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Abstract

With the increasing need for Machine-learning-as-a-service (MaaS) online systems, effectively maintaining
and reusing machine learning models in light of changes to the underlying data has become a big concern.
In particular, it is extremely challenging to refresh existing models after the removal of training samples,
which is called “machine unlearning”. Addressing this challenge not only requires an efficient solution,
but must comply with emerging privacy issues, e.g. GDPR, which implies that the removed samples must
be fully erased from the models so that they cannot be leaked to an adversary. We review two provenance-
based solutions, PrIU and DeltaGrad, and show how they can guard against “model inversion attacks",
which reconstruct the removed training samples from the updated models after the unlearning process.
Since PrIU and DeltaGrad support a limited class of models, we envision a system that can unlearn
general models in an efficient and secure manner and outline possible technical challenges for building
this system.

1 Introduction

The problem of incrementally updating model parameters after the deletion of a small set of training samples
has attracted increasing attention in machine learning over the past few years. It arises in applications such as
refreshing model parameters after sensitive training samples are removed (the GDPR issue [1]), reducing bias in
statistics [2], and quantifying uncertainty [3].

It is also used for quantifying the importance of a training sample using measures such as the Data Shapley
value [4]. A key step in evaluating this type of measure is to remove a subset of training samples and calculate
the updated ML model parameters. The most straightforward way to do this is to reconstruct the ML model
from scratch after the samples have been deleted. However, recalculating from scratch is prohibitively expensive,
especially when the training data is frequently updated, and so the question is whether the model can be updated
in real time.

From the perspective of a database researcher, this problem seems very similar to the well-studied problem
of materialized view maintenance [5, 6] (see Figure ??). In materialized view maintenance, we have input
relations over which a view is constructed using relational algebra operators (left side of the figure). In machine
learning (right side of the figure), the analogy to input relations is the training data, and the operations forming
the “view" (the model) is the learning algorithm. The question is whether techniques that have been developed
for materialized view maintenance can be used for what we will call model-maintenance.
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Figure 1: Parallels between materialized view maintenance and model maintenance

One very effective technique for materialized view maintenance is based on provenance, in particular the
provenance semiring framework [7]. In this setting, by tracing the use of input tuples for each tuple in the view
using provenance polynomials, the deletion of an input tuple can be propagated to a view tuple by seeing how and
if it is used in the view tuple’s provenance polynomial.

Of course, a machine learning algorithm is much more complicated than a relational algebra expression.
However, recent work has extended the provenance semiring framework to linear algebra operations [8], opening
the door to using provenance to reason over ML algorithms based on those operations, such as linear regression
and logistic regression in which non-linear operations are linearized using piecewise linear interpolation [9]. In
this paper, we show how provenance can be used for incrementally updating machine learning models for linear
or logistic regression in our PrIU system [9]. In particular we show how provenance information carried by the
linear operations can be cached during the model training process and then reused for speeding up the model
maintenance. For more complex models which use non-linear operations, provenance is not yet defined. However,
building on the ideas used in PrIU of caching essential intermediate results, we therefore show how caching can
be used to incrementally update more complex models (such as neural networks) in our DeltaGrad system [10].

We then explore the connection of our provenance-based technique to other machine unlearning techniques
(e.g., [11]). A major concern in machine unlearning is that the unlearned model may suffer from model inversion
attacks [12], in which the adversary is able to restore the deleted data items (a.k.a private data) from the resulting
model either using just the model (a black box attack) or using auxiliary information such as the model type,
model parameters, or even the remaining training samples (a white box attack). In contrast to other machine
unlearning techniques, we show that a benefit of our provenance-based technique is that it can avoid such attacks
with low overhead and without loss of prediction performance.

The remainder of this paper is organized as follows: In Section 2 we give background information on
provenance semirings and deletion propagation. In Section 3 we discuss how to extend these ideas to incremental
model maintenance for linear and logistic regression models in our system PrIU, and for more complex models in
our system DeltaGrad. We then discuss the problem of model inversion attacks in Section 4, and show how our
framework can be used to guard against them.
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Figure 2: Provenance propagation

2 Background

We start by describing the provenance semiring framework in relational databases, and how provenance can be
used to incrementally update views. We then discuss how the framework has been extended to include linear
algebra operations

Provenance Semirings. In the provenance semiring framework [7], input data to a query is annotated with
provenance tokens which are propagated through the algebraic operators performed on the data, e.g. select,
project, join, union, and more recently aggregation [13]. As the provenance annotations propagate, they are
combined using two abstract operations. The provenance operation ⊗ signifies joint use of data. For example,
when tuple t1, respectively t2, are annotated with provenance p, respectively q, then the tuple obtained by joining
t1 and t2 is annotated with provenance p ⊗ q. The other provenance operation, ⊕, signifies alternative use of
data. For example, when tuple t1, respectively t2, are annotated with provenance p, respectively q, such that t1
and t2 project to the same tuple t, then the resulting tuple t is annotated with provenance p⊕ q. In addition, an
abstract "zero-polynomial" 0prov is used to annotate absent tuples and an abstract "unit-polynomial" 1prov is
used to annotate "neutral" data whose provenance is ignored (it’s of no interest in a specific analysis). If P is the
mathematical space of provenance annotations, standard equivalences of positive relational algebra imply that
(P,⊕,⊗, 0prov, 1prov) is a commutative semiring [7]. It follows that the expressions obtained as provenance is
propagated through a query can be put in standard polynomial form, where the indeterminates (the variables)
are provenance tokens that annotate the tuples in the data given as input to the query. Therefore, in the semiring
framework provenance is captured by provenance polynomials.

Example 1: As an example, suppose we have two tables, R and S, whose tuples are annotated with provenance
tokens p, q, and r, as shown in Figure 2. In the same figure we show the provenance polynomials in indeterminates
p, q, r that are produced by provenance propagation in the outputs of queriesR ./B S, ΠA,CR, and ΠA,D(R×S).
As is customary in algebra, we omit the multiplication-like symbol ⊗ when we write polynomials in commutative
indeterminates.

Deletion Propagation. One of the benefits of the semiring framework is that deletions of tuples in the input
tuples propagate straightforwardly to deletions (or modifications of provenance) of output tuples by partially
evaluating provenance polynomials using familiar algebraic rules.

When an input tuple is deleted, the effect on the output can be efficiently calculated by setting its token
to 0prov in the output’s provenance polynomials, signifying absence. For example, if the first tuple in R, (a1,
b1, c1) with provenance token p, were deleted, then the provenance of the (only) tuple in R ./B S would
become 0prov ⊗ r = 0prov, indicating that it no longer appears – intuitively, both tuples are needed for that
tuple to be present. On the other hand, the tuple in ΠA,CR would still appear but with a different provenance
0prov ⊕ q = q – intuitively, at least one of p and q is needed for the result to be present. Similarly, deleting the
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first tuple in R will still leave the tuple (a1,d1) in the output of ΠA,D(R× S), but its provenance would become
(0prov ⊗ r)⊕ (q ⊗ r) = 0prov ⊕ (q ⊗ r) = qr.

Extension to Linear Algebra Operations Recently, the semiring framework has been extended to include
basic linear algebra operations: matrix addition and multiplication [8]. In this extension, the provenance
polynomials play the role of abstract scalars and an abstract version of multiplication with scalars plays the role
of annotating matrices (in particular, vectors) with provenance. Matrices form a non-commutative, many-sorted
ring. The structure obtained by combining the ring of matrices with multiplication by scalars from the semiring
of provenance polynomials is a semialgebra [8]. This framework is flexible enough that for input matrices we can
annotate both rows (samples) and columns (features) with arbitrary provenance tokens.

As an example, suppose that p,q,r,s are provenance tokens that annotate four different samples in a training
dataset. We denote the multiplication with scalars (i.e., the annotation with provenance polynomias) by the
abstract operation ∗. Using the work in [8], our methods will show that vectors of interest (such as the vector of
model parameters) can be expressed with provenance annotated expressions such as:

w = (p2q ∗ u) + (qr4 ∗ v) + (ps ∗ z) (1)

Here, u,v,z are numerical vectors signifying contributions to the answer w and they are annotated with the
provenance polynomials p2q, qr4, ps.

Now suppose the sample (input row) annotated with r is deleted while those annotated p,q,and s are retained
but we decide not to track them anymore. As we did in the paragraph on deletion propagation, we can express the
updated value of w under this deletion by setting r to 0prov which signifies absence, and p,q,s to 1prov, which
signifies “neutral” presence in Equation (1). Again, the resulting expressions can be simplified using familiar
algebraic manipulations. As expected, 0prov ⊗ r4 = 0prov as well as 0prov ∗ v = 0 (the all-zero vector). Moreover,
1prov ⊗ 1prov = 1prov and 1prov ∗ z = z. It follows that under this deletion w = u + z.

3 Overview of PrIU and DeltaGrad

We start with preliminaries on Stochastic Gradient Descent (SGD) before showing the explicit use of provenance
in PrIU and the implicit use of provenance in DeltaGrad for incrementally updating machine learning models in
DeltaGrad.

3.1 Preliminaries on SGD
By assuming that SGD is used for model training, PrIU and DeltaGrad can incrementally update the “gradients”
at each SGD step. Suppose the training dataset is Dtrain = {(xi, yi)}ni=1 and model parameter is w, at the step t of
SGD w is computed by evaluating the gradients on a randomly sampled mini-batch of the training dataset, i.e.:

wt+1 = wt − ηt · Grad(wt; Bt), (2)

where Grad(wt; Bt) represents the gradient evaluated on a mini-batch Bt.
Suppose a subset of training samples, R, is removed from the training dataset. Then to compute the updated

model parameter, Equation (2) is modified as:

wU
t+1 = wU

t − ηt · Grad(wt; Bt −R) (3)

where wU represents the updated model parameter and Bt −R represents the remaining samples in Bt after the
removal of R.
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Note that both Grad(wt; Bt) in Equation (2) and Grad(wt; Bt −R) in Equation (3) can be regarded as the
integration of two components: the model parameter wt (or wU

t ) and the data part (the sample (xi, yi)). For
example, for linear regression models, the loss function F (wt; (xi, yi)) using L2 regularization is

F (wt, (xi, yi)) = (yi − x>i w)2 +
λ

2
‖wt‖2,

Using this, Grad(wt; Bt) and Grad(wt; Bt −R) can be rewritten as:

Grad(wt; Bt) = (λI +
2

|Bt|
∑

i∈Bt

xix>i )wt −
2

|Bt|
∑

i∈Bt

xiyi, (4)

Grad(wt; Bt −R) = (λI +
2

|Bt −R|
∑

i∈Bt−R
xix>i )wU

t −
2

|Bt −R|
∑

i∈Bt−R
xiyi (5)

The data part in Grad(wt; Bt) (Equation (4)) consists of two terms:

D1(Bt) =
∑

i∈Bt

xix>i , D2(Bt) =
∑

i∈Bt

xiyi.

Similarly, the data part in Grad(wt; Bt −R) (Equation (5) can be expressed as:

D1(Bt −R) =
∑

i∈Bt−R
xix>i , D2(Bt −R) =

∑
i∈Bt−R

xiyi.

3.2 PrIU

As described above, by decomposing the gradient formulas Grad(wt; Bt) or Grad(wt; Bt −R) into a data part
and a model parameter part, we can capture the provenance of the data part to track how the changes of the data
part lead to the updates of the model parameters at each SGD iteration.

Specifically, for the above example, suppose each training sample (xi, yi) is given a unique provenance token,
pi. Then we can generate the following provenance-aware formula for D1(Bt) and D2(Bt):

Prov(D1(Bt)) =
∑

i∈Bt

p2i ∗ xix>i , Prov(D2(Bt)) =
∑

i∈Bt

p2i ∗ xiyi

To obtain the values of D1(Bt −R) and D2(Bt −R), we can set the provenance token pi to 0prov for each
i ∈ R to zero out the removed training samples, and set the other provenance tokens to 1prov, i.e.:

D1(Bt −R) =
∑

i∈Bt−R
xix>i = [

∑
i∈Bt−R

p2i ∗ xix>i ]pi=1prov + [
∑

i∈Bt
⋂

R
p2i ∗ xix>i ]pi=0prov

D2(Bt −R) =
∑

i∈Bt−R
xiyi = [

∑
i∈Bt−R

p2i ∗ xiyi]pi=1prov + [
∑

i∈Bt
⋂

R
p2i ∗ xiyi]pi=0prov

This can be implemented by reusing the cached terms, D1(Bt) and D2(Bt) and subtracting the terms
corresponding to the removed samples in R, i.e.:

D1(Bt −R) =
∑

i∈Bt−R
xix>i = D1(Bt)−

∑
i∈Bt

⋂
R

xix>i

D2(Bt −R) =
∑

i∈Bt−R
xiyi = D2(Bt)−

∑
i∈Bt

⋂
R

xiyi

This is considerably more efficient than recomputing D1(Bt −R) and D2(Bt −R) from scratch if the size of
R is much smaller than the total number of training samples.
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So far, we have discussed how to efficiently update Grad(wt; Bt) to Grad(wt; Bt −R) after the removal of
a training sample set for SGD formulas where the data part and the model parameters are linearly combined.
However, in general cases the data part and the model parameters in Grad(wt; Bt) can be integrated in an arbitrary
way, making it difficult to use provenance. For example, for logistic regression with L2 regularization the loss
function, F (·), and Grad(wt; Bt), can be instantiated as:

F (wt, (xi, yi)) = ln(1 + exp{−yiw>t xi}) +
λ

2
‖wt‖2 (6)

Grad(wt; Bt) = λwt −
1

|Bt|
∑

i∈Bt

yixi(1−
1

1 + exp{−yiw>t xi}
) (7)

in which the model parameter wt and the data part are combined with non-linear operations (i.e., exp and division).
To be able to use provenance for rapid updates, we therefore linearize the non-linear operations in Equation (7)
using piecewise linear interpolation, which leads to the following “Linearized Grad(wt; Bt)”:

Linearized Grad(wt; Bt) = λwt −
1

|Bt|
(
∑

i∈Bt

ai,txix>i wt +
∑

i∈Bt

bi,tyixi) (8)

in which the two coefficients, ai,t and bi,t, are generated after piece-wise linear interpolation is applied. As a
consequence, Equation (8) shares a similar form with Equation (4), hence data provenance can also be used in
Equation (8) for incrementally updating logistic regression models. Note that due to the linearization operations,
the incrementally updated model parameters may not be the same as the ones retrained from scratch. However,
we can prove that the difference between the two model parameters (quantified by L2 norm) is very small (see
detailed analysis in [9]).

3.3 DeltaGrad

General machine learning models such as neural networks can be arbitrarily complex, making it challenging
to separate the data part from the model parameters in the gradient expression. Therefore, instead of explicitly
employing data provenance as in PrIU we proposed a second method, DeltaGrad, which updates model parameters
by implicitly leveraging data provenance.

We start by rewriting the SGD update rule in Equation (3) as follows:

wU
t+1 = wU

t − ηt · Grad(wU
t ; Bt −R) = wU

t − ηt · [Grad(wU
t ; Bt)− Grad(wU

t ;R)] (9)

In this update rule, after the removal of R instead of directly evaluating the gradient on the remaining
samples in Bt, i.e., Bt −R, we subtract the gradient on the removed samples (i.e., Bt

⋂
R) from the gradient

on the full mini-batch (i.e., the term Grad(wU
t ; Bt)). It is worth noting that Grad(wU

t ; Bt) has the same form
as Grad(wt; Bt) in Equation (2) except for the differences on the dependent model parameters (i.e. wt and
wU
t resp.). We therefore cache the term, Grad(wt; Bt) during the model training phase, i.e. the evaluation of

Equation (2), so that it can be reused for accelerating the evaluation of Grad(wU
t ; Bt).

Specifically, we estimate Grad(wU
t ; Bt) by estimating the difference between Grad(wt; Bt) and Grad(wU

t ; Bt),
which can be computed using the Cauchy mean value theorem:

Grad(wU
t ; Bt)− Grad(wt; Bt) = H([wt,wU

t ]; Bt)
(
wU

t − wt

)
where H([wt,wU

t ]; Bt) represents the Hessian matrix integrated between wt and wU
t given a mini-batch Bt.

Since the explicit evaluation of the Hessian matrix is extremely time-consuming, we adapt the L-BFGS algorithm
[14] to approximately evaluate the Hessian-vector product H([wt,wU

t ]; Bt)
(
wU
t − wt

)
. In this modified version

of the L-BFGS algorithm, the input consists of the vector (wU
t − wt), the history model parameters, w and wU

42



from previous SGD iterations, as well as the corresponding gradients (i.e., Grad(wt; Bt) and Grad(wU
t ; Bt))

from those iterations. As a result, Grad(wU
t ; Bt) is approximately evaluated with the following formula:

Grad(wU
t ; Bt) ≈ Grad(wt; Bt) + gL-BFGS(wU

t − wt, {(wU
tr ,wtr ,Grad(wU

tr ; Btr ),Grad(wtr ; Btr ))}mr=1) (10)

in which gL-BFGS(·) denotes the L-BFGS algorithm and the history model parameters, wtr , and the corresponding
gradients, Grad(wtr ; Btr), are regarded as the “implicit” provenance.

Note that the computation of Grad(wU
t ; Bt) can lead to approximation errors. Therefore, in order to guarantee

that the updated model parameters calculated by this approximate gradient are not far away from the expected
ones, we compute Grad(wU

t ; Bt) from scratch in the first few SGD iterations and periodically compute it from
scratch afterwards. It can be shown that the updated model parameters calculated in this way are very close to the
ones retrained from scratch [10].

4 Security concern: Model inversion attacks

In the previous section, we showed how provenance can be used both explicitly (in the case of linear and
logistic regression) and implicitly (in the case of more complex models such as neural networks) to incrementally
update machine learning models. Going beyond incremental updates, we now discuss how a provenance-based
framework can be used to defend against an emerging security concern: model inversion attacks.

4.1 Preliminaries

The recently established General Data Protection Regulation (GDPR) guidelines [1] state that users have the
right to have private data items removed from the entities storing those items. However, this is not as simple as
just deleting the data items: If they have been used as training data in state-of-the-art machine learning systems,
the effect of these data items must also be “erased" from the models that these systems have learned and rely
on. Otherwise, the systems may be subject to model inversion attacks, a type of attack in which the adversary is
able to restore the private data items from the machine learning models without accessing the data items [12].
Therefore, the ultimate goal of unlearning a machine learning model is to give an updated model in which the
private data items have been “forgotten”, i.e. the model behaves as if the private data items never appeared in
the training set thus safeguarding against model inversion attacks. Therefore, in addition to efficiency (i.e. the
time to update the model) and performance guarantees (i.e. the predictive power of the updated model), an ideal
unlearning algorithm should guard against model inversion attacks.

It is worth noting that, depending on the adversary’s knowledge, the vulnerability of the model can vary.
Generally speaking, there are two model inversion attack settings: black-box and white-box [12]. In the black-box
setting, the adversary can only use the model output to launch the attack, whereas in the white-box setting the
adversary can also use auxiliary information such as the model type, model parameters, or even the remaining
training samples (in the extreme case). It is therefore much more challenging to defend against white-box attacks
than black-box attacks.

4.2 Vulnerability of current machine unlearning methods

Current machine unlearning methods fall into one of several different categories: 1) Retraining-based methods;
2) Methods based on differential privacy; and 3) One-step update methods. We give an overview of each, and
then compare them as well as our provenance-based approach with respect to efficiency (i.e. the time to update
the model), performance (i.e. the predictive power of the updated model), and their ability to guard against
model-inversion attacks. A summary of this comparison can be found in Table 2.
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Retraining-based methods One straightforward machine unlearning strategy is to retrain the models from
scratch, which can fully erase the removed training samples from the models and maintain the model prediction
performance. However, this is very inefficient when frequent unlearning requests occur. To mitigate this, [11]
proposes to shard the training set into smaller partitions, construct one local model for each partition and only
retrain the local model if a deletion request hits the corresponding partition. Note that this method is not efficient
if training samples from each partition are removed simultaneously, leading to the reconstruction of all the models.

Differential privacy-based methods. These methods, [15, 16], build on the classical notion of differential
privacy [17]. The goal is to update the model in a single step, and then add some carefully designed random
noise to the incrementally updated model so that it is indistinguishable from the one retrained from scratch, to
which the same level of random noise has been added. In particular, [15] leverages the following Newton update
mechanism for updating linear models (e.g., linear regression models and logistic regression models):

wU
∗ = w∗ + H−1(w∗;Dremaining) · Grad(w∗;R), (11)

in which H−1(w∗;Dremaining) represents the inversed Hessian matrix (i.e. the second order gradient) on the
remaining training set, Dremaining. Then wU

∗ is perturbed with some randomly drawn noise vector b to hide the
gradient information of the removed training samples. Despite the efficiency and perfect privacy guarantees of
this type of solution, they suffer from the fact that the added noise may hurt the model prediction performance
[18, 19].

One-step update methods. The second type of method incrementally updates the model in one-step but does
not introduce extra noise [20, 18]). Specifically, these solutions can be represented by the following abstract
formula:

wU
∗ = w∗ +G(R,Dremaining) (12)

in which G is a function taking the removed training set R and the remaining training set Dremaining as arguments.
For example, Equation (12) could be the one-step Newton update (Equation (11)) in which the function G could
be expressed as:

G(R,Dremaining) = H−1(w∗;Dremaining) · Grad(w∗;R)

As observed in [21], the product between the inverse of the Hessian matrix, H−1(w∗;Dremaining), and
the vector ∇F (w∗, R) in the above formula can be effectively evaluated using conjugate gradients [22] or
the stochastic estimation method of [23]. To further speed up the above computations, by leveraging the
fact that R is far smaller than Dremaining, H−1(w∗;Dremaining) could be regarded as the low-rank updates on
H−1(w∗;Dremaining + R), which is the inverse of the Hessian matrix on the full training set and thus can be
cached beforehand. According to [18], such low-rank updates could be effectively computed by employing the
Sherman-Morrison-Woodbury formula [24]. Note that the models incrementally updated in this manner are also
very close to the retrained ones [21].

Despite the efficiency and predictive performance, this type of method suffers from model inversion attacks.
In what follows, we describe at least two scenarios in which in which model inversion attacks can occur.

Scenario 1 Consider the following extreme scenario where everything about the model except for the removed
sample set R is revealed to the adversary, which includes the remaining training samples Dremaining, the original
model parameter, w∗ and the incrementally updated model parameter, wU

∗ ). However, in this case, the value
of G(R,Dremaining) could be obtained by calculating the difference between w∗ and wU

∗ , and thus R could be
reconstructed by solving the following optimization problem:

argminR′‖G(R′, Dremaining)−G(R,Dremaining)‖ = argminR′‖G(R′, Dremaining)− (wU
∗ − w∗)‖ (13)
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It is worth noting that this extreme scenario could indeed occur in practice. First of all, different versions
of models could be accessed by the adversary simultaneously. For example, machine learning models are
increasingly used inside DBMSs, e.g., learned indexes [25] and learning-based query optimizers [26]. The models
are typically constructed by taking the data in the DBMS as the training dataset. Due to updates on the underlying
data, the models could also be updated, thus leaving different copies of the model snapshots, which could be
logged inside the DBMS. Plus, due to the reproducibility requirements, the input training samples might also be
stored for later use, which thus might be accessed by the adversary.

Scenario 2 In what follows, let us consider a more practical scenario where the knowledge of the adversary is
limited. Specifically, we assume that only the updated model wU

∗ is revealed to the adversary, which is similar to
the standard assumption of the white-box attack. Then given wU

∗ , we assume that there is a strong white-box
model inversion attack tool that the adversary could employ to reconstruct the remaining training samples,
Dremaining [12]. Note that in this scenario, the original model parameter w∗ is not available to the adversary.
Therefore, it is not enough to directly employ Equation (4.2) for reconstructing the removed training sample set,
R. Instead, the adversary could jointly construct w∗ during the derivation of R by leveraging the dependence
of w∗ on R (recall that w∗ is trained on the full training set Dremaining + R). This could be formalized as the
following bi-level optimization problem:

R = argminR′‖G(R′, Dremaining)− (wU
∗ − w∗)‖,

where w∗ = min
w
{F (w;Dremaining) + F (w;R′)} (14)

which could be effectively solved by using the optimization method proposed in [27].

Provenance-based approach. In contrast, both of our methods, PrIU and DeltaGrad, can resist the above
scenarios. To see this, consider the following abstract formula representing how PrIU and DeltaGrad incrementally
update the model:

Grad(wU
t ;Dremaining) ≈ Prov(wU

t ;Dremaining +R)− Grad(wU
t ;R) (15)

in which,

Prov(wU
t ;Dremaining +R) ≈ Grad(wU

t ;Dremaining +R)

Assuming that the the provenance term Prov(wU
t ;Dremaining +R) and the removed training sample set R are

not accessible, then the adversary must solve the following formula to recover R:

Grad(wU
t ;Dremaining) ≈ Grad(wU

t ;Dremaining +R)− Grad(wU
t ;R) (16)

which, however, holds for an arbitrary set of samples R′ instead of simply holding for R. As a consequence, the
best that the adversary can do is to randomly guess what R is.

Table 2: Comparison of state-of-the-art machine unlearning methods

Privacy Prediction
performance

Efficiency

Retraining from scratch X X
Partition-based Retraining [11] X X
Differential-privacy-based methods X X
One-step-update methods X X
Provenance-based methods X X X

A summary of the comparison between current machine unlearning strategies can be found in Table 2. We
next show how our provenance-based method can be used to avoid model-inversion attacks while achieving high
prediction performance and efficiency.
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4.3 Adding provenance support for secure machine unlearning

In future work, our goal is to develop a machine unlearning system that can achieve real-time and secure updates
on general machine learning models such that the updated models are almost identical to the retrained models,
thus not hurting the prediction power. The strategy to achieve this goal could vary depending on the threat
model. However, we expect that in the worst scenario mentioned in Section 4.2, adding provenance support to the
machine unlearning system is essential.

Specifically, we plan to generalize the idea of PrIU and DeltaGrad for general neural network models, such
that the footprint of the removed training samples is erased from the model parameters collected across all the
SGD iterations, and the updated model parameter at each SGD iteration is almost identical to the one for retraining
the model from scratch. Given this, despite the knowledge of the adversary about the model and the remaining
training samples, it would be almost impossible to reconstruct the removed training samples since the remaining
information on the updated training trajectory does not include the removed training samples. This can therefore
bring a better security guarantee than the One-step-update methods (as introduced in Section 4.2) in which the
function G still encodes information about the removed samples, leading to the leakage of those samples.

Figure 3 illustrates how the envisioned provenance-enabled model unlearning system would work. In this
figure there are two main components: the “Training loop component” and the “Updating loop component”. In
the “Training loop component” necessary provenance information is collected during the training process on the
neural network models, where SGD is assumed to be the default training method (similar to PrIU and DeltaGrad).
The dominant provenance information would be different versions of model snapshots (i.e., the model parameters
and the computed gradients) captured at each iteration. Such provenance information would then be stored in
secure storage, which would then be retrieved for incrementally computing the updated model in the “Updating
loop component” after sensitive training data is deleted. As analyzed in the previous subsection, this could fully
erase the footprint of the removed training samples from the model parameters at each SGD step, thus guarding
against the model inversion attacks.

Discussion Note that there are several existing solutions that also aim to delete the footprint of the removed
sensitive training samples from the entire training trajectory. For example, [28] proposes an efficient way to
incrementally update K-means models through caching and reusing the information of all the clusters at each
training iteration for model updates. Such cached cluster information could be therefore considered as provenance
information. However, to facilitate effective unlearning, some necessary modifications are applied to the K-means
models, which may degrade the model prediction performance.

Challenges and research opportunities Several challenges remain for developing a provenance-enabled
machine unlearning system for general neural network models. First of all, general neural network models are
non-convex, which is beyond the model classes that PrIU or DeltaGrad support. Therefore, we would envision that
a new provenance-based unlearning method is necessary to support incremental updates on general non-convex
neural network models. Inspired by PrIU and DeltaGrad, the models incrementally updated in this way could
be approximately close to the retrained models, but with rigorous theoretical guarantees on the smallness of the
approximation errors. One potential idea to design this new unlearning method is to relax the strong-convexity
assumption on the model class in DeltaGrad such that general non-convex models could be handled. The main
bottleneck is the strong dependency of DeltaGrad on the L-BFGS algorithm, in which the strongly convex
objective functions are essential. We notice that this assumption has been relaxed in many extended versions of
the L-BFGS algorithm (e.g., [29]), which could be potentially adapted for extending DeltaGrad.

In addition, due to the high complexity of state-of-the-art neural neural networks, the model snapshots at each
SGD iteration could be extremely large, incurring a prohibitively high overhead for the entire unlearning system.
For example, the ResNet18 network for vision tasks has around 11 million parameters [30] while the GPT-3
model [31] for natural language processing tasks has around 175 billion parameters. The problem would become
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Figure 3: Provenance-enabled model unlearning system

even worse if their parameters and gradients were required to be repetitively recorded in the provenance-enabled
model unlearning system. As a consequence, it is essential to build a version control system on large neural
network models such that the model snapshots could be effectively captured, stored and retrieved.

One expected characteristic of such a version control system is that the models from different versions (i.e.
from different SGD iterations) could be compressed to reduce the storage overhead. Ideally, the compression
should be lossless so that the variations between different versions can be captured without adding extra
approximation errors after those models are uncompressed during the model update phase. Otherwise, it could
potentially amplify the approximation errors brought by the unlearning algorithm itself, thus hurting the quality
of the unlearned models.

The version control problem for machine learning models has been recently studied in [32]. Specifically,
the difference between the models from different SGD iterations is calculated first, which can be represented
by a set of matrices. Then each element of each matrix, i.e., one float number, is approximately represented
with k-byte (k=16 or 8) integers through the quantization operations. This is then followed by compressing the
higher-order bits of the quantized representations across different versions of the models throughout the SGD
iterations, which can yield significant savings (see the experiments of [32]). However, since the quantization
operations can produce approximation errors, as discussed above, when this solution is applied to the machine
unlearning pipeline such errors may lead to significant deviations of the incrementally updated models from the
retrained ones.

Another requirement for the provenance-enabled model unlearning system, as shown in Figure 3, is that the
collected provenance information be cached in secure storage. Otherwise, the adversary could easily reconstruct
the removed training samples from the cached provenance of those samples by using the attack paradigm presented
in Section 4.2. Finally, it is worth noting that the chance of the the security threat mentioned in Section 4.2
actually occuring may be quite low in practice due to the limited knowledge of the adversary on the models. For
instance, in typical online systems, the deployed machine learning models are released as an open API 1 where
the adversary only has black-box access, meaning that only the model output given one input sample can be
obtained through the API. In this scenario, it might be inappropriate to use provenance-based unlearning methods
due to their relatively high overhead with respect to other unlearning methods. It would be interesting to explore
the applicability of existing unlearning methods under different threat assumptions and rank them based on their
risk of leaking the removed training samples.

1see e.g., Google prediction API: https://cloud.google.com/ai-platform/prediction/docs/reference/rest/v1/projects/predict
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5 Conclusions

In this paper, we reviewed our provenance-based techniques, PrIU and DeltaGrad, for incrementally updating
machine learning models and showed the connection to incrementally updating database views. We then studied
the privacy implications of machine unlearning techniques, and analyzed the capability of PrIU and DeltaGrad
as well as other state-of-the-art unlearning techniques on defending against the model inversion attack. Our
analysis reveals that provenance is essential for the unlearning process to guard against this type of attack without
hurting performance and the model prediction power. Based on this observation, we envision a provenance-based
unlearning system, which could effectively unlearn general machine learning models in a secure manner. We also
outlined critical technical challenges and potential solutions, paving the way towards building such systems.
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