

47

data), data integration (including data federation), data provenance (understanding the origin of data), metadata
or schema discovery, data and metadata profiling (including statistical profiling of data and data usage), and data
archiving. Some of these tasks, such as data profiling [1], are also important to operational data management,
for example, statistical profiles can be used to improve query performance. In this paper, we focus on the use of
these tasks to curate data by improving the value or quality of information. In contrast to basic data management
problems like query or transaction processing, data curation has not benefitted from the availability of commonly
accepted benchmarks which can be used to compare systems, resolve discrepancies, and advance the field. As a
result, evaluation and comparison of systems have relied on a few real data and metadata scenarios (for example,
the Illinois Semantic Integration Archive1, the Sherlock@UCI2 data cleaning and entity resolution data sets or
the more recent annealling standard [30]). Large scale sharing of real scenarios is simply not feasible due to the
inherent value and proprietary nature of many data resources. And importantly, real scenarios do not provide
control over many of the input characteristics that may impact the performance or efficacy of a system. As a
result, researchers rely on ad hoc scenario generators with knobs to control a few selected data or metadata
characteristics.

At first sight it may be surprising that evaluations of data curation tasks are not up to par with evaluations
of query performance in database management systems. However, as we will explain in the following, the
different nature of data curation problems imposes unique challenges for evaluations which are not faced when
evaluating query performance. From a high-level view, any empirical evaluation of an algorithm roughly follows
this pattern: 1) identify relevant input parameters, reasonable values of these parameters, and output measures;
2) select an input parameter to be varied systematically; 3) vary the selected parameter while keeping all other
parameters fixed; 4) run the system on input generated for each parameter value; and 5) evaluate the system
output using a selected set of output measures. This process is necessarily iterative with the results of one
iteration in the evaluation influencing the parameters considered in the next.

The papers in this special issue of the IEEE Data Engineering Bulletin consider the problem of assessing or
improving data quality, often this may be done in the context of a specific curation task. In contrast, in our work,
we are seeking to understand the principles behind evaluating a specific curation system that seeks to improve
data value or quality in a specific, quantifiable way. We consider the problem of assessing whether a system has
achieved a specific goal of improving data quality or whether it has reduced the human effort needed to achieve
a specific curation goal. To illustrate some of the challenges, in this paper we will concentrate on two specific
data curation tasks: data exchange and constraint-based data repair.

1.1 Evaluating Data Exchange Systems

Data exchange systems take as input a pair of schemas (typically named source and target), an instance of the
source schema, and a mapping specifying a relationship between the schemas [15]. They output a transformation
of the source instance into a target instance that must satisfy the mapping. However, different systems may create
target instances that differ, for example, on how much redundancy they contain [16] and the transformation code
they produce may differ in performance [24].

Consider the simple example schemas in Figure 1 that are related by mappings m1,m2 and m3. Assume we
want to compare two data exchange systems E1 and E2. In this example, system E1 creates a target instance
J1 and system E2 creates a target instance J2. Both instances satisfy the mapping specification and in fact both
are universal solutions [15]. To evaluate and compare these, we need to select an appropriate output measure.
As with traditional data management problems, output measures may be performance-based, for example, the
response time to perform data exchange. Unlike traditional data management, the accuracy of the system is
also an important output measure. For data exchange, an output measure may compare the quality of two
exchanged instances, as suggested by Alexe et al. [2]. This measure considers one output superior to another

1http://pages.cs.wisc.edu/˜anhai/wisc-si-archive/
2http://sherlock.ics.uci.edu/data.html

48

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
http://sherlock.ics.uci.edu/data.html

SOURCE INSTANCE
PStat Name Season Team G

t1 : Giovinco 2012-13 Juventus 3
t2 : Giovinco 2014-15 Toronto 23
t3 : Pirlo 2015-16 N.Y.City 0

Stdm Team Stadium
t1 : Toronto BMO Field
t2 : N.Y.City Yankee St.

JuveDB Name Season
t1 : Giovinco 2012-13
t2 : Pirlo 2014-15

MAPPINGS

m1.PStat(name, seas, team, goals) → ∃NPlayer(name, seas, team, goals),Team(team,N)
m2.Stdm(team, stdm) → Team(team, stdm)
m3. JuveDB(name, seas) → ∃NPlayer(name, seas, ‘Juv.′,N),Team(‘Juv.′, ‘Juv.Stadium′)

SOLUTION J1 Player Name Season Team Goals
t1 : Giovinco 2012-13 Juventus 3
t2 : Giovinco 2014-15 Toronto 23
t3 : Pirlo 2015-16 N.Y.City 0
t4 : Pirlo 2014-15 Juventus N1

Team Name Stadium
t1 : Toronto BMO Field
t2 : N.Y.City Yankee St.
t3 : Juventus Juventus St.

SOLUTION J2 Player Name Season Team Goals
t1 : Giovinco 2012-13 Juventus 3
t2 : Giovinco 2014-15 Toronto 23
t3 : Pirlo 2015-16 N.Y.City 0
t4 : Giovinco 2012-13 Juventus N1

t5 : Pirlo 2014-15 Juventus N2

Team Name Stadium
t1 : Juventus N3

t2 : Toronto N4

t3 : N.Y.City N5

t4 : Toronto BMO Field
t5 : N.Y.City Yankee St.
t6 : Juventus Juventus St.

Figure 1: Example Data Exchange Scenario With Two Data Exchange Solutions

if it contains less redundancy (in this example J1 would be preferred over J2). Alternatively, if we know what
the expected output is, then we can measure the difference between an output produced by a system and the
expected one, often referred to as a gold standard. For data exchange, the output measure typically involves
comparing (potentially large) database instances and these measures can be complex [2, 25]. Since a systematic
comparison involves many different input scenarios, we must have efficient (and shared) implementations of
these measures.

Of course, a real comparison of systems E1 and E2 must consider not just a few example scenarios, but
should include sets of input scenarios that differ on specific input parameters. For data exchange, these input
parameters might include the size of the schemas, the size of the mapping, or the complexity of the mappings and
schemas. They could also include parameters that measure metadata quality, such as how normalized a schema
is (for example, a fully normalized schema may guarantee minimal redundancy in the data [22]). Agreement on
what are the right input parameters (for example, how mapping complexity is characterized and controlled) and
what are reasonable values for these parameters, is an important part of benchmarking. In addition to the data
generators that are commonly available for benchmarking query processing, we need metadata generators that
can efficiently generate schemas, schema constraints, and mappings in such a way as to provide control over
chosen input parameters.

1.2 Evaluating Constraint-based Data Repairing

In data cleaning, business rules or constraints are often used to express expectations or rules that data should
satisfy [20]. Data that is inconsistent with a set of constraints can be cleaned (or repaired) by using evidence in
the data. A common example is to select a repair that has the minimal number of changes (or the minimal cost
changes) to be consistent with the constraints. Consider the player relation in Figure 2 and assume we are given
the following constraints:

49

(i) A functional dependency (FD) stating that Name and Season are a key for the table:
d1 : Player : Name,Season → Team,Stadium,Goals.

(ii) And, a second FD stating that Team implies Stadium: d2 : Player : Team → Stadium.

Player Name Season Team Stadium Goals
t1 : Giovinco 2012-13 Juventus BMO Field 3
t2 : Giovinco 2014-15 Toronto BMO Field 23
t3 : Pirlo 2014-15 Juventus Juventus Stadium 5
t4 : Pirlo 2015-16 New York City Yankee Stadium 0
t5 : Vidal 2014-15 Juventus Juventus Stadium 8
t6 : Vidal 2015-16 Bayern Allianz Arena 3

Figure 2: Example Dirty Database

The database in Figure 2 is dirty with respect to d2. A possible repair, that may be created by a data
repair system is to change t1[Stadium] to the value “Juventus Stadium”. There are, however, many possible
alternative repairs, like, for example, changing t1[Team] to the value “Toronto”, or changing both t3[Stadium]
and t5[Stadium] to the value “BMO Field”.

To evaluate a data repair algorithm, we must know the expected “gold-standard” output. Then we can use
a simple recall and precision measure to evaluate the accuracy of the system (or a weighted recall-precision
measure where credit is given for selecting a repair that is close to the desired value).

In addition, to evaluate repair systems, we must have a dirty data generator, that is a data generator that can
introduce errors into the data in a systematic way. Again, we must have agreement as to what are the important
input parameters for error generation. Certainly we should be able to control the number of errors, but also the
quality of the errors – what makes an error hard or easy to repair? The generator should be able to introduce
errors in data of different sizes and having different constraints. Ideally, the generator would handle a large class
of constraints as a wide variety of constraint languages have been used in cleaning. Error generation could also
be coupled with constraint generation to generate different number or types of constraints. And again, it must be
possible to generate dirty data efficiently, giving the user (the system evaluator) as much control over the chosen
input parameters as possible.

1.3 Evaluating Data Curation

The two examples of data exchange and data repair illustrate the following requirements for large-scale evalua-
tion of data curation tasks.

(a) Quality of the Outputs. Unlike query evaluation where there is one fixed expected output of a system (the
unique query result) and a small number of performance related measures to be considered (e.g., throughput,
mean latency, or memory consumption), in data curation there may be multiple acceptable outputs for a task
that exhibit different quality. This is complicated by the fact that the quality of an output may be a multi-
faceted combination of potentially conflicting quality measures. For instance, if a database that violates a set
of constraints should be cleaned by removing tuples causing violations, then two important measures of the
quality of a cleaned database are the number of remaining constraint violations (how clean is the solution)
and the number of tuples that got removed (how much information is lost). Obviously, both measures cannot
be fully optimized simultaneously. Many established quality measures are computationally hard or non-trivial
to implement, such as measures for data exchange quality that require comparing potentially large database
instances on criteria that include how well they preserve source information [2, 25]. A rigorous comparison of
solutions for a data curation task has to take multiple quality measures into account to complement performance

50

metrics.3 When comparing two data curation algorithms we are interested in understanding their performance
as well as the quality of the produced results. For example, if we are faced with the task of cleaning a very large
dataset and have to decide which cleaning algorithm to apply to the problem, then to make an informed decision
we need to not only know what is the quality of solutions produced by the algorithms, but also how well the
performance scales over the input size.
Challenge. The community needs to agree on common measures of output quality to use in evaluating data
curation tasks and share implementations of these measures. When exact computation is infeasible on large
or complex output, research is needed on developing approximate measures that are still effective measures of
output quality.

(b) Input Parameters. As our examples illustrate, the input to data curation tasks can be quite complex. To
evaluate query performance the input parameters that are typically considered are hardware and software of the
machine used for the experiments, size of the dataset, data distribution, and complexity of the queries. Input
parameters for data curation tasks are more diverse and each task may have its own set of relevant parameters.
For example, in data cleaning one may evaluate an algorithm varying the number of errors in the input dataset
and the data size for a fixed schema, while for data exchange the schema size is an important input parameter.
For constraint or schema discovery, the amount of redundancy in the data may be an important parameter [4].
For data profiling, the relative independence (or dependence) of attribute distributions may be important [1].
Furthermore, creating an input that conforms to a specific input parameter setting may be non-trivial for some
parameters. For example, an important input parameter for constraint-based data cleaning is the number of
constraint violations in the input dataset. However, introducing a given number of errors into a clean database is
known to be a computationally hard problem [6].
Challenge. The community must agree on the important input parameters (which may include parameters that
vary the quality of the input) for different curation tasks. We must develop and share data and metadata genera-
tors that are able to efficiently generate input scenarios for data curation systems. Furthermore, these generators
must be able to systematically vary the value of input parameters independently. Providing this fine-grained
control of input characteristics while still efficiently generating large numbers of input scenarios is an important
research challenge.

(c) Benchmarks. It is important that researchers be able to rely on common benchmarks to test their systems and
compare results. In the context of data curation, benchmarks need to provide inputs to the system and establish
which measures need to be used to assess the quality of outputs. Notice that some quality measures compare the
quality of a solution against a gold standard, that is, a solution that is considered to be the correct or canonical
solution for an input. Producing such a gold standard for some curation tasks can be highly complicated.
Challenge. We should use data and metadata generators to create new, community-accepted benchmarks for
different curation tasks. In addition to generating varied input scenarios, these benchmarks should include -
when possible - a gold standard output for each input scenario.

Given these challenges, it is more understandable that the standard of experimental evaluations of data
curation systems is still quite low. Most researchers do not have the time and resources to implement complex
quality metrics and solve the sometimes complex problems that arise when creating realistic inputs that conform
with specific input parameter settings. It is often simply not feasible to spend this amount of effort “just” to
evaluate a single system. A reasonable approach to improve the situation is 1) to make implementations of
community-approved quality metrics publicly available and 2) to develop benchmarking solutions which enable
the generation of synthetic, but realistic, metadata and data that conform to specific input parameters. This

3To avoid confusion, in this work we use the term performance metric to refer to measures of the runtime performance of an
algorithm (e.g., average runtime or memory consumption) and quality metric to refer to a measure of the quality of a solution produced
by a curation algorithm.

51

Domain Example Input Parameters Example Output Measures
Data Exchange Schema and relation size Preservation of source information

Degree of schema normalization Size of target data
Mapping size and complexity Redundancy in target data
Amount and type of mapping in-
completeness

Similarity to gold-standard target

Constraint-based Data Repair Data size No. of repairs
No. of errors No. of errors remaining in repair
“Hardness” of errors Similarity of repair to gold standard

Discovery of Constraints No. of constraints Precision and Recall compared
or Data Quality Rules Redundancy in the data to a gold standard

Data size

Figure 3: Exemplary Input Parameters and Output Quality Measures for Data Curation

generation should require little user effort and it should be easy to recreate an input scenario produced by a
benchmarking solution to make evaluations repeatable, e.g., by sharing the small configuration file that was
used as an input for a benchmark generator instead of sharing the potentially large scenario itself.

In this paper, we consider the state-of-the-art in addressing these three evaluation challenges for two data
curation tasks: data exchange and constraint-based data repair. Note that the purpose of this work is not to give a
comprehensive overview of all quality metrics and benchmark generators that have been proposed, but rather to
outline what are the major roadblocks for experimental evaluation of data curation solutions as well as discuss
a few exemplary quality measures (as introduced in IQ Meter and others [25]) and systems that generate input
scenarios for data curation tasks (BART [6] and iBench [5]). Figure 3 shows some exemplary relevant input
parameters that we may want to vary for an evaluation and some meaningful output quality measures.

The remainder of this paper is organized as follows. We discuss output quality measures in Section 2, input
parameters in Section 3, and benchmarking systems in Section 4. In Section 5, we briefly describe some new
evaluations of curation systems that use these benchmarking systems. We conclude and discuss future work in
Section 5.

2 Quality of the Outputs

In many fields, there are widely accepted quality measures that allow for the evaluation of solutions. Some,
like precision and recall are pervasive and easy to compute, but require the existence of a gold standard output.
Others, including metrics for clustering quality [26] that may be used to evaluate curation tasks like schema
discovery [4], are computationally expensive. For data curation, the study of quality metrics is in its infancy.
A (non-comprehensive) set of notable exceptions include metrics for evaluating matchings [8] and recent ap-
proaches for measuring the quality of data exchange solutions [2, 25]. Given that data curation tools often try
to reduce human curation effort, some of these output measures try to quantify how well a tool succeeds in
automating curation [3, 23, 25]. An important role of benchmarking is to enable the sharing of a standard suite
of performance and quality metrics. For many curation tasks, these metrics may be computationally expensive
and non-trivial to implement. In this section, we delve deeper into output measures for data exchange and data
repair focusing on a few exemplary measures that illustrate the complexity of measuring the quality of a data
curation system’s output.

52

2.1 Data Repair Accuracy Measures

Let us start by discussing accuracy measures for data repairing. Here, there is a natural measure in terms of
(weighted) precision and recall. To see this, consider our example in Figure 2. Assume a repair algorithm is
executed over the dirty database, that we denote by Id. The algorithm will apply a number of changes to attribute
values, which we will call cell changes, of the form t1[Stadium] := “JuventusStadium′′, to Id in order to
obtain a repaired instance, denoted by Irep. We call Chrep the set of cell updates applied by the system to repair
the database.

There are multiple – in fact, exponentially many – repairs that can be generated using this strategy. Typically,
a notion of minimality of the repairs [10] has been used to discriminate among them (where minimality applies
to the set of cell changes that create a repair). However, there are usually many repairs that minimally change
the database, not necessarily all of the same quality.

Many researchers have in fact adopted a different approach to their evaluations. We can assume that the
dirty database, Id, has been generated starting from a clean database, I , and by injecting errors for the purpose
of the evaluation. We know, therefore, the gold standard for this experiment, i.e., the original, clean version of
the database. We also know the set of changes Chd that are needed to restore the dirty instance Id to its original
clean version. Finally, since the only modification primitive is that of cell updates, the three instances I , Id and
Irep all have the same set of tuple ids.

In this framework, a natural strategy to measure the performance of the algorithm over this database instance
is to count the differences between the repaired instance and the correct one. In fact, the quality of the repair can
be defined as the F-Measure of the set Chrep, measured with respect to Chd. That is, compute the precision and
recall of the algorithm in restoring the dirty instance to its clean state. The higher the F-measure, the closer Irep
is to the original clean instance I . An F-measure of 1 indicates that the algorithm has changed the instance to
its clean state by fixing all errors within the database, i.e., Irep = I .

Notice that many data repairing algorithms not only use constant values to repair the database, but also
variables [25]. A cell may be assigned a variable when the data-repairing algorithm has detected that the cell is
dirty, but it cannot establish the original constant value. Data-repairing algorithms have used different metrics
to measure the quality of repairs with constants and variables. Precision and recall may be computed using the
following measures:

(i) Value: count the number of cells that have been restored to their original values;

(ii) Cell-Var: in addition to cells restored to their original values, count (with, for example, 0.5 score) the cells
that have been correctly identified as erroneous and marked with a variable (in this case, changing a dirty cell to
a variable counts 0.5);

(iii) Cell: count with a score of 1 all of the cells that have been identified as erroneous, both those that have
been restored to their original value, and those that have been marked with a variable (in this case, changing a
dirty cell to a variable counts 1).

2.2 Quality Measures For Data Exchange

The notion of quality for data exchange systems is more elaborate and there are many proposals in the literature
for comparing the output of two data exchange algorithms [12, 2, 25].

IQ Meter [25] proposed two main building blocks for evaluating different data exchange systems: a mea-
sure of the quality of the solution with respect to a gold-standard solution, and a measure of the user-effort in
designing the transformation with a given tool. Both measures were designed for a nested-relational data model
for the source and target databases, capable of handling both relational data and XML trees.

Measuring Output Quality with IQ-Meter. Given a data exchange scenario, this measure assumes that a

53

gold standard has been given in terms of the output instance expected from the data exchange. An algorithm
then determines the similarity of the output instance of a transformation tool with respect to this expected
instance. Given the nested-relational data model, instances can be compared with traditional metrics such as
tree or graph edit distance, but none of these can be used with large datasets because of their high complexity.
Moreover, typical tree and graph-comparison techniques would not work in this setting. It is common in data
transformations to generate synthetic values in the output – called labeled nulls in data-exchange and surrogate
keys in Extract-Transform-Load (ETL) systems. These are placeholders used to join tuples, and their actual
values do not have any business meaning. Therefore the measure needs to check if two instances are identical
up to the renaming of their synthetic values. We may say that we are looking for a technique to check tree or
graph isomorphisms, rather than actual similarities. Unfortunately, techniques for tree and graph isomorphisms
are extremely expensive over the size of the instances.

A more efficient quality measure relies on the following key-idea: the instances to be compared are not
arbitrary trees, but rather the result of data exchange. Since they are instances of a fixed known schema, this
means that we know in advance how tuples are structured, how they should be nested into one another; and in
which ways they join via key-foreign key relationships.

The quality measure abstracts these features in a set-oriented fashion, and then compares them by using
precision, recall, and ultimately F-measures to derive the overall similarity. More specifically, for each instance,
it computes: (i) a set of tuple identifiers, also called local identifiers, one for each tuple in the instance; (ii)
a set of nested tuple identifiers, called global identifiers, which capture the nesting relationships among tuples;
(iii) a set of pairs of tuple identifiers, called join pairs, one for each tuple t1 that joins a tuple t2 via a foreign
key. It then compares the respective sets to compute precision, recall, and the overall F-Measure that gives the
level of similarity. In addition to the measure of similarity, this metric provides feedback about errors in terms
of missing and extra tuples in the generated output.

Other measures of accuracy for the data exchange setting have also been proposed [2, 12]. In particular, two
similarity measures have been used to quantify the preservation of data associations from a source database to a
target database [2]. Notice that in these approaches a gold-standard target instance is not provided for evaluation,
therefore the authors focus their effort in measuring similarity between the original dataset and the result of the
transformation. The first measure materializes data associations (joins of two or more relations) using the given
referential constraints such as foreign keys or constraints logically implied by these constraints. Once all the
associations are computed on the source and on the target, the similarity can be measured. Despite the different
use case, this measure is reminiscent of the features discussed above in the IQ-Meter set-oriented measure.
However, the second type of association in [2] pushes the idea further by considering all the natural joins that
exist among the tuples of two relations. This measure, inspired by the notion of full disjunction, captures more
associations than the one based only on the given constraints, and ultimately leads to a more precise measure of
the similarity of two instances.

The IQ-Meter User Effort Measure. There are several possible ways to estimate user effort [3, 23, 25]. Basic
techniques rely on the time needed to completely specify a correct transformation, or on the number of user
interactions, such as clicks in the GUI [3]. A more sophisticated measure computes the complexity of the
mapping specification provided through a data transformation tool GUI [25]. The IQ-Meter measure models the
specification as an input-graph with labeled nodes and labeled edges. Every element in the schemas is a node
in the graph. Arrows among elements are edges among nodes in the graph. If the tool provides a library of
graphical elements – for example to introduce system functions – these are modeled as additional nodes. Extra
information entered by the user (e.g., manually typed text) is represented as labels over nodes and edges. The
measure evaluates the size of such graphs by encoding their elements according to a minimum description length
technique, and then by counting the size in bits of such description. Experience shows that this model is general
enough to cover every data transformation, spanning from schema mapping transformations to ETL ones, and
provides more accurate results with respect to previous metrics based on point-and-click counts.

54

Figure 4: IQ Comparison of Three Transformation Systems over Four Scenarios

The most prominent feature of the two measures is that they enable us to plot quality-effort graphs to compare
different systems over the same transformation scenario, as shown in Figure 4. Each plot shows how the quality
achieved by a data transformation system varies with different levels of efforts. Intuitively, the size of the area
below the curve in the plot for a given system is proportional to the amount of effort that is required to achieve
high quality outputs with this system. Higher quality with lesser effort means higher effectiveness for the given
task, and ultimately “more intelligence”.

3 Input Parameters

In data curation, often the goal is to ensure the curated output is of higher quality than the input data (and/or
metadata). Hence, in evaluating a system, it is important to understand what are the important characteristics
of this input data or metadata that can influence the performance of the system (as judged by both traditional
performance metrics and also by data or metadata quality metrics). In this section, we review recent work
on identifying important input parameters. In the next section, we consider how modern data and metadata
generators provide flexible control over the values of some of these parameters so each can be used as an
independent variable in system evaluations.

3.1 Input Parameters for Data Exchange

A data exchange scenario is a source schema (optionally with a set of constraints), an instance of the source
schema, a target schema (optionally with constraints), and a mapping from the source to the target. Important
input parameters include the size of the metadata, the size of the source data, and also the size and complexity
of the mapping. We detail below how the complexity or quality of the input metadata has been characterized.
In contrast to data repair, where the characteristics of the data to be cleaned play a major role, in data exchange,
the characteristics of the metadata typically are the deciding factor for a system’s performance.

Metadata Parameters. An important input characteristic for data exchange and mapping operators like map-
ping composition or mapping adaptation is the relationship between the source and target schema. In evaluating
a mapping composition system, Bernstein et al. [9] use target schemas that were created from a source using
a set of schema evolution primitives (for example, an add-attribute primitive). Yu and Popa [31] used a
similar set of primitives to evaluate a mapping adaptation system. STBenchmark [3] generalized this idea to use
a set of mapping primitives. Each primitive describes a specific relationship between a source and target schema
(for example, vertically partitioning one relation into two fragments).

Two additional mapping quality dimensions identified in the iBench system are (1) the degree to which
mappings reuse or share source and target relations (metadata sharing) and (2) the amount of incompleteness
in a mapping. Metadata sharing directly influences how intertwined the produced mappings are. This in turn
determines the degree to which data from the source must be merged in the target (if target metadata is shared)
or the data from the source has to be copied to different places in the target (if source metadata is shared). As
metadata sharing is increased, some data exchange systems can produce redundant target data or data with too

55

much incompleteness (labelled nulls) thereby decreasing the accuracy of these methods compared to a gold-
standard output or decreasing the quality of the output when using an output measure based on the amount of
redundancy and incompleteness in the target instance.

The number and complexity of mappings is another input parameter that can influence the performance of a
data exchange or mapping system (such as a mapping inversion system or mapping composition system). The
complexity of a mapping includes the language of the mapping which may be global-as-view (GAV), local-
as-view (LAV), source-to-target (ST) tuple-generating-dependencies (TGDS), full ST TGDS, or other mapping
languages [29]. In addition, the number of joins (in the source or target) used in a mapping may influence the
performance of a data exchange system. For mapping languages that permit the modeling of incompleteness
(that is, existentials in the target expression), the amount of incompleteness is also an important parameter that
may influence system performance.

In addition to mapping characteristics, schema characteristics can influence system performance. These
include the number and type of constraints in the schemas (for example, keys only vs. general FDs). By changing
the constraints, a user can control whether a schema is normalized. The number and type of constraints may
influence the performance or quality of the output of a data curation system. For example, the amount (and type)
of target equality-generating-constraints (such as keys) may influence how hard it is for a data exchange system
to create a consistent target instance.

3.2 Input Parameters for Data Repair

In constraint-based cleaning, data dependencies are used to detect data quality problems [20]. In quantitative
data cleaning, distributional models are used and values that deviate from a distribution (outliers) are considered
to be errors [19]. Data cleaning, or repair, is typically done by minimizing the number or cost of changes
needed to create a consistent database [11, 21], or by finding a repair whose distribution is statistically close
to the original data [28]. There are two main aspects that must be taken into consideration when evaluating
constraint-based data repairing systems: the role of constraints and the role of the data.

Constraint Parameters. Different repair algorithms have been developed for different fragments of first-order
logic. While the most popular are FDs and conditional functional dependencies (CFDs), lately there have been
some proposals to handle also denial constraints [14]. Of course, constraint languages differ in expressive power
which leads to different sets of rules and ultimately to different repairs.

Another parameter to consider is the number of constraints, or rules, in a cleaning scenario. A larger number
of constraints usually leads to a better repair, as more external information, expressed in the rules, is enforced
over the dirty data. However, a larger number of constraints also leads to a higher execution time in the detection
and repair process.

Data Parameters. While the role of constraints is quite evident for data cleaning, a more subtle but equally
important role is played by the features of the data, and especially of the errors. Recently, BART4 [6] identified
two important properties of errors: detectability and repairability.

When evaluating a constraint-based repair algorithm, we want to make sure that the dirty input database
used in the evaluation only contains errors that are detectable by the system in question. After all, an error that
cannot be detected, cannot be repaired. To reason about detectability, we need a notion for determining whether
a cell change is involved in a constraint violation. This notion assumes the existence of a clean gold standard
database and a cell change is assumed to describe a difference between the gold standard and the dirty database.

Consider our database in Figure 2. Assume now that the dirty cell (in bold) has been restored to its original,
clean value (“Juventus Stadium”), i.e., we have a clean database and want to introduce errors in it. To start,

4Bart: Benchmarking Algorithms for data Repairing and Translation

56

consider the following cell change: ch1 = ⟨t1.Season := 2012-13⟩ that updates tuple t1 as follows:

Player Name Season Team Stadium Goals
t1 : Giovinco 2012-13 Juventus Juventus Stadium 3

This change does not introduce a violation to any of the constraints in our example. Therefore, any data-
repairing tool that relies on the constraints to detect dirtiness in the database will not be able to identify it. We
call this an undetectable change.

When we introduce errors into clean data for the purpose of benchmarking, it is important to control the
number and the behavior of the errors, but it is hard to control the exact number of errors that are guaranteed
to be detectable using a given set of constraints. In fact, this requirement turns the complexity of the error-
generation process into an NP-complete problem [6].

Once an error has been detected, the second step in the cleaning process is to repair it. Of course, some
errors are easier to repair than other. Back to our example, a change that indeed introduces a detectable error is
the following: ch2 = ⟨t1.Season := 2014-15⟩. After this update, tuples t1 and t2 violate FD d1, which states
that Name and Season are a key for the table:

Player Name Season Team Stadium Goals
t1 : Giovinco 2014-15 Juventus Juventus Stadium 3
t2 : Giovinco 2014-15 Toronto BMO Field 23

This change is easily detected using the constraints. Still, it is quite difficult for an automatic data-repairing
algorithm to restore the database to its clean state. Notice, in fact, that after this change, the original value
2013-14 has been removed from the active domain of the dirty database. There is no evidence in the dataset
to guide an algorithm to guess the correct value for a repair. Therefore, a correct repair cannot be found by any
repair algorithm that uses the values in the database as the candidates for repair.

BART uses the notion of repairability of an error to characterize this aspect. In the case above, it would
assign repairability 0 to change ch2. Different detectable changes may have quite different repairability values.
As an example, consider now change ch3 = ⟨t1.Stadium := Delle Alpi⟩. The change is detectable using FD d2.
The redundancy in the example dirty database may be used to repair it:

Player Name Season Team Stadium Goals
t1 : Giovinco 2013-14 Juventus Delle Alpi 3
t3 : Pirlo 2014-15 Juventus Juventus Stadium 5
t5 : Vidal 2014-15 Juventus Juventus Stadium 8

The new dirty tuple t1 is involved in two violations of d2, one with t3, another with t5. In both cases, the
new stadium value Delle Alpi is in conflict with value Juventus Stadium. By a straightforward probabilistic
argument, BART would calculate a 2/3 repairability for this error, and rank it as a medium-repairability error.

In other cases, errors may have higher repairability, even 1 in some cases. Consider, for example, the case
in which an additional CFD states that every person with age 40 is named Anne. Since this knowledge is part
of the constraint, any tool would easily restore a dirty age value (̸= 40) for a person named Anne to its gold
standard, clean state.

4 Benchmarking

We consider how modern data and metadata generators provide flexible control over the values of some of the
input parameters we have identified so each can be used as an independent variable in system evaluations. We
focus on the BART error generator that can be used to evaluate data repair systems and the iBench metadata
generator that can be used to evaluate data exchange and mapping operators.

57

4.1 Data Repair: BART

BART is an open-source system that introduces algorithms that guarantee a compromise between control over
the nature of errors and scalability [6]. BART introduces a new computational framework based on violation-
generation queries for finding candidate cells (tuple, attribute pairs) into which detectable errors can be intro-
duced. While these queries can be answered efficiently, determining if detectable errors can be introduced is
computationally hard. To overcome this issue, optimizations for violation-generation queries are introduced.
In particular, extracting tuple samples, along with computing cross-products and joins in main memory, brings
considerable benefits in terms of scalability. Moreover, the authors identify a fragment of denial constraints
(DCs) called symmetric constraints that considerably extend previous fragments for which scalable detection
techniques have been studied. The main benefit of this subclass it that algorithms for detecting and generating
errors with symmetric constraints have significantly better performance than the ones based on joins and allow
the introduction of controllable errors over large datasets.

The Error-Generation Problem. BART permits users to declarative specify how to introduce errors into a
clean dataset for benchmarking purposes. The input of the tool is an error-generation task E, which is composed
of four key elements: (i) a database schema S; (ii) a set Σ of DCs encoding data quality rules over S; (iii) an
instance I of S that is clean with respect to Σ; and (iv) a set of configuration parameters to control the error-
generation process. These parameters specify, among other things, which relations can be changed, how many
errors should be introduced, and how many of these errors should be detectable. They also let the user control
the degree of repairability of the errors.

Use Cases. BART supports several uses cases. The main one consists of generating a desired degree of de-
tectable errors for each constraint. In addition, users may specify a range of repairability values for each con-
straint. In this case, BART estimates the repairability of changes, and only generates errors with estimated
repairability within that range. In addition to detectable errors, BART can generate random errors of several
kinds: typos (e.g., ‘databse’), duplicated values, bogus or null values (e.g., ‘999’, ‘***’). Random errors may
be freely mixed with constraint-induced ones. Finally, BART can introduce outliers in numerical attributes.

4.2 Data Transformation: iBench

iBench [5] is an open-source system that supports the creation of metadata for a variety of integration tasks
including but not limited to data exchange, data integration, and mapping operators. As a metadata generator,
iBench can be used to generate independent schemas with an arbitrary or controlled set of mappings between
them. The user has at his disposal, the ability to control over thirty distinct metadata dimensions. We now
overview how iBench advances the state-of-the-art in benchmarking data-transformation systems.

The Metadata-Generation Problem. Intuitively, iBench takes a metadata-generation task Γ and produces an
integration scenario that fulfills the task. Here an integration scenario is a tuple M = (S,T,ΣS,ΣT,Σ, I, J, T),
where S and T are schemas, ΣS and ΣT are source and target constraints, Σ is a mapping between S and T,
I is an instance of S satisfying ΣS, J is an instance of T satisfying ΣT, and T is a program that implements
the mapping Σ. A user writes a metadata-generation task (or configuration) Γ by specifying minimum and
maximum values for a set Π of input parameters. Note that iBench users do not need to specify every input
parameter, rather only the ones they want to control.

For example, a user may request an integration scenario with independent schemas of up to five attributes
per relation and with only LAV mappings.5 To do this, he creates a simple metadata-generation task, spec-
ifying that the input parameters πSourceRelSize (number of attributes per source relation) and πTargetRelSize

5Recall that LAV mappings have a single relation atom in the source [29].

58

..Source .
Stdmaaaa a

.

Teamaaaa

.

Stadiumaa

.

aaaa

.

PStataaaaaa

.

Nameaaa

.

Seasonaa

.

Teamaaaa

.

Goalsaaa

. Targetaaaaa.
Homeaa

.

Teamaaaa

.

Stdmaaaa

.

Addressaa

.

Teamaa

.

Idaa aaaa

.

Nameaaa

.

Playera

.

Nameaaa

.

Seasona

.

Idaa aaaa

.

Goalsa a

Figure 5: A Sample Integration Scenario Output by iBench

(number of attributes per target relation) be between two and five, and that the input parameter πSourceMapSize

(number of source atoms per mapping) be exactly one. We show in Figure 5 an integration scenario fulfill-
ing these requirements. Note that both the source and target relations have up to five attributes. The black
solid lines in the figure represent mapping correspondences (variables that are shared between the source
and the target), and the two LAV mappings being output here are as follows: one takes a source relation
Stdm(Team,Stadium) and copies it to a target relation Home(Team,Stdm,Address), and another
mapping takes a source relation PStat(Name,Season,Team,Goals) and vertically partitions it into two
target relations, Team(Id,Name) and Player(Name,Season,Id,Goals).

iBench supports two kinds of input parameters, scenario parameters that help control the characteristics of
integration scenarios to generate arbitrary independent metadata, and primitive parameters that help control the
precise relationship between the source and target schemas. As shown in our example above, typical scenario
parameters include controlling the schema size and complexity, the number of mappings and the complexity of
the mapping language (from using ST TGDS to richer second-order TGDS [17] which are useful in evaluating
integration tasks like mapping composition), and the amount and type of constraints per relation. Notice for
example that in Figure 5, the second mapping creates two target keys for Team and Player, and a foreign
key between them. Primitive parameters, on the contrary, act over individual mapping primitives where each
mapping primitive is a parameterized integration scenario encoding a common transformation pattern (e.g.,
vertical or horizontal partitioning). Using primitive parameters, for instance, a user can constrain these scenarios
to use a particular type of join (i.e., Star or Chain), or use a different number of partitions when constructing the
mapping expressions.

Mapping generation, with the level of control provided by iBench, is computationally hard [5], and moreover
there may be metadata tasks for which no solution exists. iBench employs a holistic approach in examining
the input requirements, and may choose to relax some scenario parameters to produce a solution. Suppose a
user requests an integration scenario with source relations with exactly two attributes (scenario parameter) and
requests the use of a vertical-partitioning primitive that partitions a source relation into three fragments (primitive
parameter). This task has conflicting requirements, as in order to create a target mapping expression with three
fragments we need to have a source relation with at least three attributes. In this case, iBench’s best-effort
algorithm chooses to obey the restriction on number of partitions and violate the restriction on source relation
size, that is, in the presence of conflicts, primitive parameters have precedence over scenario parameters. Still
any output generated by iBench is guaranteed to be a correct solution with respect to the relaxed constraints.

Use Cases. iBench supports several use cases. The first, main use case deals with generating integration
scenarios that have independent schemas with random mappings and constraints. iBench can generate arbitrary

59

constraints such as FDs (including keys) and inclusion dependencies (including foreign keys), and the user
can easily specify the percentage of constraints per relation, as well as the size of keys, for example. In the
second use case, a user can request the generation of primitive-based parameterized scenarios. Notice that these
scenarios can be used as a gold standard. Also, using a combination of scenario and primitive input parameters,
a user can easily ask for a mix of independent and primitive-based scenarios. This allows for the creation of
scenarios with some redundancy. By using metadata sharing, the third use case, we can use iBench to create
even more realistic and complex scenarios where the degree of source and target sharing among mappings can be
also controlled. Notice that in practice, most integration scenarios exhibit mappings that reuse source or target
relations. A fourth use case allows users to import real-world integration scenarios (i.e., schema, mappings, data)
into iBench, and systematically vary and scale them along with any other requested metadata. This feature is
crucial for evaluating systems that exploit very specific transformation patterns [5]. The main innovation here
has been to view the characteristics of metadata as independent variables which can be systematically controlled
(via the input parameters of iBench) to generate flexible, diverse metadata in a fast, scalable way.

5 Success Stories

We now discuss some successful evaluations using the iBench and BART systems and the quality measures
introduced in Section 2, focusing specifically on how these approaches enabled these evaluations.

5.1 Measuring Success Rates of Mapping Translation in Data Exchange

Arocena et al. [7] proposed an approach for rewriting second-order TGDS into equivalent first-order mappings
(ST TGDS or nested mappings). Testing whether a second-order TGD is equivalent to an ST TGD or nested
mapping is undecidable [18], hence this approach is correct, but not complete, meaning it may not be able to
rewrite the second-order input mapping even if an equivalent first-order mapping exists. Given this incomplete-
ness result it was important to evaluate the algorithm’s success rate over a broad range of realistic mappings and
compare this rewriting algorithm to alternative approaches (such as an earlier rewriting technique by Nash et
al. [27]). The evaluation goal here was to answer the question: “How often do these algorithms succeed in prac-
tice?”. iBench was used to generate schemas, schema constraints (including keys and FDs), and schema map-
pings expressed as second-order TGDS. The iBench system enabled the systematic (and efficient) generation
of a large number of diverse mappings (over 12 million), in which the degree and complexity of incompleteness
(i.e., the Skolem functions used for modeling value invention) could be controlled.

This comprehensive evaluation would not have been possible without using an efficient metadata generator
like iBench that provides control over both mapping and schema characteristics. A small collection of real-
world scenarios would have not been representative enough to show the differences in algorithms. Relying on
a few synthetic scenarios would have not been realistic enough. These experiments depended on the following
specific features of iBench: efficient schema and mapping generation (both in terms of computational resources
and in terms of user effort where the user only needs to set a few configuration parameters), the ability to
generate second-order TGD mappings, support for varying the type and amount of incompleteness in mappings,
and varying the type and amount of schema constraints.

5.2 Evaluating the Quality per Effort Ratio of Data Transformation Systems

The IQ metric for transformation quality and user effort was used to answer the question “how much user effort
is it required with a particular system to reach a certain data-transformation quality?”. In this evaluation [25], the
IQ metric was essential because it enabled two very important results: 1) a level comparison of user effort among
systems that use very diverse means of user interaction to create a data transformation task (e.g., a mapping-
based system may have a GUI that focuses on the task of schema matching and mapping generation while the

60

actual data transformation step is automatic once a mapping has been designed, while an ETL tool focuses
on building a workflow out of basic data transformation steps such as surrogate key generation); and 2) a fair
comparison of output quality by comparing the transformed data to a gold standard. An important property of
the IQ quality measure is that it measures the quality of the final output (target instance) instead of the generated
mappings. This makes the measure applicable for comparing data-transformation systems as diverse as ETL
tools and data exchange systems.

5.3 Evaluating the Effect of Repairability on Data Cleaning Quality

BART was used to evaluate how the repairability of a dirty instance affects the quality of the repairs produced
by data-cleaning systems [6]. Though preliminary, this evaluation demonstrated that different algorithms show
different trends with respect to how repairability affects quality. BART was essential to this evaluation because
it enabled the generation of dirty instances with a guaranteed number of errors that are detectable by the con-
straints, while at the same time controlling how hard these errors are to repair (repairability). BART helped
greatly reduce the amount of effort needed to generate the multitude of dirty versions of a dataset. Creating
several dirty versions of a clean dataset amounted to just changing a few configuration parameters. Importantly,
BART was designed with performance in mind. The actual error-generation process is highly efficient and, thus,
it is feasible to generate many large dirty instances for an experiment within very reasonable time.

6 Conclusion and Future Work

We have discussed some of the important challenges in evaluating data curation tasks where both the perfor-
mance of a system and the accuracy (or quality) of the curation result must be considered. We have presented
some of the important input parameters (the independent variables in an evaluation) that have been identified,
along with accuracy measures. We motivated the need for data and metadata generators that can efficiently
produce suites of input data or metadata for curation systems conforming to specific settings of the input pa-
rameters. We focused our discussion on two curation tasks, data exchange and data repair, and discussed the
state-of-the-art in evaluating these important tasks. Much remains to be done in understanding the research
challenges inherent in evaluating these and other data curation tasks. We feel this is an area that is ripe for
innovation. As data curation lies at the heart of data science, we need evaluation standards and tools that inspire
confidence in our solutions and drive the field forward.

References
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling Relational Data: A Survey. The VLDB Journal, 24(4):557–581,

2015.

[2] B. Alexe, M. A. Hernández, L. Popa, and W.-C. Tan. MapMerge: Correlating Independent Schema Mappings. The
VLDB Journal, 21(2):191–211, 2012.

[3] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evaluating Mapping Systems with STBenchmark. PVLDB,
1(2):1468–1471, 2008.

[4] P. Andritsos, R. J. Miller, and P. Tsaparas. Information-Theoretic Tools for Mining Database Structure from Large
Data Sets. In SIGMOD, pages 731–742, 2004.

[5] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The iBench Integration Metadata Generator. PVLDB,
9(3):108–119, 2015.

[6] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and D. Santoro. Messing-Up with BART: Error Genera-
tion for Evaluating Data Cleaning Algorithms. PVLDB, 9(2):36–47, 2015.

61

[7] P. C. Arocena, B. Glavic, and R. J. Miller. Value Invention in Data Exchange. In SIGMOD, pages 157–168, 2013.

[8] Z. Bellahsene, A. Bonifati, F. Duchateau, and Y. Velegrakis. On Evaluating Schema Matching and Mapping. In
Schema Matching and Mapping, pages 253–291. Springer, 2011.

[9] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Implementing Mapping Composition. The VLDB Journal,
17(2):333–353, 2008.

[10] L. Bertossi. Database Repairing and Consistent Query Answering. Morgan & Claypool, 2011.

[11] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A Cost-Based Model and Effective Heuristic for Repairing Con-
straints by Value Modification. In SIGMOD, pages 143–154, 2005.

[12] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. The Spicy System: Towards a Notion of Mapping
Quality. In SIGMOD Conference, pages 1289–1294, 2008.

[13] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated Databases. In PODS, pages 1–12, 2008.

[14] X. Chu, I. F. Ilyas, and P. Papotti. Discovering Denial Constraints. PVLDB, 6(13):1498–1509, 2013.

[15] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange: Semantics and Query Answering. TCS, 336(1):89–124,
2005.

[16] R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. ACM Transactions on Database Systems,
30(1):174–210, 2005.

[17] R. Fagin, P. Kolaitis, L. Popa, and W. Tan. Composing Schema Mappings: Second-Order Dependencies to the
Rescue. ACM Transactions on Database Systems, 30(4):994–1055, 2005.

[18] I. Feinerer, R. Pichler, E. Sallinger, and V. Savenkov. On the Undecidability of the Equivalence of Second-Order
Tuple Generating Dependencies. Information Systems, 48:113–129, 2015.

[19] J. Hellerstein. Quantitative Data Cleaning for Large Databases. In Technical report, UC Berkeley, Feb 2008.

[20] I. F. Ilyas and X. Chu. Trends in Cleaning Relational Data: Consistency and Deduplication. Foundations and Trends
in Databases, 5(4):281–393, 2015.

[21] S. Kolahi and L. V. S. Lakshmanan. On Approximating Optimum Repairs for Functional Dependency Violations. In
ICDT, pages 53–62, 2009.

[22] S. Kolahi and L. Libkin. An Information-Theoretic Analysis of Worst-Case Redundancy in Database Design. ACM
Transactions on Database Systems, 35(1), 2010.

[23] S. Kruse, P. Papotti, and F. Naumann. Estimating Data Integration and Cleaning Effort. In EDBT, pages 61–72,
2015.

[24] B. Marnette, G. Mecca, and P. Papotti. Scalable Data Exchange with Functional Dependencies. PVLDB, 3(1):105–
116, 2010.

[25] G. Mecca, P. Papotti, S. Raunich, and D. Santoro. What is the IQ of your Data Transformation System? In CIKM,
pages 872–881, 2012.

[26] M. Meila. Comparing Clusterings: an Axiomatic View. In ICML, pages 577–584, 2005.

[27] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings Given by Embedded Dependencies. TODS,
32(1):4, 2007.

[28] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and D. Srivastava. Combining Quantitative and Logical Data
Cleaning. PVLDB, 9(4):300–311, 2015.

[29] B. ten Cate and P. G. Kolaitis. Structural Characterizations of Schema-Mapping Languages. In ICDT, pages 63–72,
2009.

[30] T. Vogel, A. Heise, U. Draisbach, D. Lange, and F. Naumann. Reach for Gold: An Annealing Standard to Evaluate
Duplicate Detection results. J. Data and Information Quality, 5(1-2):5:1–5:25, 2014.

[31] C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when Schemas Evolve. In VLDB Conference, pages
1006–1017, 2005.

62

