Trinity Graph Engine and its Applications

Bin Shao, Yatao Li, Haixun Wang; Huanhuan Xia
Micorosoft Research Asia, *Facebook
{binshao, yatli, lexi} @microsoft.com, *haixun @ gmail.com

Abstract

Big data become increasingly connected along with the rapid growth in data volume. Connected data
are naturally represented as graphs and they play an indispensable role in a wide range of application
domains. Graph processing at scale, however, is facing challenges at all levels, ranging from system
architectures to programming models. Trinity Graph Engine is an open-source distributed in-memory
data processing engine, underpinned by a strongly-typed in-memory key-value store and a general dis-
tributed computation engine. Trinity is designed as a general-purpose graph processing engine with
a special focus on real-time large-scale graph query processing. Trinity excels at handling a massive
number of in-memory objects and complex data with large and complex schemas. We use Trinity to
serve real-time queries for many real-life big graphs such as Microsoft Knowledge Graph and Microsoft
Academic Graph. In this paper, we present the system design of Trinity Graph Engine and its real-life
applications.

1 Introduction

In this big data era, data become increasingly connected along with the rapid growth in data volume. The
increasingly linked big data underpins artificial intelligence, which is expanding its application territory at an
unprecedented rate. Linked data are naturally represented and stored as graphs. As a result graph data have now
become ubiquitous thanks to web graphs, social networks, and various knowledge graphs, to name but a few.

Graph processing at scale, however, is facing challenges at all levels, ranging from system architectures
to programming models. On the one hand, graph data are not special and can be processed by many data
management or processing systems such as relational databases [1] and MapReduce systems [2]. On the other
hand, large graph processing has some unique characteristics [3], which make the systems that do not respect
them in their design suffer from the “curse of connectedness” when processing big graphs. In this paper, we
discuss the challenges faced by real-time parallel large graph processing and how to rise to them in the system
design.

The complex nature of graph. Graph data is inherently complex. The contemporary computer architec-
tures are good at processing linear and simple hierarchical data structures, such as Lists, Stacks, or Trees. Even
when the data scale becomes large and is partitioned over many distributed machines, the divide and conquer

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*This work was done in Microsoft Research Asia.

18

computation paradigm still works well for these data structures. However, when we are handling graphs, espe-
cially big graphs, the situation is changed. Big graphs are difficult to process largely because they have a large
number of interconnected relations encoded. The implication is twofold: 1) From the perspective of data access,
the adjacent nodes of a graph node cannot be accessed without “jumping” in the data store no matter how we
represent a graph. In other words, a massive amount of random data access is required during graph processing.
Many modern program optimizations rely on data reuse. Unfortunately, the random data access nature of graph
processing breaks this premise. Without a careful system design, this usually leads to poor performance since
the CPU cache is not in effect for most of the time. 2) From the perspective of programming, parallelism is
difficult to extract because of the unstructured nature of graphs. As widely acknowledged [3], a lot of graph
problems are inherently irregular and hard to partition; this makes it hard to obtain efficient divide and conquer
solutions for many large graph processing tasks.

Due to the random data access challenge, general-purpose graph computations usually do not have efficient,
disk-based solutions. But under certain constraints, graph problems sometimes can have efficient disk-based
solutions. A good example is GraphChi [4]. GraphChi can perform efficient disk-based graph computations
under the assumption that the computations have asynchronous vertex-centric [5] solutions. An asynchronous
solution is one where a vertex can perform its computation based only on the partially updated information
from its incoming graph edges. This assumption eliminates the requirement of global synchronization, making
performing computations block by block possible. On the other hand, it inherently cannot support traversal-
based graph computations and synchronous graph computations because a graph node cannot efficiently access
the graph nodes pointed by its outgoing edges.

The diversity of graph data and graph computations. There are many kinds of graphs. Graph algorithms’
performance may vary a lot on different types of graphs. On the other hand, there are a large variety of graph
computations such as path finding, subgraph matching, community detection, and graph partitioning. Each
graph computation itself even deserves dedicated research; it is nearly impossible to design a system that can
support all kinds of graph computations. Moreover, graphs with billions of nodes are common now, for example,
the Facebook social network has more than 2 billion monthly active users'. The scale of the data size makes
graph processing prohibitive for many graph computation tasks if we directly apply the classic graph algorithms
from textbooks.

In this paper, we present Trinity Graph Engine — a system designed to meet the above challenges. Instead
of being optimized for certain types of graph computations on certain types of graphs, Trinity tries to directly
address the grand random data access challenge at the infrastructure level. Trinity implements a globally ad-
dressable distributed RAM store and provides a random access abstraction for a variety of graph computations.
Trinity itself is not a system that comes with comprehensive built-in graph computation modules. However,
with its flexible data and computation modeling capability, Trinity can easily morph into a customized graph
processing system that is optimized for processing a certain type of graphs.

Many applications utilize large RAM to offer better performance. Large web applications, such as Facebook,
Twitter, Youtube, and Wikipedia, heavily use memcached [6] to cache large volumes of long-lived small objects.
As the middle tier between data storage and application, caching systems offload the server side work by taking
over some data serving tasks. However, the cache systems cannot perform in-place computations to further
reduce computation latencies by fully utilizing the in-memory data.

The design of Trinity is based on the belief that, as high-speed network access becomes more available
and DRAM prices trend downward, all-in-memory solutions provide the lowest total cost of ownership for
a large range of applications [7]. For instance, RAMCloud [8] envisioned that advances in hardware and
operating system technology will eventually enable all-in-memory applications, and low latency can be achieved
by deploying faster network interface controllers (NICs) and network switches and by tuning the operating
systems, the NICs, and the communication protocols (e.g., network stack bypassing). Trinity realizes this vision

1http: //newsroom. fb.com/company—-info/.

19

for large graph applications, and Trinity does not rely on hardware/platform upgrades and/or special operating
system tuning, although Trinity can leverage these techniques to achieve even better performance.

The rest of the paper is organized as follows. Section 2 outlines the design of the Trinity system. Section 3
introduces Trinity’s distributed storage infrastructure — Memory Cloud. Section 4 introduces Trinity Specifica-
tion Language. Section 5 discusses fault tolerance issues. Section 6 introduces Trinity applications. Section 7
concludes.

2 An Overview of Trinity

Trinity is a data processing engine on distributed in-memory infrastructure called Trinity Memory Cloud. Trinity
organizes the main memory of multiple machines into a globally addressable memory address space. Through
the memory cloud, Trinity enables fast random data access over a large distributed data set. At the same time,
Trinity is a versatile computation engine powered by declarative message passing.

Client Client
Lib Lib

Client
Lib

Client
Lib

Trinity
Proxy

Trinity
Proxy

Lib Lib
Client Client

Figure 1: Trinity Cluster Structure

Fig. 1 shows the architecture of Trinity. A Trinity system consists of multiple components that communicate
through a network. According to the roles they play, we classify them into three types: servers, proxies, and
clients. A Trinity server plays two roles: storing data and performing computations on the data. Computations
usually involve sending messages to and receiving messages from other Trinity components. Specifically, each
server stores a portion of the data and processes messages received from other servers, proxies, or clients. A
Trinity proxy only handles messages but does not own a data partition. It usually serves as a middle tier between
servers and clients. For example, a proxy may serve as an information aggregator: it dispatches the requests
coming from clients to servers and sends the results back to the clients after aggregating the partial results
received from servers. Proxies are optional, that is, a Trinity system does not always need a proxy. A Trinity
client is responsible for interacting with the Trinity cluster. Trinity clients are applications that are linked to the
Trinity library. They communicate with Trinity servers and proxies through APIs provided by Trinity.

Fig. 2 shows the stack of Trinity system modules. The memory cloud is essentially a distributed key-value
store underpinned by a strongly-typed RAM store and a general distributed computation engine. The RAM
store manages memory and provides mechanisms for concurrency control. The computation engine provides an
efficient, one-sided, machine-to-machine message passing infrastructure.

Due to the diversity of graphs and the diversity of graph applications, it is hard, if not entirely impossible, to
support all kinds of graph computations using a fixed graph schema. Instead of using a fixed graph schema and
fixed computation paradigms, Trinity allows users to define their own graph schemas, communication protocols
through Trinity specification language (TSL) and realize their own computation paradigms. TSL bridges the
needs of a specific graph application with the common storage and computation infrastructure of Trinity.

20

Graph APIs
Getlnlinks(), Outlinks.Foreach(...), etc

Graph Model

Trinity Specification Language

Memory Cloud
Strongly-typed General
RAM Store Computation Engine

Figure 2: System Layers
3 Trinity Memory Cloud

We build a distributed RAM store — Trinity Memory Cloud — as Trinity’s storage and computation infrastructure.
The memory cloud consists of 2”7 memory trunks, each of which is stored on one machine. Usually, we have
2P > m, where m is the number of machines. In other words, each machine hosts multiple memory trunks.
We partition a machine’s local memory space into multiple memory trunks so that trunk level parallelism can
be achieved without any locking overhead. To support fault-tolerant data persistence, these memory trunks are
backed up in a shared distributed file system called TFS (Trinity File System) [9], whose design is similar to that
of HDFS [10].

We create a key-value store in the memory cloud. A key-value pair forms the most basic data structure of
any system built on top of the memory cloud. Here, keys are 64-bit globally unique integer identifiers; values
are blobs of arbitrary length. Because the memory cloud is distributed across multiple machines, we cannot
address a key-value pair using its physical memory address. To address a key-value pair, Trinity uses a hashing
mechanism. In order to locate the value of a given key, we first 1) identify the machine that stores the key-value
pair, then 2) locate the key-value pair in one of the memory trunks on that machine. Through this hashing
mechanism as illustrated by Figure 3, we provide a globally addressable memory space.

Specifically, given a 64-bit key, to locate its corresponding value in the memory cloud, we hash the key to a
p-bit value i (7 € [0,2P — 1]), indicating that the key-value pair is stored in memory trunk ¢ within the memory
cloud. Trinity assigns a unique machine identifier mid to each machine in the Trinity cluster. To find out which
machine contains memory trunk ¢, we maintain an “addressing table” with 2P slots, where each slot stores a mid
with which we can reach the corresponding Trinity server. Furthermore, in order for the global addressing to
work, each machine keeps a replica of the addressing table. We will describe how we ensure the consistency of
these addressing tables in Section 5.

We then locate the key-value pair in the memory trunk ¢. Each memory trunk is associated with a latch-free
hash table on the machine whose mid is in the slot ¢ of the addressing table. We hash the 64-bit key again to find
the offset and size of the stored blob (the value part of the key-value pair) in the hash table. Given the memory
offset and the size, we now can retrieve the key-value pair from the memory trunk.

The addressing table provides a mechanism that allows machines to dynamically join and leave the memory
cloud. When a machine fails, we reload the memory trunks it owns from the TFS to other alive machines. All
we need to do is to update the addressing table so that the corresponding slots point to the machines that host
the data now. Similarly, when new machines join the memory cloud, we relocate some memory trunks to those
new machines and update the addressing table accordingly.

Each key-value pair in the memory cloud may attach some metadata for a variety of purposes. Most notably,
we associate each key-value pair with a spin lock. Spin locks are used for concurrency control and physical

21

64-bit UID

(T A T T T T AT T T T T T T T TTTTT

hash

hine 0 hine 1 hine 2 hine m

2

Addressing
p-bit Table
hash code

{1 J2[a] - [ifk][om
' WY y

Trinity File System

Trinity
Server

J:l

[1 |
cell bytes | |
Memory Trunk

Memory
UID | Offset | Size Trunk
O/ 321 123

Memory Trunks

10... 423 211

Figure 3: Data Partitioning and Addressing

memory pinning. Multiple threads may try to access the same key-value pair concurrently; we must ensure a
key-value pair is locked and pinned to a fixed memory position before allowing any thread to manipulate it. In
Trinity, all threads need to acquire the corresponding spin lock before it can access a key-value pair exclusively.

4 Trinity Specification Language

In this section, we introduce Trinity Specification Language (TSL). It is a declarative language designed to
specify data schemas and message passing protocols using cell and protocol constructs. The TSL compiler is
essentially a code generator: it generates optimized data access methods and message passing code according to
the specificed TSL script.

4.1 Strongly-typed Data Modeling

Trinity supports property graphs? on top of its key-value store. “Keys” are globally unique identifiers introduced
in Section 3 and their “values” are used for storing application data. The schema of the value part of a key-value
pair can be specified by a cell structure in a TSL script. A cell structure in a TSL script specifies a user-defined
data type. Defining a cell is pretty much like defining a struct in C/C++ as shown in Figure 4. The value part
of such a key-value pair stored in Trinity memory cloud is called a data cell or simply cell when there is no
ambiguity. Correspondingly, the key of the key-value pair is called its cell Id.

The TSL snippet shown in Figure 4 demonstrates how to model a graph node using a cell structure. A graph
node represented by a cell and a cell can be referenced by its 64-bit cell Id, thus simple graph edges which
reference a list of graph nodes can be represented by List<int64>. The data schema of graph edges that have
associated data can be specified using a TSL struct. In the example shown in Figure 4, the schema of MyEdges
is specified by the MyEdge struct.

2The nodes and edges of a property graph can have rich information associated.

22

struct MyEdge

{
int64 Link;
float Weight;
}
[GraphNode]
cell MyGraphNode
{
string Name;
[GraphEdge: Inlinks]
List<int64> SimpleEdges;
[GraphEdge: Outlinks]
List<MyEdge> MyEdges;
}

Figure 4: Modeling a Graph Node

To distinguish the cell fields that specify graph edges from those that do not, we can annotate a cell and
its data fields using TSL attributes. An attribute is a tag associated with a construct in TSL. Attributes provide
the metadata about the construct and can be accessed during run time. An attribute can be a string or a pair of
strings. An attribute is always regarded as a key-value pair. A single-string attribute is regarded as a key-value
pair with an empty value. In the example shown in Figure 4, we use attribute GraphNode to indicate the cell
MyGraphNode is a graph node and use attribute GraphEdge to indidate SimpleEdges and MyEdges are graph
edges.

4.2 Modeling Computation Protocols

Trinity realizes a communication architecture called active messages [11] to support fine-grained one-sided com-
munication. This communication architecture is desirable for data-driven computations and especially suitable
for online graph query processing, which is sensitive to network latencies. TSL provides an intuitive way of
writing such message passing programs.

struct MyMessage
{
string Text;
}
protocol Echo
{
Type: Syn;
Request: MyMessage;
Response: MyMessage;
}

Figure 5: Modeling Message Passing

Fig. 5 shows an example. It specifies a simple “Echo” protocol: A client sends a message to a server, and the
server simply sends the message back. The “Echo” protocol specifies its communication type is synchronous
message passing, and the type of the messages to be sent and received is MyMessage. For this TSL script, the
TSL compiler will generate an empty message handler EchoHandler and the user can implement the message
handling logic for the handler. Calling a protocol defined in the TSL is like calling an ordinary local method.
Trinity takes care of message dispatching, packing, etc., for the user.

23

4.3 Zero-copy Cell Manipulation

Trinity memory cloud provides a key-value pair store, where the values are binary blobs whose data schemas are
specified via TSL. Alternatively, we can store graph nodes and edges as the runtime objects of an object-oriented
programming language. Unfortunately, this is not a feasible approach for the following three reasons. First, we
cannot reference these runtime objects across machine boundaries. Second, runtime objects incur significant
storage overhead. For example, an empty runtime object (one that does not contain any data at all) in .Net
Framwork requires 24 bytes of memory on a 64-bit system and 12 bytes of memory on a 32-bit system. For a
billion-node graph, this is a big overhead. Third, although Trinity is an in-memory system, we do need to store
memory trunks on the disk or over a network for persistence. For runtime objects, we need serialization and
deserialization operations, which are costly.

Storing objects as blobs of bytes seems to be desirable since they are compact and economical with zero
serialization and deserialization overhead. We can also make the objects globally addressable by giving them
unique identifiers and using hash functions to map the objects to memory in a machine. However, blobs are
not user-friendly. We no longer have object-oriented data manipulation interfaces; we need to know the exact
memory layout before we can manipulate the data stored in the blob (using pointers, address offsets, and casting

to access data elements in the blob). This makes programming difficult and error-prone”.
cell struct MyCell Cell Schema . Cell
TSL { X Defined in TSL [compile— Accessor
Seri int Id;
cript List<long> Links;
} Blob
Generated API
using(var cell = UseMyCellAccessor(cellld))
—— int1d = cellId; //Get the value of Id e
— cell.Links[1] = 2; //Set Links[1] to 2 Cell Accessor

Blob View

L 00000001 | 00000000 | 00000000 | 00000000 | 00000011 | 00000000 | 00000000 | 00000000
00000001 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000
00000010 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000
00000011 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000

Figure 6: Cell Accessor

To address this problem, Trinity introduces a mechanism called cell accessor to support object-oriented data
manipulation on blob data. Users first declare the schema of a cell in TSL, then the TSL compiler automatically
generates data access methods for manipulating cells stored as blobs in the memory cloud. One of the generated
function is UseMyCellAccessor. Given a cellld, it returns an object of type MyCellAccessor. With the gener-
ated MyCellAccessor, users can manipulate its underlying blob data in an object-oriented manner as shown in
Figure 6.

As a matter of fact, a cell accessor is not a data container, but a data mapper. It maps the data fields declared
in TSL to the correct memory locations in the blob. Data access operations to a data field will be correctly
mapped to the correct memory locations with zero memory copy overhead. In addition, using the spin lock
associated with each key-value pair, Trinity guarantees the atomicity of the operations on a single data cell
when the cell is manipulated via its cell accessor. However, Trinity does not provide built-in ACID transaction
support. This means Trinity cannot guarantee serializability for concurrent threads. For applications that need
transaction support, users can implement light-weight atomic operation primitives that span multiple cells, such
as MultiOp primitives [12] or Mini-transaction primitives [13] on top of the atomic cell operations provided by

3Note that we cannot naively cast a blob to a structure defined in programming languages such as C or C++ because the data elements
of a struct are not always flatly laid out in the memory. We cannot cast a flat memory region to a structured data pointer.

24

cell accessor.

5 Fault Tolerance

As a distributed in-memory system, Trinity needs to deal with subtle fault-tolerance issues. The fault-tolerance
requirements are highly application dependent, we discuss the general fault tolerance approaches in this section
and application developers should choose proper fault tolerance approaches according to their application needs.

5.1 Shared Addressing Table Maintenance

Trinity uses a shared addressing table to locate key-value pairs, as elaborated in Section 3. The addressing table
is a shared data structure. A centralized implementation is unfeasible because of the performance bottleneck and
the risk of single points of failure. A straightforward approach to these issues is to duplicate this table on each
server. However, this leads to the potential problem of data inconsistency.

Trinity maintains a primary replica of the shared addressing table on a leader machine and uses the fault-
tolerant Trinity File System to keep a persistent copy of the primary addressing table. An update to the primary
table must be applied to the persistent replica before being committed.

Both ordinary messages and heartbeat messages are used to detect machine failures. For example, if machine
A attempts to access a data item on machine B that is down, machine A can detect the failure of machine B. In
this case, machine A informs the leader machine of the failure of machine B. Afterwards, machine A waits for
the addressing table to be updated and attempts to access the item again once the addressing table is updated. In
addition, machine-to-machine heartbeat messages are sent periodically to detect network or machine failures.

Upon confirmation of a machine failure, the leader machine starts a recovery process. During recovery, the
leader reloads the data owned by the failed machine to other alive machines, updates the primary addressing
table, and broadcasts it. Even if some machines cannot receive the broadcast message due to a temporary
network problem, the protocol still works since a machine always syncs up with the primary addressing table
replica when it fails to load a data item. If the leader machine fails, a new round of leader election will be
triggered. The new leader sets a flag on the shared distributed file system to avoid multiple leaders in the case
that the cluster machines are partitioned into disjointed sets due to network failures.

5.2 Fault Recovery

We provide different fault recovery mechanisms for different computation paradigms. Checkpoint and “peri-
odical interruption” techniques are adopted for offline computations, while an asynchronous buffered logging
mechanism is designed for online query processing.

5.2.1 Offline Computations

For BSP-based synchronous computations, we can make checkpoints every few super-steps [5]. These check-
points are written to the Trinity File System for future recovery.

Because checkpoints cannot be easily created when the system is running in the asynchronous mode, the
fault recovery is subtler than that of its synchronous counterpart. Instead of adopting a complex checkpoint
technique such as the one described in [14], we use a simple “periodical interruption” mechanism to create
snapshots. Specifically, we issue interruption signals periodically. Upon receiving an interruption signal, all
servers pause after finishing their current job. After issuing the interruption signal, Safra’s termination detection
algorithm [15] is employed to check whether the system has ceased. A snapshot is then written to the Trinity
File System once the system ceases.

25

5.2.2 Online Query Processing

We now discuss how to guarantee that any user query that has been successfully submitted to the system will be
eventually processed, despite machine failures.
The fault recovery of online queries consists of three steps:

1. Log submitted queries.
2. Log all generated cell operations during the query processing,

3. Redo queries by replaying logged cell operations.

Query Logging We must log a user query for future recovery after it is submitted to the system. To reduce
the logging latency, a buffered logging mechanism [16] is adopted. Specifically, when a user query is issued,
the Trinity client submits it to at least two servers/proxies. The client is acknowledged only after the query
replicas are logged in the remote memory buffers. Meanwhile, we use a background thread to asynchronously
flush the in-memory logs to the Trinity File System. Once a query is submitted, we choose one of the Trinity
servers/proxies that have logged the query to be the agent of this query. The query agent is responsible for
issuing the query to the Trinity cluster on behalf of the client. The agent assigns a globally unique qguery id to
each query once the query is successfully submitted.

For the applications that only have read-only queries, we just need to reload the data from the Trinity File
System and redo the failed queries when a machine fails. For the applications that support online updates, a
carefully designed logging mechanism is needed.

Operation Logging A query during its execution generates a number of messages that will be passed in the
cluster. An update query transforms a set of data cells from their current states to a set of new states through
the pre-defined message handlers. All message handlers are required to be deterministic* so that we can recover
the system state from failures by replaying the logged operations. The resulting states of the data cells are
determined by the initial cell states and the generated messages.

We designed an asynchronous buffered logging mechanism for handling queries with update operations. We
keep track of all generated cell operations and asynchronously log operations to remote memory buffers. Each
log entry is represented by a tuple < gid, cid, m, sn >, which consists of a query id gid , a cell id cid, a message
m, and a sequential number sn. The query id, cell id, and the message that has trigged the current cell operation
uniquely specifies a cell operation. The messages are logged to distinguish the cell operations generated by the
same query. The sequential number indicates how many cell operations have been applied to the current cell. It
represents the cell state in which the cell operation was generated.

we enforce a sequential execution order for each cell using the spin lock associated with the cell. We can
safely determine a cell’s current sequential number when it holds the spin lock. We send a log entry to at least
two servers/proxies once it acquires the lock. We call asynchronous logging weak logging and synchronous
logging strong logging. When a cell operation is acknowledged by all remote loggers, its state becomes strongly
logged. We allow weak logging if all the cell operations on the current cell with sequential numbers less than
sn — a (e > 1) have been strongly logged, where sn is the sequential number of the current cell and « is
a configurable parameter. Otherwise, we have to wait until the operations with sequential numbers less than
sn — a have been strongly logged. There are two implications: 1) The strongly logged operations are guaranteed
to be consecutive. This guarantees all strongly logged operations can be replayed in the future recovery. 2)
Introducing a weak logging window of size a reduces the chance of blocking. Ideally, if the network round-trip
latency is less than the execution time of « cell operations, then all cell operations can be executed without
waiting for logging acknowledgements.

*Given a cell state, the resulting cell state of executing a message handler is deterministic.

26

System Recovery During system recovery, all servers enter a “frozen” state, in which message processing
is suspended and all received messages are queued. In the “frozen” state, we reload the data from the Trinity
File System and start to redo the logged queries. In this process, we can process these queries concurrently and
replay the cell operations of different cells in parallel.

For any cell, the logged cell operations must be replayed in an order determined by their sequential numbers.
For example, consider the following log snippet:

e <Q17cl7m10713 >7".7<q17cl?m117]‘5 > e

For query q1, after the log entry < ¢1, c1, m1g, 13 > is replayed, the entry < q1, c1, m11, 15 > will be blocked
until the sequential number c; is increased to 14 by another query.

Let us examine why we can restore each cell to the state before failures occur. Because all message handlers
are deterministic, for a query, its output and the resulting cell states solely depend on its execution context, i.e.,
the cell states in which all its cell operations are executed. Thus, we can recover the system by replaying the
logged cell operations on each cell in their execution order.

Since the system recovery needs to redo all the logged queries, we must keep the log size small to make
the recovery process fast. We achieve this by incrementally applying the logged queries to the persistent data
snapshot on the Trinity File System in the background.

6 Real-life Applications

Trinity is a Microsoft open source project on GitHub®. It has been used in many real-life applications, including
knowledge bases [17], knowledge graphs [18], academic graphs®, social networks [19], distributed subgraph
matching [20], calculating shortest paths [21], and partitioning billion-node graphs [22]. More technical details
and experimental evaluation results can be found in [23], [20], [18], [21], [22], [24], and [25].

In this section, we use a representative real-life application of Trinity as a case to study how to serve real-time
queries for big graphs with complex schemas. The graph used in this case study is Microsoft Knowledge Graph’
(MKG). MKG is a massive entity network; it consists of 2.4+ billion entities, 8.0+ billion entity properties, and
17.4+ billion relations between entities. Inside Microsoft, we have a cluster of Trinity servers serving graph
queries such as path finding and subgraph matching in real time.

Designing a system to serve MKG faces a new challenge of large complex data schemas besides the general
challenges of parallel large graph processing discussed in Section 1. Compared to typical social networks that
tend to have a small number of entity types such as person and post, the real-world knowledge graph MKG
has 1610 entity types and 5987 types of relationships between entities®. Figure 7 shows a small portion (about
1/120) of the MKG schema graph.

The large complex schemas of MKG makes it a challenging task to efficiently model and serve the knowl-
edge graph. Thanks to the flexible design of Trinity Specification Language, Trinity has met the challenge in
an ‘unusual’ but very effective way. With the powerful code generation capability of the TSL compiler, we can
beat the big schema with big code! For MKG, the TSL compiler generated about 18.7 million lines of code for
modeling the knowledge graph entities in an extremely fine-grained manner. With the generated fine-grained
strongly-typed data access methods, Trinity provides very efficient random data access support for the graph
query processor.

>https://github.com/Microsoft/GraphEngine
Shttps://azure.microsoft.com/en-us/services/cognitive-services/academic-knowledge/
"The knowledge graph is also known as Satori knowledge graph.

8The size of MKG is ever growing; this number is only for an MKG snapshot.

27

Figure 7: A small portion of the MKG schema graph

7 Conclusion

In this paper, we presented Trinity — a graph engine on a distributed in-memory infrastructure called Trinity
Memory Cloud. Instead of being optimized for certain types of graph computations on certain types of graphs,
Trinity is designed as a versatile “graph engine” to support a large variety of graph applications. Trinity now
is a Microsoft open source project on GitHub and we have been using Trinity to support all kinds of graph
applications including knowledge graphs, academic graphs, and social networks.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea, and B. Bhattacharjee, “Building
an efficient rdf store over a relational database,” in SIGMOD, 2013.

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining system implementation and
observations,” ser. ICDM ’09. IEEE Computer Society, 2009, pp. 229-238.

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry, “Challenges in parallel graph processing,” Parallel
Processing Letters, vol. 17, no. 1, pp. 5-20, 2007.

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph computation on just a pc,” in OSDI, 2012,
pp. 31-46.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system for
large-scale graph processing,” ser. SIGMOD "10. ACM.

B. Fitzpatrick, “Distributed caching with memcached,” Linux J., August 2004.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan, “Fawn: a fast array of wimpy
nodes,” ser. SOSP ’09. ACM, pp. 1-14.

J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds: scalable high-performance
storage entirely in dram,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 92-105, 2010.

28

[9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

J. Zhang and B. Shao, “Trinity file system specification,” Microsoft Research, Tech. Rep., 2013. [Online]. Available:
http://research.microsoft.com/apps/pubs/?id=201523

D. Borthakur, The Hadoop Distributed File System: Architecture and Design, 2007.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active messages: a mechanism for integrated com-
munication and computation,” in Proceedings of the 19th annual international symposium on Computer architecture,
ser. ISCA ’92. New York, NY, USA: ACM, 1992, pp. 256-266.

T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an engineering perspective,” ser. PODC *07, 2007,
pp- 398—407.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sinfonia: a new paradigm for building
scalable distributed systems,” ser. SOSP *07, 2007, pp. 159-174.

H. Higaki, K. Shima, T. Tachikawa, and M. Takizawa, “Checkpoint and rollback in asynchronous distributed sys-
tems,” ser. INFOCOM ’97. IEEE Computer Society, 1997.

E. W. Dijkstra, “Shmuel Safra’s version of termination detection,” Jan. 1987. [Online]. Available:
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum, “Fast crash recovery in ramcloud,” ser.
SOSP’11. ACM, 2011, pp. 29-41.

W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: a probabilistic taxonomy for text understanding,” in Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD *12. New York, NY,
USA: ACM, 2012, pp. 481-492.

K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed graph engine for web scale rdf data,” in
Proceedings of the 39th international conference on Very Large Data Bases, ser. PVLDB’13. VLDB Endowment,
2013, pp. 265-276. [Online]. Available: http://dl.acm.org/citation.cfm?id=2488329.2488333

W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlapping communities,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 277-288.

Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching on billion node graphs,” Proc. VLDB
Endow., vol. 5, no. 9, pp. 788-799, May 2012. [Online]. Available: http://dx.doi.org/10.14778/2311906.2311907

Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-node graphs,” Proc. VLDB Endow.,
vol. 7, no. 1, pp. 61-72, Sep. 2013.

L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-node graph,” in IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, 1. F. Cruz, E. Ferrari,
Y. Tao, E. Bertino, and G. Trajcevski, Eds. IEEE, 2014, pp. 568-579.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory cloud,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 505-516.

L. He, B. Shao, Y. Li, and E. Chen, “Distributed real-time knowledge graph serving,” in 2015 International
Conference on Big Data and Smart Computing, BIGCOMP 2015, Jeju, South Korea, February 9-11, 2015. 1EEE,
2015, pp. 262-265.

H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang, “G-sql: Fast query processing via graph exploration,” Proc.
VLDB Endow., vol. 9, no. 12, pp. 900-911, Aug. 2016.

29

