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Abstract

While reproducibility has been a requirement in natural sciences for centuries, computational experi-
ments have not followed the same standard. Often, there is insufficient information to reproduce com-
putational results described in publications, and in the recent past, this has led to many retractions.
Although scientists are aware of the numerous benefits of reproducibility, the perceived amount of work
to make results reproducible is a significant disincentive. Fortunately, much of the information needed to
reproduce an experiment can be obtained by systematically capturing its provenance. In this paper, we
give an overview of different types of provenance and how they can be used to support reproducibility.
We also describe a representative set of provenance tools and approaches that make it easy to create
reproducible experiments.

1 Introduction

The need to reproduce experiments to verify and extend them is not new in science. Revisiting and reusing
past results — or as Newton once said, “standing on the shoulders of giants” — is the standard paradigm of all
sciences. Unfortunately, achieving reproducibility has proved elusive for computational experiments, which, due
to the explosion in the volume of available data and widely accessible computing infrastructure, have become
an integral component of science in many different domains.

Scientific papers published in conferences and journals present a large number of tables, plots, and beautiful
pictures that summarize the obtained results, but that loosely describe the steps taken to derive them [16,38]. Not
only can the methods and the implementation be complex, but their configuration may require setting myriad
parameters. Consequently, reproducing the results from scratch is both time-consuming and error-prone at best,
and sometimes impossible.

Reproducibility of computational experiments across platforms and time brings a range of benefits to sci-
ence. First, reproducibility enables reviewers to test the outcomes presented in papers. This is specially impor-
tant given the growing concern that many spurious research findings are published in respected venues [5,12,29],
which is reflected in the increasing number of paper retractions [44,58]. Second, it allows new methods to be
objectively compared against methods presented in reproducible publications. Third, researchers are able to
build on top of previous work directly. Last but not least, recent studies indicate that reproducibility increases
impact, visibility, and research quality [3,7,26,36,50,59] and helps defeat self-deception [46].
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While many scientists recognize the importance of reproducibility, they are often held back by the complex-
ities involved in putting it into practice. They must describe and encapsulate the entire experiment, i.e., the set
of steps followed to obtain a result, including data, parameters, source code, dependencies, and environment,
so that the results can be properly verified and analyzed. If the experiment is not systematically documented
and made reproducible from the start, it may be difficult and time-consuming to retrospectively track all the
necessary components, and important aspects may be mistakenly omitted. As an example, some numerical
models, if not fully described, may lead to different implementations that are mathematically equivalent, but nu-
merically disparate, thus hampering reproducibility [14]. Even when a complete description is available, others
may have difficulties to reproduce the results: there may be no instructions about how to execute the code and
explore it further; the experiment may not run on a certain operating system; there may be missing libraries;
library versions may be different; and several issues may arise while trying to install all the required chains of
dependencies.

Fortunately, much of the information needed to reproduce an experiment can be obtained by capturing its
provenance. For a given experiment, computational provenance provides information about how and where
that experiment was carried out, what input data was used, and which outputs were produced. In other words,
provenance embodies the association between computation and results [17]: it helps determine both the data
and the sequence of steps that generated the findings, which is essential to make results reproducible. Note,
however, that different types of provenance can be captured, and these enable different levels of reproducibility.
For instance, some systems, such as VisTrails [19] and Kepler [39], capture workflow provenance, i.e., the
dataflow of an experiment, including its main programs and all the data used and derived. But these systems do
not detect the library dependencies for the different programs. As a result, they only attain reproducibility given
that the computational environment is unchanged (e.g., machine and version of dependencies are the same).
Other systems, such as ReproZip [51], are able to capture provenance at the operating system level, including
library dependencies, which allows experiments to be reproduced even in different machines. Nonetheless,
different from workflow systems, ReproZip may not capture the dataflow in an human-interpretable format,
which may make it harder to extend and modify the original dataflow for other purposes.

In this paper, we provide an overview of the different types of provenance and how they influence repro-
ducibility. Our main goal is to help researchers understand how the different types of provenance affect the level
of reproducibility and their corresponding trade-offs, to guide them in selecting a suitable approach for their
experiments. In Section 2, we start by defining computational reproducibility, and use this definition to detail
the different levels of reproducibility one can achieve. Next, we present all the different types of provenance and
how they related to reproducibility in Section 3, where we also describe tools that can be used to capture these
different types. We conclude in Section 4, where we discuss challenges and open problems.

2 What is Reproducibility?

There are different definitions for the term reproducibility, which have been used inconsistently across scientific
disciplines [2]. In this paper, we focus on the computational aspects of reproducibility and introduce definitions
that capture the necessary components to implement computational reproducibility in practice.

2.1 Computational Reproducibility

To understand what is needed to reproduce an experiment, we must first define what a scientific experiment is.
We borrow the definition from Rokem and Chirigati [52]:

Definition 1 (Scientific Experiment): A scientific experiment, or simply experiment, is any procedure carried
out to validate or refute a hypothesis, which involves the use of computational assets, including computer pro-
grams and digital data that is consumed (input data) and produced (output data).
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Such procedure can be represented as a dataflow: a sequence of steps that are connected by the flow of data,
where the output data of a step is used as input data for the following step. In this case, a step is represented by
a computer program or a sequence of programs, and it transforms the data it consumes as part of the procedure.
Below, we define what it means for an experiment to be reproducible [17].

Definition 2 (Reproducible Experiment): An experiment composed by a sequence of steps S that has been
developed at time 7', on environment (hardware and operating system) F, and on data D is reproducible if it
can be executed with a sequence of steps S (different or the same as S) at time 77 > T, on environment F’
(different or the same as F), and on data D’ (different or the same as D) with consistent results.

Consistency here implies that the results can validate the original claims of the research, i.e., the same
conclusions derived from the original results can be obtained from the new results. Clearly, this depends on the
problem being addressed and the overall goal. For instance, it is unlikely that an experiment that compares the
performance of two database systems will produce the exact running times across runs, in particular, if different
machines are used (i.e., £’ # E). However, if the new numbers reflect the same trends originally observed and
validated, then we say that the results are consistent, and therefore, reproducible.

Note that our definition includes both exact reproducibility and approximate reproducibility [52]. Exact

reproducibility, also known as repeatability, entails reproducing the exact same results (meaning, the exact
same numbers) as originally published, which requires having S’ = S, E' = E, and D’ = D. Approximate
reproducibility, on the other hand, involves producing results that are similar to (but not that same as) the original
ones, which entails having different data, a modified sequence of steps, a different environment, or a combination
of these. In this case, the reproduced results may not necessarily be the same, but they must be consistent with
the original results. For experiments that are intrinsically difficult to replicate (e.g., experiments that require a
specific hardware), guaranteeing approximate reproducibility is essential.
The PRIMAD Model. The PRIMAD model [18] extends our definition of reproducibility to include non-
computational aspects as well. It provides a flexible model to define reproducibility: different levels (or modes)
of reproducibility can be defined by modifying a set of variables while reproducing an experiment. We consider
the following variables:

e (P) Platform: the computational environment, including operating system, hardware architecture, and
library dependencies.

(R) Research Objectives: the main goal or purpose of the experiment, i.e., the problem that the experi-
ment is trying to address.

(I) Implementation: how the experiment and its corresponding sequence of steps is implemented (e.g.,
source code and binaries).

(M) Methods: the methods and algorithms that the experiment implements and uses to achieve the re-
search goals.

(A) Actors: the main users of the experiment.

e (D) Data: the input data files, intermediate data, and parameters for the experiment.

These variables are used to describe which aspects of the experiment can be changed while still attaining
reproducible results. The conditions under which the experiment is reproducible are defined by qualifying
the different variables: we tag a variable X with the prime symbol to indicate that X can be changed and the
experiment is still reproducible. If untagged variables are changed, reproducibility cannot be guaranteed. For
instance, if an experiment is claimed to be P’ RIM A’D’, it means that, if researchers, who are not the original
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Data Implementation

Level Parameters | Data Files Platform Binaries | Source Code
Repeatable - - - - -
Re-runnable X X - - -
Portable - - X - -
Extendable - - - X X
Modifiable - - - - X

Table 2: Levels of reproducibility based on the different variables. The symbol “X” denotes a change in the
corresponding variable, while “~” denotes no change from the original setting. Adapted from [18].

authors of the experiment (A’), reproduce the experiment with different data (D’) on a different platform (P’),
they will obtain results that are consistent with the ones originally published.

Note that P, I, and D are equivalent to F, S, and D, respectively, from Definition 2. The other vari-
ables from the PRIMAD model correspond to the non-computational aspects of reproducibility. While we do
not consider these aspects in this paper, we note that they are vastly important and useful to complement the
computational components.

Additional Dimensions of Reproducibility. Besides the PRIMAD variables, there are other dimensions that are
important for qualifying the level of reproducibility of an experiment. One of these dimensions is coverage [17],
which takes into account how much of the experiment can be reproduced, i.e., if the experiment can be partially
or fully reproduced. Many experiments cannot be fully reproduced, e.g., experiments that rely on data derived
by third-party Web services or special hardware. But such experiments can, sometimes, be partially reproduced.
For example, if an experiment uses data that is derived by special, proprietary hardware, the data derivation may
not be reproducible. However, the downstream analyses that use these data may be reproduced by others if the
data is made available.

Another important dimension is transparency, which considers how much information is made available for
an experiment. This dimension affects the variables in different ways. For instance, in terms of implementation,
one can provide the original binaries used in the experiment. While this allows the results to be reproduced, it
limits reusability: these binaries can only be executed in a compatible platform, and the implementation cannot
be modified. On the other hand, if the source code is provided, the implementation can be better inspected and
reused. In terms of data, if the data cleaning process is made available, in addition to the final, cleaned input
files, it is easier to clean other datasets and explore how the experiment behaves with these.

Finally, longevity relates to the ability to reproduce experiments (long) after they were created. Supporting
longevity is challenging because software environments evolve, i.e., libraries, operating systems, and data used
change over time.

2.2 Levels of Reproducibility

To assess the reproducibility of an experiment, we need to understand which of its different components are
made available. In what follows, we categorize the different levels of reproducibility based on Definition 2
and the PRIMAD model. Table 2 summarizes the different levels and the corresponding variables that can be
changed while attaining that level of reproducibility.

Repeatable. An experiment is repeatable if the same results can be re-generated within the same computational
environment, with no changes to code or data, i.e., if the results can be repeated. This is the lowest level
of reproducibility (exact reproducibility), and can be used to determine if the experiment is deterministically
consistent. Note that some experiments may have non-deterministic steps (e.g., a random number generator,
or third-party services that are accessed remotely). In such cases, achieving the exact same results may not be
possible, but they must be consistent with the original ones, i.e., the same conclusions must be reached.
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Re-runnable. We say an experiment is re-runnable if we can vary the input data (either the data files or the input
parameters) and still get results that are consistent. Note that this allows one to determine how the experiment
behaves and how robust the results are for different inputs. For instance, if the input data changes significantly
and the results are still consistent, the experiment may have a broader scope worth investigating. This also allows
one to evaluate whether the data originally used is representative for a given domain.

Portable. An experiment is portable if it can be re-executed on platforms that are different from the platform
where the original results were generated. In this case, the results may be reproduced on similar environments
(i.e., compatible operating system but different machines), or on different environments (i.e., different operating
systems and machines). The level of portability will be higher if the experiments can be run on completely
different environments. Note that, by changing platforms, library dependencies may also change, and this also
affects reproducibility. For instance, the version of a software library may be available on Ubuntu (the original
environment) but not on Windows (the new environment).

Extendable. An experiment is extendable if we can reuse its original dataflow and structure, i.e., its original
sequence of steps, for other experiments. Examples include integrating the original pipeline into an existing
dataflow, or even extending the original one to include new pre- or post-processing steps, e.g., performing
additional data cleaning to the input. This is possible by having access to the implementation of the experiment,
either binaries or source code. Note, however, that the experiment must be portable so that the binaries can be
run in different platforms.

Modifiable. We say an experiment is modifiable if we can change its implementation for reuse purposes, and this
is achievable by having the source code of the experiment. It is worth noting that changing the implementation
also allows others to verify the correctness of the original implementation. In addition, if the experiment is not
yet portable, others may modify the source code to make it runnable in different platforms.

3 Provenance for Reproducibility

The variables that correspond to the computational aspects of reproducibility, i.e., P, I, and D, can be system-
atically captured by keeping track of the experiment’s provenance. Provenance refers to the record trail that
accounts for the origin of a piece of data [20]. These trails enable scientists to: (i) obtain insights into the
chain of reasoning used in the production of a result; (ii) verify the sequence of steps that led to the experiment
findings (by capturing / — implementation); (iii) identify the inputs to an experiment and where they came from
(by capturing D — data); and (iv) determine where the experiment was originally executed (by capturing P —
platform).

Provenance is essential for attaining reproducibility [10, 11]. But different types of provenance can be
captured, and these impact reproducibility in various ways. Thus, to choose the most appropriate provenance
capture method for a scientific experiment, it is important to understand how each of these types influence
the different levels of reproducibility. Below, we describe different types of provenance and how they affect
reproducibility. We also present a set of tools that support automatic provenance capture.

3.1 Database Provenance

Database provenance provides a description of the derivation of a piece of data that results from executing a
database query against a source database [8]. It is fine-grained, in the sense that provenance is captured for
individual data items: it can be used to determine which parts of the source dataset were used to generate a
piece of data in the resulting dataset. Often, database provenance is captured by reasoning about the algebraic
form of the query and the underlying data model of both the source and resulting datasets. Different notions
of database provenance have been defined, notably why-, where-, and how-provenance [9]. Given a tuple ¢ in
the result of a query, why-provenance describes all the source tuples that contributed to ¢ or helped produce t.
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Where-provenance determines where the source tuples were copied from (e.g., which cell of the relation the
data comes from). How-provenance, as the name suggests, describes how the source tuples derived ¢ (e.g., how
many times each source tuple contributed to ¢t and how they were combined).

Since databases operate in a stateful mode, database provenace is important for reproducibility. Every time
a transaction commits, there is a new state that reflects the changes applied within the transaction; executing a
query over different database states is likely to lead to different results.

Database provenance is descriptive: it provides an explanation for the derivation of results. Note that
this type of provenance only captures variable D: no information about the computational environment or the
database management system is available.

Levels of Reproducibility. Because database provenance captures the different states of a database (D), it can
help make an experiment repeatable. How-provenance can make an experiment re-runnable by re-executing the
operations with different data and assessing whether the new results are consistent with the original ones.

Tools. Systems that capture database provenance include Trio [4], Orchestra [24], Perm [22], GProM [1], and
ProQL [32]. Trio is a database management system based on an extended relational algebra called ULDB,
which supports uncertainty and provenance. The source data is annotated with probabilities, and the captured
provenance is used to compute probabilities associated with the derived results. Orchestra is a collaborative
sharing system that uses how-provenance to filter data based on user-specified trust conditions (provenance is
used for data quality and reliability). In Perm, different notions of database provenance, including why-, where-,
and how-provenance, are supported. Perm is implemented as a modified PostgreSQL engine, where data and
its provenance are represented together in a single relation; provenance queries are then rewritten to standard
SQL queries, leveraging existing query optimization techniques. GProM uses the query rewriting approach
from Perm in a generic provenance middleware, in addition to supporting updates, transactions, and operation-
spanning transactions. In the ProQL system, SQL is extended to support how-provenance queries.

Transaction temporal databases keep track of the different states of the database as tuples are added, deleted,
or updated. Therefore, they also support fine-grained provenance and reproducibility: users can revisit old
states and maintain provenance of query results even when data changes [28]. Large database vendors, such as
Oracle [31] and DB2 [53], support version control for their database systems by using temporal models.

3.2 Workflow Provenance

Workflow provenance consists of the record of the derivation of a result (e.g., a dataset, an image, a plot, etc.)
by a computational process represented as a scientific workflow [15]. Scientific workflows are often represented
as dataflows, directed acyclic graphs (DAG) whose vertices are modules (functions) that perform computations,
and data flows through the edges which connect modules. They adopt a functional, deterministic model where
each module receives some input data and generates a new output: the workflow structure and inputs uniquely
identify the outputs.

There are several advantages of describing computations as workflows. Notably: they provide a simple
programming model where a sequence of tasks is composed by connecting the outputs of one task to the inputs
of another; they support useful manipulations, such as the ability to query workflows and update them in a
programmatic fashion [54]; through abstraction, they provide a high-level description of the experiment, making
the specification easier to understand and more amenable for publication; and by providing a unified environment
to run computations, they facilitate provenance capture.

Different from database provenance, workflow provenance is coarse-grained. Modules are black boxes and
provenance captures input data they consume, the function they execute and associated parameters, and data
they output; operations inside the function are not visible and no information is available about how the function
manipulates the input data.

There are different types of workflow provenance [20]. Prospective provenance corresponds to the descrip-
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tion of the experiment and captures the specification of the workflow structure, including its modules, connec-
tions, and inputs. Retrospective provenance, on the other hand, captures information about the execution of the
workflow, i.e., what actually happened when the workflow was run. Workflow evolution provenance captures
the history of the workflow, i.e., the changes that were applied to a workflow over time. If we consider the
PRIMAD variables, workflow provenance contains information about the data D (input files and parameters)
and the implementation I (binaries or source code for each computational step). While information about the
platform P is available, it is often not captured by workflow systems.

Levels of Reproducibility. Workflow provenance supports repeatable and re-runnable experiments, as parame-
ters and data files are systematically captured and can be varied. Workflows are also extendable, as scientists can
change the structure of the dataflow (i.e., the prospective provenance) or incorporate it in their own pipelines.
A workflow is modifiable if the source code for the modules is available. But if a module relies on a binary
executable or a Web service to process the data, it is not possible to change the implementation. Note that, if the
workflow system does not capture the platform P, portability cannot be supported.

Tools. Many scientific workflow systems are available. Taverna [41] was developed to stitch together Web
and third party services: a module invokes either a Web service or a local service (e.g., R scripts, or Java API
classes and methods). If a workflow is only composed of Web services, it is portable assuming these services
are available (live and accessible) and running, but not modifiable. Note that using third-party resources (i.e.,
services provided by external hosts) may impact both repeatability and longevity because they may be interrupted
or changed without notice, causing the workflow to fail.

Kepler [39] and VisTrails [19] capture both prospective and retrospective provenance. A new concept in-
troduced by VisTrails was the notion of provenance of workflow evolution [21]. VisTrails treats the workflows
as first-class data items and also captures their provenance. The utility of workflow-evolution provenance goes
beyond reproducibility. It supports reflective reasoning [45]: users can explore multiple chains of reasoning
without losing any results, and because the system stores intermediate results, users can reason about and make
inferences from this information. It also enables a series of operations which simplify the exploratory pro-
cess that is common for scientific experiments. For example, users can easily navigate through the space of
workflows created for a given task, visually compare the workflows and their results, and explore (large) pa-
rameter spaces [21]. In addition, users can query the provenance information [55] and modify workflows by
analogy [54]. VisTrails manages data manipulated by the workflows and their versions by storing input, output,
and intermediate data in a versioned repository. This ensures that different versions of the input data can be
recovered in the future. Using this approach, the workflow does not depend on hardcoded filenames [33]. With
respect to longevity, VisTrails has a mechanism that detects when upgrades are necessary by using provenance
to compare a module in a given workflow with its currently available version [34].

Galaxy [23] is a platform used to perform computational analysis on genomic data. Similar to VisTrails,
Galaxy can capture information about workflow evolution, keeping multiple versions of the analysis steps so
that scientists can re-run previous computations. Because the system provides a Web-based interface to create
and run workflows, allowing them to be accessed through the Web from any platform, portability is easily
attainable.

3.3 Script Provenance

Script provenance is obtained by analyzing the source code of experiments represented as scripts. Similar to
workflows, we can have prospective and retrospective provenance for scripts. While the former corresponds to
the script specification, the latter records the actual execution of the code (i.e., which execution branches were
taken, which values were used and processed, etc.). It is also possible to capture provenance for the evolution
of scripts, for example, using version control systems. To capture script provenance, code is instrumented
either automatically or manually through user-defined annotations. Automatic capture has the advantage of not
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requiring user intervention. On the other hand, the resulting provenance data may be voluminous if provenance
is captured at a fine level of detail. While annotations can be intrusive and time-consuming to add, they allow
users to precisely define what should be captured.

Note that script provenance often has a finer granularity than workflow provenance. While workflow mod-
ules are black boxes, for scripts it is possible to observe all operations in the source code.

Levels of Reproducibility. The variables D (parameters and data files) and I (source code) are often captured,
allowing an experiment to be repeatable, re-runnable, extendable, and modifiable. Provenance may also be
captured for the platform P, including the library dependencies explicitly used in the code. While this may not
be sufficient for portability, it useful for analyzing and comparing execution traces.

Tools. noWorkflow [43] transparently captures retrospective provenance from Python scripts. It does not require
any code instrumentation, and the captured provenance—which includes metadata, file contents, Python depen-
dencies (i.e., environment information at the Python level), and parameters—can be analyzed by inspecting a
provenance graph, comparing multiple executions, or using inference queries. Users can choose the amount
of provenance information obtained by setting the depth of the capture. noWorkflow also allows scientists to
analyze workflow evolution [49].

RDataTracker [37] also captures retrospective provenance from scripts, but for the R software package.
Similar to noWorkflow, the tool collects and persists provenance information, provides a provenance graph that
can be inspected by users, and supports querying. Users must manually annotate the code.

Tariq et al. [56] proposed an approach through which provenance instrumentation is added at compilation
time using the compiler framework LLVM [35]. This works for a range of programming languages, such as C,
C++, and Java. Hooks for the capture of retrospective provenance are inserted at each function entry and exit:
when the framework compiles the experiment, provenance at the binary level is transparently captured, with a
small overhead.

YesWorkflow [40] captures prospective, rather than retrospective provenance. Scientists can make use of
language-independent annotations to make latent dataflow information from scripts explicit. There has been
also work on linking the retrospective provenance collected by noWorkflow with the prospective provenance
obtained by YesWorkflow [48]. ProvenanceCurious [27] is another tool for capturing prospective provenance: it
builds an abstract syntax tree from Python code to generate provenance graphs.

3.4 System-Level Provenance

System-level provenance corresponds to the provenance data captured at the operating system level, which often
includes the description of the platform P, providing detailed trails of how data products are derived. This
provenance is often captured by monitoring system calls and tracking processes and data dependencies between
these processes. Because the dependencies are recorded at the process level, the provenance data is fine-grained.
Note, however, that these processes are black boxes: it is not possible to observe what happens inside them. For
this reason, in terms of the implementation I, the transparency can be low.

Levels of Reproducibility. System-level provenance is often composed of D (input parameters and data files),
P, and I (binaries, at least); therefore, it can help experiments to achieve all reproducibility levels: repeat-
able, re-runnable, portable, and extendable. It is also possible to attain modifiability if the source code for the
processes is available.

Tools. PASS (Provenance-Aware Storage System) [42] produces audit trails for data products by monitoring the
operating system kernel. These audit trails are stored in a database and can be queried. The system supports
application-generated provenance to be written into the same database via library functions, generating an inte-
grated view of application and system-level provenance. Moreover, PASS can generate scripts to reproduce an
experiment in the environment in which it was originally created and executed, thus allowing it to be repeated.
A number of tools have been developed to package and preserve the computational environment. Tools like
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CDE [25], CARE [30], ReproZip [11,51], and PTU [47] trace the execution path of an experiment and obtain
information about all the experiment’s dependencies (e.g., files read, libraries used). This information can be
used to create a package that encompasses both the experiment and its dependencies, thus supporting portability
and longevity.

Most of these packing tools only support reproducibility in Linux environments that are compatible with
the platform where the experiment was originally captured. CARE supports enhanced kernel compatibility,
allowing within certain limits, for an experiment to be executed in a kernel older than the one used in the original
implementation. ReproZip has an option to automatically reproduce an experiment in a virtual environment or
container, thus allowing the reproduction to take place in any platform. ReproZip also enables scientists to
inspect the captured provenance and exclude certain components from the package. Scientists can also add extra
files to the package, e.g., one can add the source code if it was not originally traced. ReproZip automatically
derives a VisTrails workflow for the experiment, which facilitates extending and re-using the original dataflow.
PTU uses CDE internally to pack the experiment and enhances its functionalities by storing a provenance graph
that can be visually inspected by scientists to determine parts of the program they want to reproduce, i.e.,
scientists can choose to repeat subsets of the experiment.

4 Discussion

Provenance is essential for the reproducibility of computational experiments. In this paper, we discussed differ-
ent notions of reproducibility and gave an overview of different types of provenance and how they support the
various levels of reproducibility. Over the past few years, there have been major developments in basic infras-
tructure and tools that, through systematic provenance capture, make it easier to create reproducible experiments.
We have described some of these tools, the benefits they bring as well as their limitations.

While progress has been made, reproducibility is still not the norm for computational experiments. An
important barrier to the adoption of reproducibility is the perception that it is time-consuming to create repro-
ducible experiments. Recent studies have shown that insufficient time is one of the main reasons why scientists
do not make their data and experiments available and reproducible [57], and that substantial effort is needed to
make code work with the latest versions of required dependencies [13]. In addition, many authors argue that
the process to make an experiment reproducible requires too much work for the benefit derived [6]. While one
can interpret some of these as excuses, they do indicate that usability is an important requirement for a broader
adoption of reproducibility: tools must be easy to use and, ideally, as automatic as possible. In the words of
Vandewalle et al. [59], “an independent researcher should be able to reproduce all the results with a simple
mouse click.”

Some experiments require multiple types of provenance to be captured. For example, for a scientific work-
flow or script that queries and/or updates a database, it is important to collect both workflow or script provenance
and database provenance. To support portability, it is also important to capture system-level provenance and de-
tailed information about the platform and dependencies. The integration of these different types of provenance
opens new opportunities to query and reason about an experiment at multiple levels. In particular, this informa-
tion can enable explanations for potential issues encountered in an experiment, which can arise from the data,
code, platform, or from interactions among them. But integrating different types of provenance is challeng-
ing because they are captured at different levels and have different granularities. In addition, domain-specific
languages are needed that support queries over these data.
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