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FREE GLOBULARLY GENERATED DOUBLE CATEGORIES I

JUAN ORENDAIN

Abstract. This is the �rst part of a two paper series studying free globularly gen-

erated double categories. In this �rst installment we introduce the free globularly gen-

erated double category construction. The free globularly generated double category

construction canonically associates to every bicategory together with a possible cate-

gory of vertical morphisms, a double category �xing this set of initial data in a free and

minimal way. We use the free globularly generated double category to study length,

free products, and problems of internalization. We use the free globularly generated

double category construction to provide formal functorial extensions of the Haagerup

standard form construction and the Connes fusion operation to inclusions of factors of

not-necessarily �nite Jones index.

1. Introduction

Double categories were introduced by Ehresmann in [11]. Bicategories were later intro-
duced by Bénabou in [3]. Both double categories and bicategories express the notion of a
higher categorical structure of second order, each with its advantages and disadvantages.
Double categories and bicategories relate in di�erent ways.

Every double category admits an underlying bicategory, its horizontal bicategory. The
horizontal bicategory HC of a double category C '�attens' C by discarding vertical mor-
phisms and only considering globular squares. There are several structures transferring
vertical information on a double category to its horizontal bicategory, e.g. connection
pairs [5], thin structures [6], and foldings and cofoldings [7] among others. A great deal of
information about a double category can be reduced to information about its horizontal
bicategory under the assumption of the existence of such structures, see [13] for example.

Bicategories on the other hand 'lift' to double categories through several di�erent con-
structions, examples of which are the Ehresmann double category of quintets construction
[12] for 2-categories, the double category of adjoints construction [17], the double cate-
gory of spans construction [9], the construction of framed bicategories through monoidal
�brations of [18] and the construction of the double category of semisimple von Neumann
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algebras and �nite morphisms of [1,2]. These construction follows di�erent methods and
the resulting double categories express di�erent aspects of the bicategories they lift. In
all cases one starts with a bicategory as initial set of data together with a choice of ver-
tical morphisms, which serve as a 'direction' towards which one lifts. In all cases one
ends up with a double category having relevant information about the initial bicategory
and the collection of vertical morphisms, and relating to this initial set of data through
horizontalization.

We are interested general constructions of the type described above. This is the
�rst part of a two paper series studying the free globularly generated double category
construction. The free globularly generated double category construction canonically
associates to every bicategory, together with a direction towards which to lift, i.e. together
with a category of vertical morphisms, a double category. This double category �xes
the initial set of data and is minimal with respect to this property. In this paper we
provide a detailed construction of the free globularly generated double category associated
to a decorated bicategory and we apply this construction to problems of existence of
internalizations and to the concept of length of a double category. We now present a
more detailed account of the contents of this paper.

1.1. The problem of existence of internalizations. Given a bicategory B we
will say that a category B∗ is a decoration of B if the collection of 0-cells of B is equal
to the collection of objects of B∗. In this case we say that the pair (B∗,B) is a decorated
bicategory. We think of decorated bicategories as bicategories together with an orthogonal
direction, provided by the corresponding decoration, towards which to lift B to a double
category. Given a double category C the pair (C0, HC) where C0 is the category of objects
of C, is a decorated bicategory. We write H∗C for this decorated bicategory. We call
H∗C the decorated horizontalization of C. We consider the following problem.

1.2. Problem. Let (B∗,B) be a decorated bicategory. Find double categories C such that

H∗C = B.

Given a decorated bicategory (B∗,B) we say that a solution C to Problem 1.2 for (B∗,B)
is an internalization of (B∗,B). We are thus interested in �nding internalizations to
decorated bicategories. Pictorially, we are interested in the following situation: Given a
set of 2-dimensional cells of the form

• •

α

β

ϕ

forming a bicategory, and given a collection of vertical arrows of the form:
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•

•

f, g etc.

forming a category, such that the endpoints of these arrows are the same as the vertices
of the above globular diagrams, we consider boundaries of hollow squares of the form:

• •

• •

α

f

β

g

formed by horizontal edges of globular diagrams and decoration arrows. Identifying glob-
ular diagrams as above with squares of the form:

• •

• •

α

id

β

idϕ

and formally associating to every vertical arrow as above a unique identity square as:

• •

• •

id

f

id

fif

Problem 1.2 asks about coherent ways to �ll boundaries of hollow squares as above in such
a way that globular and identity squares de�ned by the set of initial data above are �xed
and such that the resulting structure forms a double category. We regard such problems
as formal versions of arguments of '�lling squares' classically considered in nonabelian
algebraic topology, see [4]. One of the author's motivations for studying such problems
is the problem of existence of a compatible pair of tensor functors L2 and �, associating
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to every von Neumann algebra A its Haagerup standard form L2(A), and associating
to every horizontally compatible pair of Hilbert bimodules AHB,BKC the corresponding
fusion Hilbert bimodule AH �B KC respectively. Such compatible pair of functors should
provide the pair formed by the category of von Neumann algebras and their morphisms
and the category of Hilbert bimodules and equivariant intertwining operators with the
structure of a category internal to tensor categories. The methods developed in the present
series of papers provide partial solutions to this problem.

1.3. A case for globularly generated double categories. The situation de-
scribed above motivated the author to introduce the concept of globularly generated
double category in [16]. We say that a double category is globularly generated if it is gen-
erated by its collection of globular squares. Pictorially, a double category C is globularly
generated if every square in C can be written as horizontal and vertical compositions of
squares of the form:

• • • •

• • • •

α

id

β

idϕ

id

f

id

fif

Given a double category C we write γC for the sub-double category of C generated by
squares as above. γC is globularly generated, it satis�es the equation H∗C = H∗γC
and it is the minimal sub-double category of C satisfying this equation. We call γC the
globularly generated piece of C. A double category C is globularly generated if and only
if there are no proper sub-double categories D of C such that H∗C = H∗D. Globularly
generated double categories are thus precisely the minimal solutions to Problem 1.2.
This can be expressed categorically as follows: Write dCat, gCat and bCat∗ for the
category of double categories and double functors, for the subcategory of dCat generated
by globularly generated double categories, and for the category of decorated bicategories
and decorated pseudofunctors respectively. The globularly generated piece construction
extends to a re�ector (2-re�ector in fact) γ of dCat on gCat. It is not di�cult to see
that this implies that γ is in fact a Grothendieck �bration. Moreover, the decorated
horizontal bicategory construction extends to a functor H∗ from dCat to bCat∗, which
by the comments above is easily seen to be constant on the �bers of γ. We obtain a
commutative triangle:

dCat bCat∗

gCat

H∗

γ H∗ �gCat



FREE GLOBULARLY GENERATED DOUBLE CATEGORIES I 1347

We thus think of double categories as being parametrized, or bundled, by globularly
generated double categories. The relevant information about Problem 1.2 is contained in
the bases of this �bration. We summarize this by saying that �nding solutions to Problem
1.2 is equivalent to �nding globularly generated solutions. We believe this justi�es the
study of globularly generated double categories.

Globularly generated double categories admit intrinsic structure that makes them, to
some extent, easy to describe. The category of squares C1 of a globularly generated double
category C admits an expression as a limit limV k

C of a chain of categories V 1
C ⊆ V 2

C ⊆
. . . de�ned inductively by setting V 1

C as the subcategory of C1 generated by squares as
above, and by setting V k

C as the subcategory of C generated by horizontal compositions of
morphisms in V k−1

C for every k > 1. We call this chain of categories the vertical �ltration
of C. The vertical �ltration allows us to de�ne numerical invariants for double categories.
We say that a square ϕ in a globularly generated double category C is of length k, `ϕ in
symbols, if ϕ is a morphism in V k

C but not a morphism in V k−1
C . We de�ne the length of a

double category C, which we write `C, as the supremum of lengths of squares in γC. The
only examples of globularly generated double categories studied so far, i.e. trivial double
categories and globularly generated pieces of double categories of bordisms, algebras, and
von Neumann algebras, are all of length 1.

1.4. Free globularly generated double categories. We will, from now on, de-
note a decorated bicategory (B∗,B) simply by B. The free globularly generated double
category construction associates to every decorated bicategory B a globularly generated
double category QB in such a way that QB �xes the data of B and such that the only
relations satis�ed by the squares of QB are those relations coming from relations satis�ed
by the 2-cells of B and the morphisms of B∗.

The intuitive idea behind the free globularly generated double category construction is
as follows: Suppose we are provided with a decorated bicategory B. We wish to construct,
from the data of B alone, a double category C satisfying the equation H∗C = B, and
we wish to do this in a minimal way. As outlined above we thus wish to construct a
globularly generated double category C satisfying the equation H∗C = B. Such double
category has B∗ as category of objects, has the collection of 1-cells B1 of B as collection of
horizontal morphisms, and all its squares can be expressed as a �nite sequence of vertical
and horizontal compositions of squares of the form:

• • • •

• • • •

α

id

β

idϕ

id

f

id

fif

with ϕ being a 2-cell in B and f being a morphism in B∗. Moreover, the vertical �ltration
of C provides a way to organize these expressions into strata indicating some measure of
complexity.
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The free globularly generated double category construction formally reproduces the
above situation. We begin by formally associating to every vertical morphism f : a // b
in the decoration B∗ of the decorated bicategory we are provided with, a square of the
form:

a a

b b

id

f

id

fif

and we formally associate to every 2-cell in B of the form:

a b

α

β

ϕ

a square of the form:

a b

a b

α

id

β

idϕ

Having done this, we consider the path category generated by these squares. These are
squares of length 1. We will write F1 for this category. Inductively we de�ne a category
Fk as the path category of the collection of formal horizontal compositions of squares
in Fk−1, assuming Fk−1 has been de�ned. This provides a collection of squares with free
horizontal and vertical composition rules. Dividing by a suitable relation we would obtain
a free double category in the sense of [8]. Since we wish to �x the data provided by B we
divide the structure we obtain by a �ner equivalence relation R∞ and thus obtain a double
category QB such that QB is globularly generated. If we choose R∞ carefully enough, the
category of objects of QB will be B∗ and the collection of horizontal morphisms of QB will
be the collection of 1-cells of B.

We prove that thus de�ned the globularly generated double category QB associated
to a decorated bicategory B does not necessarily provide a solution to Problem 1.2 for
B. The only obstruction for this is that through composition operations in QB we may
inadvertently construct new globular squares not already in B. We provide conditions on
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decorated bicategories B that guarantee that QB provides solutions to problem 1.2 for B.
Moreover, in the case in which QB does not provide solutions to Problem 1.2 for B we
prove that if we modify B enough, we can construct a decorated bicategory for which the
free globularly generated double category does provide solutions to Problem 1.2.

The free globularly generated double category construction provides a method for
explicitly constructing double categories satisfying certain conditions. We use the free
globularly generated double category construction to provide examples of double cate-
gories with non-trivial length and examples of double categories with in�nite length. We
relate the free globularly generated double category construction with the free product
of groups and monoids, and with the free double category construction of [8]. Further,
we apply free globularly generated double categories to provide formal solutions to the
problem of existence of functorial extensions of both the Haagerup standard form and the
Connes fusion operation.

Finally, in the second part of the present series of papers we provide an interpretation
of the globularly generated double category construction as the object function of a functor
Q from bCat∗ to gCat satisfying the equation:

Q a H∗ �gCat
thus completing the diagram expressing the fact that H∗ factors through �bers of dCat
modulo the globularly generated piece �bration γ presented above. Now, the restriction
H∗ �gCat is faithful and thus the above result provides in particular the globularly

generated double category construction with the structure of a free object in gCat. We
will thus interpret free globularly generated double categories as sets of generators for
bases mod γ of solutions to Problem 1.2.

1.5. Conventions. We follow the usual conventions for the theory of bicategories and
double categories, with a few exceptions. The word double category will always mean
pseudo double category. We will write B0,B1, and B2 for the collections of 0-, 1-, and 2-cells
of a bicategory B and we will write C0, C1 for the category of objects and vertical arrows
and the category of horizontal arrows and squares of a double category C respectively.
We will write horizontal identities and compositions as i and ∗. We will write vertical
compositions as word concatenation. We will write λ, ρ and A for left and right identity
transformations and associators of both bicategories and double categories. As above,
we will denote a decorated bicategory (B∗,B) simply by B. Thus when we say that
B is a decorated bicategory the letter B will denote both a decorated bicategory and its
underlying bicategory. We will write B∗ for the decoration of a decorated bicategory B. For
most of the paper we will interpret decorated bicategories as decorated horizontalizations
of double categories, we will thus sometimes call the 0-. 1-, and 2-cells of the underlying
bicategory of a decorated bicategory B the objects, the horizontal morphisms and the
globular squares of B and we will call the morphisms of the decoration B∗ of B the
vertical morphisms of B. Pictorially we will represent vertical identity endomorphisms
by blue arrows and horizontal identity endomorphisms by red arrows as was done above.
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Squares of the form:

• •

• •

α

β

ϕ

will thus represent globular squares, squares of the form:

• •

• •

f fif

will represent horizontal identities and squares of the form:

a a b b c c

a a b b c c

id

β

idϕ

α

ψ η

will represent a globular square from the horizontal identity ia of the object a to the
horizontal morphism β, a globular square from the horizontal morphism α to ib and a
globular endomorphism of ic respectively.

1.6. Contents of the paper. We now sketch the contents of the paper. In section 2
we present a detailed construction of the free globularly generated double category asso-
ciated to a decorated bicategory. We do this in several steps and our construction not
only yields a free globularly generated double category but a free vertical �ltration which
will allow us to associate numerical invariants to decorated bicategories. In section 3 we
study relations between the free globularly generated double category construction and
Problem 1.2. We provide conditions on decorated bicategories that ensure that the corre-
sponding free globularly generated double category is an internalization and in situations
in which this is not the case we introduce a method under which one can always extend
a decorated bicategory to a decorated bicategory for which the free globularly generated
double category is an internalizations. In section 4 we apply the free globularly generated
double category construction to provide examples of double categories with non-trivial
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length. In section 5 we study the free globularly generated double category in the case
of deloopings of monoidal categories decorated by deloopings of groups. We prove that
the free globularly generated double category associated to decorated bicategories of this
type are always of length 1. Finally, in section 6 we apply a modi�cation of the free
globularly generated double category to provide compatible formal functorial extensions
of the Haagerup standard form construction and the Connes fusion operation to certain
linear categories of Hilbert spaces.

2. The free globularly generated double category

In this section we introduce the free globularly generated double category construction.
The free globularly generated double category construction canonically associates a glob-
ularly generated double category to every decorated bicategory. The strategy behind the
construction is to emulate the internal structure de�ned by the vertical and horizontal
�ltrations in abstract globularly generated double categories in order to obtain, from the
data of a decorated bicategory alone, a globularly generated double category. The con-
struction of the free globularly generated double category is rather involved and we divide
it into several steps. We begin with a few preliminary de�nitions and results.

2.1. Preliminaries: Evaluations. Let X and Y be sets. Let s, t : X // Y be func-
tions. Let x1, ..., xn be a sequence in X. We will say that x1, ..., xk is compatible with
respect to s and t if the equation txi+1 = sxi holds for every 1 ≤ i ≤ k− 1. Equivalently,
x1, ..., xk is compatible with respect to s and t if x1, ..., xn is a composable sequence of
morphisms in the free category generated by X with s and t as domain and codomain
functions respectively. Given a compatible sequence x1, ..., xk in X, we call any way of
writing the word xk...x1 following an admissible parenthesis pattern, an evaluation of
x1, ..., xk. Equivalently, the evaluations of a compatible sequence x1, ..., xk are di�erent
ways of writing the word xk...x1 composing elements of x1, ..., xk two by two in the free
category generated by X, with s, t as domain and codomain functions. For example, (yx)
is the only evaluation of the two term compatible sequence x, y and (x(yz)), ((xy)z) are
the two evaluations of the compatible three term sequence x, y, z. We will write Xs,t for
the set of evaluations of �nite sequences of elements of X, compatible with respect to s
and t.

Given functions s, t : X // Y , we write s̃ and t̃ for the functions s̃, t̃ : Xs,t
// Y

de�ned as follows: Given an evaluation Φ of a compatible sequence x1, ..., xk in X we
make s̃Φ and t̃Φ to be equal to sx1 and txk respectively. Observe that the values s̃Φ
and t̃Φ do not depend on the particular evaluation Φ of x1, ..., xk. Given a pair of com-
patible sequences x1, ..., xk and xk+1, ..., xn in X, such that the 2 term sequence xk, xk+1

is compatible, and given evaluations Φ and Ψ of x1, ..., xk and xk+1, ..., xn, the equation
t̃Φ = s̃Ψ is satis�ed and the concatenation of Ψ and Φ de�nes an evaluation of the se-
quence x1, ..., xk, xk+1, ..., xn. We denote the concatenation of Φ and Ψ satisfying the
conditions above by Ψ ∗s,t Φ. This operation de�nes a function from Xs,t ×Y Xs,t to Xs,t
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where the �bration in Xs,t ×Y Xs,t is taken with respect to the pair s̃, t̃. We write ∗s,t for
this function.

Now, given sets X,X ′, Y , and Y ′, and functions s, t : X //Y and s′, t′ : X ′ //Y ′, we
say that a pair of functions ϕ : X //X ′ and φ : Y // Y ′ is compatible if the following
two squares commute

X X ′ X X ′

Y Y ′ Y Y ′

ϕ

s

φ

t

ϕ

s t

φ

Given sets X,X ′, Y , and Y ′, functions s, t : X // Y and s′, t′ : X ′ // Y ′, and a com-
patible pair of functions ϕ : X // X ′ and φ : Y // Y ′, if x1, ..., xk is a sequence in X,
compatible with respect to s, t then the sequence ϕx1, ..., ϕxk is compatible with respect
to s′, t′. Moreover, given an evaluation Φ of a compatible sequence x1, ..., xk, the same
parenthesis pattern de�ning the evaluation Φ de�nes an evaluation of the compatible se-
quence ϕx1, ..., ϕxk. We write µϕ,φΦ for this evaluation. We write µϕ,φ for the function
from Xs,t to X

′
s′,t′ associating the evaluation µϕ,φΦ to every evaluation Φ in Xs,t. The

proof of the following lemma is straightforward.

2.2. Lemma. Let X,X ′, Y , and Y ′ be sets. Let s, t : X // Y and s′, t′ : X ′ // Y ′ be
functions. Let ϕ : X // X ′ and φ : Y // Y ′ be functions such that the pair ϕ, φ is

compatible. In that case the function µϕ,φ associated to the pair ϕ, φ satis�es the following

conditions

1. The following two squares commute

Xs,t X ′s′,t′ Xs,t X ′s′,t′

Y Y ′ Y Y ′

µϕ,φ

s̃

φ

t̃

µϕ,φ

s̃ t̃

φ

2. The following square commutes

Xs,t ×Y Xs,t X ′s′,t′ ×Y X ′s′,t′

Xs,t X ′s′,t′

µϕ,φ ×φ µϕ,φ

∗s,t

µϕ,φ

∗s′,t′
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2.3. Preliminaries: Notational conventions. Let B be a decorated bicategory.
Let α be a vertical morphism in B. We will write iα for the singleton {α}. We call iα
the formal horizontal identity of α. We write G for the union of the collection of globular
squares in B and the collection of formal horizontal identities of vertical morphisms of B.
We will adopt the following notational conventions for the elements of G.

1. Let Φ be a globular square in B. We write d0Φ, c0Φ for the domain and codomain
of Φ in B. Let α be a vertical morphism in B. Let a and b be the domain and the
codomain, in B∗ of α. We write d0iα and c0iα for the horizontal identities ida and
idb of a and b in B. We write d0 and c0 for the functions from G to B1 associating
d0Φ and c0Φ to every element Φ of G.

2. Let Φ be a globular square in B. We write s0Φ and t0Φ for the source and target
of Φ in B. Let α be a vertical morphism in B. In that case we write s0iα and t0iα
for the morphism α. We write s0 and t0 for the functions from G to the collection
of vertical morphisms of B associating s0Φ and t0Φ to every element Φ of G.

The functions d0, c0, s0, and t0 de�ned above are easily seen to be related by the following
conditions

1. The following two triangles commute

G B1 G B1

B0 B0

d0

s0 d

d0

tt0

2. The following two triangles commute

G B1 G B1

B0 B0

t0

s0 d

t0

tt0

Given a decorated bicategory B, we denote by p the function from the collection of eval-
uations B1d,c of B1, with respect to the pair formed by the domain and the codomain
functions d, c in the bicategory underlying B, to the set of horizontal morphisms B1 of
B de�ned as follows: for every composable sequence f1, ..., fk of horizontal morphisms
in B and for every evaluation Φ of f1, ..., fk, the image pΦ of Φ under p is equal to the
horizontal composition of the sequence f1, ..., fk in B following the parenthesis pattern
de�ning Φ. We call p the projection associated to B1.
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2.4. The main construction: Inductive step. Given a decorated bicategory B we
will write E1 for the collection of evaluations Gs0,t0 of G with respect to the pair of
functions s0, t0. We denote by s1 and t1 the functions s̃0 and t̃0. Thus de�ned s1 and t1
are functions from E1 to HomB∗ . We write ∗1 for the operation ∗s1,t1 on E1. Finally, we
write d1 for the composition pµd0,id, and we write c1 for the composition pµc0,id. Thus
de�ned d1 and c1 are functions from E1 to the set of horizontal morphisms B1 of B. The
following theorem is the �rst step towards the free globularly generated double category
construction.

2.5. Theorem. Let B be a decorated bicategory. There exists a pair of sequences of triples

(Ek, dk, ck) and (Fk, sk+1, tk+1), such that for each k, Ek is a set containing E1, dk, ck are

functions from Ek to B1 extending the functions d1 and c1 de�ned above, Fk is a category

having B1 as collection of objects, and sk+1, tk+1 are functors from Fk to B∗. The pair of

sequences (Ek, dk, ck) and (Fk, sk+1, tk+1) satis�es the following conditions:

1. For every k, HomFk is contained in Ek+1. Moreover, Ek+1 is equal to the set of

evaluations HomFksk+1,tk+1
of HomFk with respect to the pair formed by the morphism

functions of sk+1 and tk+1.

2. For every k, Ek is contained in HomFk . Moreover, Fk is equal to the free category

generated by Ek with functions dk and ck as domain and codomain functions respec-

tively. The restriction of the morphism functions of sk+1 and tk+1 to E1 are equal

to the functions s1 and t1 de�ned above.

3. For every positive integer k the following triangles commute:

Ek B1 Ek B1

B0 B0

dk, ck

sk+1 dom

dk, ck

codomtk+1

The conditions 1-3 above determine the pair of sequences of triples (Ek, dk, ck) and

(Fk, sk+1, tk+1)

Proof. Let B be a decorated bicategory. We wish to construct a pair of sequences of
triples (Ek, dk, ck) and (Fk, sk+1, tk+1) with k running through the collection of all positive
integers, such that for each positive integer k, Ek is a set extending to the set E1 associated
to B, such that dk and ck are functions from Ek to the collection B1 of horizontal morphisms
of B extending the functions d1 and c1, such that Fk is a category having B1 as set of
objects and sk+1, tk+1 are functors from Fk to B∗. Moreover, we wish to de�ne the pair
of sequences (Ek, dk, ck) and (Fk, sk+1, tk+1) in such a way that conditions 1-3 above are
satis�ed.
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We proceed by induction on k. We begin by de�ning the triple (F1, s2, t2). We make
F1 to be the free category generated by E1 with respect to d1, c1. The functions s1 and t1
are compatible with d1 and c1 and thus admit a unique extension to functors from F1 to
the decoration B∗ of B. We make s2 and t2 be the corresponding functorial extensions of
s1 and t1. We write •1 for the composition operation in F1.

Let now k be a positive integer strictly greater than 1. Assume that we have extended
the de�nition of the triple (E1, d1, c1) and the de�nition of the triple (F1, s2, t2) of the
previous paragraph, to a sequence of pairs of triples (Em, dm, cm) and (Fm, sm+1, tm+1) for
every m ≤ k, where Em is assumed to be a set containing E1, dm and cm are assumed
to be functions from Em to B1 extending d1 and c1, Fm is assumed to be a category
containing F1 as subcategory, and sm+1 and tm+1 are assumed to be functors from Fm to
B∗ extending s2 and t2 respectively. Moreover, we assume that the pair of sequences of
triples (Em, dm, cm) and (Fm, sm+1, tm+1) satis�es conditions 1-3 above.

We now wish to extend the de�nition of the pair of sequences of triples (Em, dm, cm)
and (Fm, sm+1, tm+1) to the de�nition of a pair (Ek, dk, ck) and (Fk, sk+1, tk+1) satisfying
the conditions of the theorem. We begin with the de�nition of the triple (Ek, dk, ck).
We make Ek to be the collection of evaluations HomFk−1sk,tk of HomFk−1

with respect to
the pair formed by the morphism functions of sk and tk. We write sk+1 and tk+1 for
the extensions s̃k and t̃k, to Ek, of the morphism functions of sk and tk. We denote by
∗k the concatenation operation ∗sk+1,tk+1

in Ek, with respect to sk+1 and tk+1. We now
make the function dk to be the composition pµdk−1,id of the function associated to the pair
formed by the domain function dk−1 in Fk−1 and the identity function in the collection
of horizontal morphisms B1 of B and the projection p associated to the collection of
horizontal morphisms B1 of B. We make ck to be the composition pµck−1,id of the function
associated to the pair formed by the codomain function in Fk−1 and the identity function
in the collection of horizontal morphisms B1 of B, and the projection p associated to the
collection of horizontal morphisms B1 of B. The functions dk and ck are well de�ned.
Thus de�ned dk and ck are functions from Ek to B1 satisfying condition 3 of the theorem
by lemma 3.1. We now de�ne the triple (Fk, sk+1, tk+1). We make the category Fk to be
the free category generated by Ek, with dk and ck as domain and codomain functions.
The collection of objects of Fk is thus B1. We write •k for the composition operation in
Fk. By the fact that the functions dk, ck, sk and tk satisfy the condition 3 of the theorem
it follows that the pairs formed by sk and tk together with the domain and codomain
functions de�ned on B1 admit unique extensions to functors from Fk to B∗. We make
sk+1 and tk+1 to be these functors. Thus de�ned the triple (Fk, sk+1, tk+1) satis�es the
conditions of the theorem.

It is obvious that conditions 1-3 of the theorem determine the pair of sequences
(Ek, dk, ck) and (Fk, sk+1, tk+1). This concludes the proof.

2.6. Observation. Let B be a decorated bicategory. Let m, k be positive integers such

that m is less than or equal to k. In that case, as de�ned above, Em is contained in Ek, dm
and cm are equal to the restrictions to Ek of dk and ck respectively, and the concatenation

operation ∗m is equal to the restriction to Em of ∗k. Moreover, Fm is a subcategory of Fk
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and the functors sm+1, tm+1 are equal to the restrictions to Fm of sk+1 and tk+1 respectively.

2.7. Observation. Let B be a decorated bicategory. Let k be a positive integer. The

following two squares commute where qk1 and qk2 denote the left and the right projections

of Ek ×HomB∗ Ek onto Ek respectively.

Ek ×HomB∗ Ek Ek Ek ×HomB∗ Ek Ek

Ek HomB∗ Ek HomB∗

∗k

qk1 sk

sk

∗k

tkqk2

sk

2.8. The main construction: Taking limits.As the next step in the free globularily
generated double category construction we apply a limiting procedure to the pieces of
structure obtained in Theorem 2.5. We de�ne an equivalence relation R∞ such that after
taking quotients modulo R∞ we will obtain the necessary relations de�ning a double
category. We keep the notation from Theorem 2.5.

2.9. Notation. Let B be a decorated bicategory. We write E∞ for
⋃∞
k=1 Ek. We write

d∞ and c∞ for lim dk and lim ck respectively. Thus de�ned d∞ and c∞ are functions from
E∞ to B1. We write ∗∞ for lim ∗k. Thus de�ned ∗∞ is a function from E∞×B∗E∞ to E∞.
We write F∞ for the category limFk. The collection of objects of F∞ is the collection
of horizontal morphisms B1 of B, and the collection of morphisms of F∞ is E∞. The
domain and codomain functions of F∞ are d∞ and c∞. We write s∞, t∞ for lim sk and
limk respectively. Thus de�ned s∞ and t∞ are functors from F∞ to B∗. Finally, we write
•∞ for the composition operation of F∞. Thus de�ned •∞ is equal to lim •k where for
every k •k is the composition operation of Fk.

2.10. Definition. Let B be a decorated bicategory. We write R∞ for the equivalence

relation generated by the following relations de�ned on E∞:

1. Let Φi,Ψi, i = 1, 2 be morphisms in F∞ such that the pairs Φ1,Φ2 and Ψ1,Ψ2 are

compatible with respect to the pair s∞, t∞ and such that the pairs Φi,Ψi, i = 1, 2 are

both compatible with respect to the pair d∞, c∞. We identify the compositions:

(Ψ2 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1) and (Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1)

2. Let Φ and Ψ be globular squares of B such that the pair Φ,Ψ is compatible with

respect to s∞, t∞. We identify Ψ •∞ Φ with the vertical composition ΨΦ of Φ and Ψ
in B. Moreover, if α and β are vertical morphisms in B such that the pair α, β is

composable in B∗, then we identify iβ •∞ iα with iβα.
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3. Let Φ and Ψ be globular squares of B such that the pair Φ,Ψ is compatible with

respect to s∞, t∞. We identify Ψ ∗∞ Φ with the horizontal composition Ψ ∗ Φ in B.

4. Let Φ be a morphism in F∞. We identify Φ with the compositions

λc∞Φ •∞ (Φ ∗∞ it∞Φ) •∞ λ−1
d∞Φ and ρc∞Φ •∞ (is∞Φ ∗∞ Φ) •∞ ρ−1

d∞Φ

where λ and ρ denote the left and right identity transformations of the bicategory

underlying B.

5. Let Φ,Ψ,Θ be elements of E∞ such that the triple Φ,Ψ,Θ is compatible with respect

to the pair s∞, t∞. In that case we identify the compositions:

Ac∞Φ,c∞Ψ,c∞Θ •∞ [Θ ∗∞ (Ψ ∗∞ Φ)] and [(Θ ∗∞ Ψ) ∗∞ Φ] •∞ Ad∞Φ,d∞Ψ,d∞Θ

where A denotes the associator of the bicategory underlying B.

2.11. Lemma. Let B be a decorated bicategory. R∞ is compatible with the domain,

codomain, and composition operation functions d∞, c∞, and •∞ of F∞.

Proof. Let B be a decorated bicategory. We wish to prove that the equivalence relation
R∞ is compatible with domain, codomain, and composition operation functions d∞, c∞,
and •∞ de�ning the category structure on F∞.

Let Φi,Ψi, i = 1, 2 be morphisms in F∞ such that the pairs Φ1,Φ2 and Ψ1,Ψ2 are
compatible with respect to source and target functors s∞, t∞ of F∞ and such that the pairs
Φi,Ψi, i = 1, 2 are compatible with respect to domain and codomain functions d∞, c∞. In
that case the domain

d∞(Ψ1 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1)

of (Ψ1 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1) is equal to the domain d∞(Φ2 ∗∞ Φ1) of (Φ2 ∗∞ Φ1) which
in turn is equal to the composition d∞Φ2d∞Φ1 of the domains d∞Φ1 and d∞Φ2 of Φ1 and
Ψ1. Now, the domain

d∞(Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1)

of the composition (Ψ1 •∞ Φ1) ∗∞ (Ψ2 •∞ Φ2) is equal to the composition

d∞(Ψ2 •∞ Φ2)d∞(Ψ1 •∞ Φ1)

of the domain d∞(Ψ1 •∞ Φ1) of the composition Ψ1 •∞ Φ1 and the domain d∞(Ψ2 •∞ Φ2)
of the composition Ψ2 •∞ Φ2. The domain d∞(Ψ1 •∞ Φ1) of the composition Ψ1 •∞ Φ1

is equal to the domain d∞Φ1 of Φ1 and the domain d∞(Ψ2 •∞ Φ2) of the composition
Ψ2 •∞ Φ2 is equal to the domain d∞Φ2 of Φ2. Thus the domain

d∞(Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1)
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of the composition (Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1) is equal to the composition d∞d∞Φ2d∞Φ1

of the domain d∞Φ1 of Φ1 and the domain d∞Φ2 of Φ2. We conclude that equivalence
relation 1 in the de�nition of R∞ is compatible with respect to the domain function d∞
of F∞. A similar computation proves that relation 1 in the de�nition of R∞ is compatible
with respect to the codomain function c∞ of F∞.

Let now Φ,Ψ be elements of G. suppose pair Φ,Ψ is compatible with respect to the
domain and codomain functions d∞ and c∞ of F∞. In that case the domain and codomain
d∞Ψ •∞ Φ and Ψ •∞ Φ of the composition Ψ •∞ Φ are equal to the domain d∞Φ of Φ and
the codomain c∞Ψ of Ψ respectively. The domain and codomain d∞ΨΦ and c∞ΨΦ of the
vertical composition ΨΦ of Φ and Ψ is equal to the domain d∞Φ of Φ and the codomain
c∞Ψ of Ψ. We conclude that relation 2 in the de�nition of R∞ is compatible with the
domain and codomain functions d∞ and c∞ of F∞.

Let Φ and Ψ be globular squares in B. Suppose that the pair Φ,Ψ is compatible
with respect to the morphism functions of functors s∞ and t∞. In that case the domain
d∞Ψ ∗∞ Φ and the codomain c∞Ψ ∗∞ Φ of the horizontal composition Ψ ∗∞ Φ of Φ and
Ψ are equal to the compositions, in B, d∞Ψd∞Φ and c∞Ψd∞Φ respectively. Now, the
domain d∞Ψ ∗ Φ and the codomain c∞Ψ ∗ Φ of the horizontal composition, in B, of Φ
and Ψ is equal to the compositions d∞Φd∞Ψ and c∞Φc∞Ψ respectively. This proves that
relation 3 in the de�nition of R∞ is compatible with the domain and codomain functions
d∞ and c∞ of F∞.

Let now Φ be a general morphism in F∞. In that case the domain

d∞λc∞Φ •∞ (Φ ∗∞ it∞Φ) •∞ λ−1
d∞Φ

of the composition λc∞Φ •∞ (Φ ∗∞ it∞Φ) •∞ λ−1
d∞Φ is equal to the domain d∞λ

−1
d∞Φ of λ−1

d∞Φ,
which is equal to the domain d∞Φ of Φ. Similarly the domain

d∞ρc∞Φ •∞ (is∞Φ ∗∞ Φ) •∞ ρ−1
d∞Φ

of the composition ρc∞Φ •∞ (is∞Φ ∗∞ Φ) •∞ ρ−1
d∞Φ is equal to the domain d∞ρ

−1
d∞Φ of ρ−1

d∞Φ,
which is equal to the domain d∞Φ of Φ. We conclude, from this that relation 4 in
the de�nition of R∞ is compatible with the domain function d∞ of F∞. An analogous
computation proves that relation 4 in the de�nition of R∞ is compatible with the codomain
function c∞ of F∞.

Let Φ,Ψ,Θ be general morphisms in F∞. Suppose that the triple Φ,Ψ,Θ is compatible
with respect to the morphism functions of s∞ and t∞. In that case the domain

d∞Ac∞Φ,c∞Ψ,c∞Θ •∞ [Θ ∗∞ (Ψ ∗∞ Φ)]

is equal to the composition Ac∞Φ,c∞Ψ,c∞Θ •∞ [Θ ∗∞ (Ψ ∗∞ Φ)] is equal to domain d∞Θ ∗∞
(Ψ ∗∞ Φ) of the composition Θ ∗∞ (Ψ ∗∞ Φ) which in turn is equal to the composition
d∞Θd∞Ψd∞Φ in B. Now, the domain

d∞[(Θ ∗∞ Ψ) ∗∞ Φ] •∞ Ad∞Φ,d∞Ψ,d∞Θ
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is equal to the domain d∞Ad∞Φ,d∞Ψ,d∞Θ of the associator Ad∞Φ,d∞Ψ,d∞Θ associated to the
triple Φ,Ψ,Θ, which is, by de�nition, equal to the composition d∞Θd∞Ψd∞Φ in B. We
conclude that relation 5 in the de�nition of R∞ is compatible with the domain function
d∞ of F∞. An analogous computation proves that relation 5 in the de�nition of R∞ is
compatible with the codomain function c∞ of F∞.

Finally, the fact that the equivalence relation R∞ is compatible with respect to the
composition function •∞ on F∞ follows from the fact that F∞ is the limit of a sequence
of free categories.

2.12. The main construction: Dividing by R∞. As the next step of the free globu-
larly generated double category construction we divide the category F∞ de�ned in 2.9 by
the equivalence relation R∞ and we prove that the structure thus obtained is compatible
with the rest of the pieces of structure in Theorem 2.5.

2.13. Definition. Let B be a decorated bicategory. We write V∞ for the quotient category

F∞/R∞. We keep writing d∞, c∞, and •∞ for the domain, codomain, and composition

operation functions in V∞. We write H∞ for the collection of morphisms of V∞. Thus

de�ned H∞ is equal to the quotient E∞/R∞ of the collection of morphisms E∞ of F∞
modulo R∞.

2.14. Lemma. Let B be a decorated bicategory. In that case the source and target functors

s∞ and t∞, and the horizontal composition functor ∗∞ are all compatible with R∞.

Proof. Let B be a decorated bicategory. We wish to prove that in that the source and
target functors s∞ and t∞, and the horizontal composition functor ∗∞ de�ned on F∞
associated to B are compatible with R∞.

Let �rst Φi,Ψi, i = 1, 2 be morphisms in F∞ such that the pairs Φi,Ψi, i = 1, 2 are
compatible with respect to the domain and codomain functions d∞ and c∞ in F∞ and
such that the pairs Φ1,Φ2 and Ψ1,Ψ1 are compatible with respect to the source and target
functors s∞, t∞ in F∞. In that case the source

s∞(Ψ2 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1)

of composition (Ψ2 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1) is equal to the composition

s∞(Ψ2 ∗∞ Ψ1)s∞(Φ2 ∗∞ Φ1)

in the decoration B∗ of B of the vertical morphisms s∞(Φ2 ∗∞Φ1) and s∞(Ψ2 ∗∞Ψ1). The
source s∞(Φ2 ∗∞Φ1) of the concatenation Φ2 ∗∞Φ1 is equal to the source s∞Φ1 of Φ1 and
the source s∞(Ψ2 ∗∞Ψ1) of the concatenation Ψ2 ∗∞Ψ1 is equal to the source s∞Ψ2. The
source

s∞(Ψ2 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1)
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of composition (Ψ2 ∗∞ Ψ1) •∞ (Φ2 ∗∞ Φ1) is thus equal to the composition s∞Ψ1s∞Φ1 in
B∗. Now the source

s∞(Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1)

of the concatenation (Ψ2 •∞ Φ2) ∗∞ (Ψ1 •∞ Φ1) is equal to the source s∞(Ψ1 •∞ Φ1)
of composition Ψ1 •∞ Φ1. Now, the source s∞(Ψ1 •∞ Φ1) is equal to the composition
s∞Ψ1s∞Φ1 of the source s∞Φ1 and s∞Ψ1 in B∗. This proves that the source functor s∞
is compatible with respect to relation 1 in the de�nition of R∞. An analogous argument
proves that the target functor t∞ in F∞ is compatible with respect to relation 1 in the
de�nition of R∞.

Let now Φ and Ψ be morphisms in G such that the pair Φ,Ψ is compatible with respect
to the domain and codomain functions d∞ and c∞ in F∞. Suppose �rst that Φ and Ψ are
globular morphisms in B such that the domain in B of the domain and codomain of Φ
and Ψ in B respectively are equal to the object a in B. In that case the source s∞Ψ •∞ Φ
of the composition Ψ •∞ Φ is equal to the composition s∞Ψs∞Φ of s∞Φ and s∞Φ in
B∗. Now the source s∞Ψ of Φ and the source s∞Ψ of Ψ are both equal to the identity
endomorphism ida of the object a in the decoration B∗ of B. Now the domain in B of the
vertical composition Ψ •Φ in B is equal to the domain of Φ in B and thus the domain of
the domain in B of the vertical composition Ψ • Φ of Φ and Ψ is equal to the object a of
B. It follows, from this, that the source s∞Ψ•Φ of the globular morphism in B formed as
the vertical composition Ψ •Φ of Φ and Ψ in B is equal to the identity endomorphism ida
of the object a in B. The source functor s∞ in F∞ is thus compatible with the restriction
to the collection of globular morphisms of B of relation 2 in the de�nition of R∞. Suppose
now that the morphisms Φ and Ψ are formal horizontal identities iα and iβ respectively,
of a composable pair of vertical morphisms α, β in B. In this case the source s∞iβ •∞ iα
of the vertical composition iβ •∞ iα of iα and iβ is equal to the composition s∞iβs∞iα of
s∞iα and iβ in B∗. The source s∞iα is equal to the morphism α and the source s∞iβ of iβ
is equal to the morphism β. We conclude that the source s∞iβ •∞ iα of the composition
iβ •∞ iα is equal to the composition βα of α and β in B∗. Finally, the source s∞iβα of
the formal horizontal identity iβα of the composition βα is equal to the composition βα.
This proves that the source functor s∞ is compatible with the restriction to the collection
of formal horizontal identities of relation 2 in the de�nition of R∞. We conclude that the
source functor s∞ is compatible with respect to relation 2 in the de�nition of R∞. An
analogous argument proves that the target functor t∞ in F∞ is compatible with respect
to relation 2 in the de�nition of R∞.

Let now Φ and Ψ be globular morphisms in B such that the pair Φ,Ψ is compatible
with respect to the source and the target functors s∞, t∞ in F∞. The source s∞Ψ ∗∞ Φ
of the concatenation Ψ ∗∞ Φ of Φ and Ψ is equal to the source s∞Φ which is equal to the
identity endomorphism in B∗ of the domain of the domain in B of Φ. Now, the source
s∞Ψ ∗Φ of the globular morphism in B formed as the horizontal composition Ψ ∗Φ in B
of Φ and Ψ is equal to the identity endomorphism in B∗ of the domain of the domain in B
of the composition Ψ ∗Φ. The domain of the domain of the horizontal composition Φ ∗Φ
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is equal to the domain of the domain of Φ. We conclude that the source s∞Ψ ∗ Φ of the
horizontal composition Ψ ∗ Φ is equal to the identity endomorphism in B∗ of the domain
of the domain in B of Φ. The source functor s∞ in B is thus compatible with relation 3
in the de�nition of R∞. An identical argument proves that the target functor t∞ in F∞
is compatible with relation 3 in the de�nition of R∞.

Let now Φ be a general morphism in F∞. In that case the source

s∞λc∞Φ •∞ (Φ ∗∞ it∞Φ) •∞ λ−1
d∞Φ

of the composition λc∞Φ •∞ (Φ ∗∞ it∞Φ) •∞ λ−1
d∞Φ is equal to the composition

s∞λc∞Φs∞(Φ ∗∞ it∞Φ)s∞λ
−1
d∞Φ

in B∗ of s∞λc∞Φ, s∞(Φ ∗∞ it∞Φ), and s∞λ
−1
d∞Φ. Now, since λc∞Φ and λd∞Φ are globular,

the composition

s∞λc∞Φs∞(Φ ∗∞ it∞Φ)s∞λ
−1
d∞Φ

is equal to the source s∞Φ∗∞ it∞Φ of Φ∗∞ it∞Φ, which is equal to the source s∞Φ of Φ. We
conclude that the source functor s∞ on F∞ is compatible with relation 3 in the de�nition
of R∞. An analogous argument proves that the target functor t∞ is compatible with
relation 4 in the de�nition of R∞. Further, an analogous argument proves that the source
and target functors s∞ and t∞ in F∞ are compatible with relation 5 in the de�nition of
R∞.

2.15. The main construction: Observations on lemma 2.11.

Before presenting the de�nition of the free globularly generated double category we present
a few preliminary observations on lemma 2.11.

2.16. Observation. Let B be a decorated bicategory. By lemma 3.9 the functors s∞
and t∞ descend to functors from V∞ to B∗. We keep denoting these functors by s∞
and t∞. Moreover, the composition operation function ∗∞ descends to a function from

H∞ ×HomB∗ H∞ to H∞ such that, by relation 1 in the de�nition of R∞, together with

the composition operation function for horizontal morphisms in B forms a functor from

V∞ ×B∗ V∞ to V∞. We denote this functor by ∗∞.

2.17. Observation. Let B be a decorated bicategory. Let k be a positive integer. In that

case the relation R∞ restricts to an equivalence relation in Ek. We denote by Hk the

quotient Ek/R∞ of Ek modulo R∞. Moreover, R∞ restricts to an equivalence relation on

the collection of morphisms HomFk of Fk. The relation R∞ is compatible with the domain

and codomain functions dk and ck of Fk and is thus compatible with the category structure

of Fk. We denote by Vk the quotient Fk/R∞ of Fk modulo R∞ and keep denoting by

dk, ck, and •k the domain, the codomain, and the composition operation functions in Vk.
The functors sk+1 and tk+1 are compatible with R∞ and thus induce functors from Vk to

the decoration B∗ of B. We keep denoting these functors by sk+1 and tk+1 respectively.
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Finally, observe that the function ∗k is compatible with R∞ and thus de�nes a function

from the set of all morphisms of Vk ×B∗ Vk to the set of morphisms of Vk. This function,
together with the composition operation function for horizontal morphisms in B forms a

functor from Vk ×B∗ Vk to Vk. We keep denoting this functor by ∗k.

2.18. Observation. Let B be a decorated bicategory. Let m, k be positive integers such

that m is less than or equal to k. In that case Hm is contained in Hk, the category Vm
is a subcategory of the category Vk, the functors sm+1 and tm+1 are restrictions to Vm of

functors sk+1 and tk+1, and the functor ∗m is the restriction to Vm×B∗Vm of the functor ∗k.
Moreover, the category V∞ is equal to the limit limVk of the sequence Vk, the collection of

morphisms H∞ of V∞ is equal to the union
⋃∞
k=1Hk of the sequence Hk, and the functors

s∞, t∞ and ∗∞ are the limits of the sequences of functors sk, tk and ∗k respectively.

2.19. Notation. Let B be a decorated bicategory. The pair formed by the function
associating the horizontal identity ia to every object a of B and the function associating
the formal horizontal identity iα to every vertical morphism α in B de�nes a functor from
the decoration B∗ of B to the category V∞ associated to B. We denote this functor by
i∞. For every positive integer k we denote the codomain restriction to the category Vk
of the functor i∞ by ik. Thus de�ned, ik is a functor from the decoration B∗ of B to the
category Vk associated to B for every positive integer k.

2.20. Lemma. Let B be a decorated bicategory. Let k be a positive integer. The functors

sk+1, tk+1, ik, and ∗k satisfy the following two conditions:

1. The following two triangles commute

B∗ Vk B∗ Vk

B∗ B∗

ik

idB∗ sk+1

ik

tk+1idB∗

2. The following two squares commute, where qk1 , q
k
2 denote the left and right projection

functors from Vk ×B∗ Vk to Vk respectively.

Vk ×B∗ Vk Vk Vk ×B∗ Vk Vk

Vk B∗ Vk B∗

∗k

qk1
sk+1

sk+1

∗k

tk+1qk2

sk+1
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Proof. Let B be a decorated bicategory. Let k be a positive integer. We wish to prove
that conditions 1 and 2 above are satis�ed.

We begin by proving that the functors sk+1, tk+1, and ik satisfy condition 1 above. Let
α be a vertical morphism in B. The formal horizontal identity iα associated to α, that is,
the image ikα of α under the functor ik, is a morphism in V1. From this and from the fact
that the sequences sk+1 and tk+1 satisfy the conditions of proposition 3.2 it follows that
the commutativity of triangles in 1 is equivalent to the commutativity of the following
triangles:

B∗ V1 B∗ V1

B∗ B∗

i1

idV1
s2

i1

t2idV1

which follows directly from the de�nition of the functions d1 and c1. We now prove that
the functors sk+1, tk+1, and ∗k satisfy condition 2 above. The commutativity of squares
in 2 when evaluated on morphisms of Hk ×HomB∗ Hk follows from observation 3.4. The
general commutativity of the squares in condition 2 follows from this and from the fact
that all edges involved are functors. This concludes the proof of the lemma.

The following corollary follows directly from the previous lemma by taking limits.

2.21. Corollary. Let B be a decorated bicategory. The functors s∞, t∞, i, and ∗∞ satisfy

the following two conditions:

1. The following two triangles commute:

B∗ V∞ B∗ V∞

B∗ B∗

i

idB∗ s∞

i

t∞idB∗

2. The following two squares commute, where q∞1 , q
∞
2 denote the left and right projec-

tion functors from V∞ ×B∗ V∞ to V∞ respectively.

V∞ ×B∗ V∞ V∞ V∞ ×B∗ V∞ V∞

V∞ B∗ V∞ B∗

∗∞

q∞1 s∞

s∞

∗∞

t∞q∞2

sk+1
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2.22. The main construction: The definition. Let B be a decorated bicategory.
We will denote by QB the pair formed by the decoration B∗ of B and the category V∞
associated to B. The following theorem says that we can endow the pair QB with the
structure of a globularly generated double category.

2.23. Theorem. Let B be a decorated bicategory. The pair QB together with functors

s∞, t∞, i, the functor ∗∞, and the collection of left and right identity transformations, and

associator of B, is a double category. Moreover, with this structure, the double category

QB, is globularly generated.

Proof. Let B be a decorated bicategory. We wish to prove in this case that the pair QB,
together with the functors s∞, t∞, i, the functor ∗∞, and the collection of left and right
identity transformations and associator of B is a globularly generated double category.

The formal horizontal identity functor i and the horizontal composition functor ∗∞ are
compatible with the functors s∞ and t∞ by corollary 3.15. The collections of left identity
transformations and right identity transformations of B form a natural transformation
from ∗∞(is∞× idV∞) to the identity endofunctor idV∞ of V∞ and a natural transformation
from ∗∞(idV∞ × it∞) to the identity endofunctor idV∞ of V∞ respectively by the fact that
morphisms in V∞ satisfy relation 4 in the de�nition of R∞. The collection of associators of
B forms a natural transformation from the composition ∗∞(∗∞×idV∞) to the composition
∗∞(idV∞ × ∗∞) by the fact that morphisms in V∞ satisfy relation 5 in the de�nition of
R∞. The left and right identity and the associator relations for QB again follow from the
fact that morphisms in V∞ satisfy relations 4 and 5 in the de�nition of R∞. The fact that
the pair formed by the functor i and functor ∗ satis�es Mc Lane's triangle and pentagon
relations with respect to the left and right identity transformations and associator follows
from the fact that the components of the left and right identity transformations and
associator satisfy Mac Lane's axioms for the bicategory B. This proves that QB with the
structure described is a double category. A straightforward induction argument proves
that for every positive integer k every morphism of Vk is globularly generated in QB, from
which it follows that the double category QB is globularly generated. This concludes the
proof of the theorem.

2.24. Definition. Let B be a decorated bicategory. We call the globularly generated

double category QB the free globularly generated double category associated to B.

Lemma 2.20 provides the free globularly generated double category QB associated to a
decorated bicategory B with a �ltration {Vk} of its category of morphisms QB1 . We call
this �ltration the free vertical �ltration associated to QB. We use this �ltration to
de�ne numerical invariants for QB. Given a square ϕ in QB we say that ϕ is of free
length k, `freeϕ = k in symbols, if ϕ is a morphism in Vk and ϕ is not a morphism
in Vk−1. Further, we say that QB has free vertical lenght k ∈ N ∪ {∞}, `freeQB = k in
symbols, if k is the supremum of all free vertical lengths of squares in QB. The free vertical

�ltration {Vk} of QB might di�er from the vertical �ltration
{
V QB
k

}
associated to QB as

a globularly generated double category in [16]. The free length `freeϕ of a square ϕ in
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QBthus might di�er from the length `ϕ of ϕ and correspondingly the free length `freeQB
of QB might di�er from the length `QB of QB as a globularly generated double category.
In section 3 and section 4 we study situations in which the free vertical �ltration and the
usual �ltration of a free globularly generated double category coincide.

Using arguments analogous as those employed in the proof of [16, Lemma 4.2] it is
easily proven that every free length 1 square ϕ in the free globularily generated double
category associated to a decorated bicategory B admitting a pictorial representation as:

a a

b b

α

f

β

fϕ

admits a factorization as a vertical composition of the form:

ψk •∞ ifk •∞ ψk−1 . . . ψ1 •∞ if1 •∞ ψ0

where fi : ai−1
// ai is a morphisms in B∗ for every 1 ≤ i ≤ k, ψi is a globular square, in

B of the form:

ai−1 ai−1

ai ai

ψi

for every 1 ≤ i ≤ k − 1, and where ψ0, ψk are globular squares of the form:

a a a a

a a a a

α

ψ0

β

ψ1

We will make strong use of this fact in the rest of the paper.
Let k be a �eld. We will understand for a k-linear decorated bicategory a decorated bi-

category B such that both the underlying bicategory and the decoration of B are endowed
with k-linear structures, where we understand for a k-linear structure on a bicategory B
a structure of k-vector space for the set of 2-cells of the form:
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a b

α

β

ϕ

for any pair of 1-cells α, β in B �tting in a diagram as above, in such a way that all the
corresponding structure and coherence data is k-linear. When the decorated bicategory
B is endowed with a linear structure, the free globularly double category construction can
be modi�ed, in the obvious way, such that the resulting double category, which we denote
Qk
B, is endowed with the structure of a category internal to k-linear categories. We study

this modi�cation of the globularly generated double category construction in the context
of categorical aspects of the representation theory of von Neumann algebras in section 6.

Finally, it is natural to expect relations between the free globularly generated double
category construction and the free double category construction of Dawson and Paré [8].
Let G be a re�exive double graph. Write BG for the decorated horizontalization H∗F (D)
of the free double category generated byD. From the way the globularily generated double
category was constructed it is easily seen that the free double category F (D) generated
by D and QBD are related through the equation QBD = γF (D).

3. Free globularly generated internalizations

In this section we study situations in which the free globularly generated double category
construction provides solutions to Problem 1.2. The following example shows that the
free globularly generated double category construction does not always provide solutions
to this problem. Given a monoid M we write ΩM for the delooping category of M , i.e.
ΩM is the category with a single object ∗ whose monoid of endomorphisms EndΩM(∗) is
M . Given a monoidal category D we write 2D for the delooping bicategory of D, i.e. ΩD
is the single object bicategory whose monoidal category of endomorphisms is D. Observe
that given a monoid M the delooping category ΩM of M admits the structure of strict
monoidal category if and only if M is commutative by the Eckman-Hilton argument [10].

3.1. Example. Let G be a group such that G 6= {1}. Let A be an abelian group such
that A 6= {0}. Let B be the decorated bicategory whose underlying bicategory is the
single 0-cell and single 1-cell 2-category 2ΩA and whose decoration B∗ is the delooping
category ΩG. The free globularly generated double category QB associated to B does not
provide solutions to Problem 1.2 for B. To see this consider the square:
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∗ ∗

∗ ∗

∗ ∗

∗ ∗

g gig

a

g−1 g−1ig−1

in QB, where g is any element of G such that g 6= 1 and where a is an element of A
such that a 6= 0. We denote this square by ϕ. Thus de�ned ϕ satis�es the equations
t∞ϕ = s∞ϕ = g−1g = 1 and is thus globular in QB. The only globular squares of B are
the squares of the form:

∗ ∗

∗ ∗

a

for a ∈ A. The square ϕ represents the word g−1ag in the free product G ∗ A, which is
not an element of A. We conclude that ϕ is a globular square in H∗QB not contained in
B and thus that QB does not provide a solution to Problem 1.2 for B.
We now provide conditions under which the free globularly generated double category QB
associated to a decorated bicategory B does provide a solution to Problem 1.2. We say
that a category B∗ is reduced when the only left or right invertible morphisms of B are
identities. Examples of reduced categories are delooping categories ΩM where M is a
monoid without non-trivial left or right invertible (in particular M is a reduced monoid)
categories associated to partially ordered sets, e.g. Open(X) for a topological space X,
and path categories associated to graphs. The following proposition says that the free
globularly generated double category associated to a decorated bicategory with reduced
decoration provides solutions to Problem 1.2.

3.2. Proposition. Let B be a decorated bicategory. If B∗ is reduced then the equation
H∗QB = B holds.
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Proof. Let B be a decorated bicategory. Assume that B∗ is reduced. We wish to prove
that in this case the equation H∗QB = B holds.

We proceed by induction on k to prove that every globular square in Vk is a globular
square in B. We begin by proving the statement for k = 1. Let ϕ be a globular square in
V1. By [16, Lemma 4.4] if ϕ is not a horizontal endomorphism of QB then ϕ is a globular
square in B. We thus assume that ϕ is a horizontal endomorphism in QB. Represent ϕ
pictorially as:

a a

a a

α

β

ϕ

In that case ϕ can be written as a vertical composition, in QB of the form:

ψk •∞ ifk •∞ ψk−1 . . . ψ1 •∞ if1 •∞ ψ0

where fi : ai−1
// ai is a morphisms in B∗ for every 1 ≤ i ≤ k, ψi is a globular square, in

B of the form:

ai−1 ai−1

ai ai

ψi

for every 1 ≤ i ≤ k − 1, and where ψ0, ψk are globular squares of the form:

a a a a

a a a a

α

ψ0

β

ψ1

From the fact that ϕ is globular it follows that the composition fk . . . f1 is equal to ida.
By the fact that B∗ is reduced it follows that ai = a and fi = ida for every 1 ≤ i ≤ k.
We conclude that ϕ is a vertical composition, in QB of globular squares of B and thus is
a globular square in B.
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Let k > 1. Suppose that the result is true for all positive integers m such that m < k,
i.e. suppose that every globular square in Vm is a globular square in B for every m < k.
Let ϕ be a globular square in Vk. We prove that ϕ is a globular square in B. Assume
�rst that ϕ ∈ Hk. In that case ϕ admits a decomposition as ψn ∗∞ · · · ∗∞ ψ1 where ψi is
a square in Vk−1 for every i. The horizontal composition of non-globular squares is never
globular, thus in the above case ψi is globular for every i. By the induction hypothesis
ϕ is in this case horizontal composition of globular squares in B and is thus a globular
square in B. Now suppose that ϕ is a general square of Vk. In that case ϕ admits a
decomposition as vertical composition ψn •∞ · · · •∞ ψ1 where ϕi is a globular square in
Hk for every i. By the above argument every ψi is a globular square in B and thus ϕ is a
globular square in B. This concludes the proof of the proposition.

In the cases in which the free globularly generated double category QB associated to a
decorated bicategory B is not an internalization of B we can always associate to B a larger
decorated bicategory for which the free globularly generated double category construction
does provide solutions to Problem 1.2. To see we �rst prove the following proposition.

3.3. Proposition. Let B be a decorated bicategory. In that case the equation QH∗QB =
QB holds.

Proof. Let B be a decorated bicategory. We wish to prove that the equation QH∗QB = QB
holds.

The categories of objects of QB and QH∗QB are both equal to B∗. The collections of
horizontal morphisms of QB and QH∗QB are both equal to B1. The collection of squares
of QB is clearly contained in QH∗QB . To prove the proposition we thus need to prove that
every square of QH∗QB is a square in QB. For every positive integer k we will write Ṽk
and H̃k for the category Vk associated to H∗QB and for the set Hk associated to H∗QB
in lemma 2.20. We prove, by induction on k, that every square in Ṽk is a square in QB.

Let ϕ be a square in Ṽ1. In that case ϕ admits a decomposition as:

ϕ = ψn •∞ ifn •∞ ψn−1 . . . ψ1 •∞ if1 •∞ ψ0

where ψ0, ..., ψn and f1, ..., fn are as in the proof of proposition 3.2. Observe that each ifj
is a square in V1 and each ψj is a square in some Vkj and thus is a square of QB for every
i. ϕ is thus a square in QB.

Let k be a positive integer such that k > 1. Suppose that the result is true for every
m ≤ k. We prove that every square in Ṽk is a square in QB. Let ϕ be a square in Ṽk.
Suppose �rst that ϕ ∈ H̃k. In that case ϕ admits a decomposition as ϕ = ψn ∗∞ · · · ∗∞ ψ1

where ψ1, ..., ψn are squares in Ṽk−1 and thus are squares in QB. The square ϕ is thus a
square in QB. Suppose now that ϕ is a general square in Ṽk. In that case ϕ admits a
decomposition as ϕ = ψn •∞ · · · •∞ ψ1 where ψi is a square in H̃k and is thus a square in
QB. The square ϕ is thus a square in QB. This concludes the proof of the proposition.
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Proposition 3.3 says that the operation of taking the free globularly generated double
category is idempotent, i.e. stops at order 2. We have the following immediate corollary.

3.4. Corollary. Let B be a decorated bicategory. In that case QB is an internalization

of H∗QB.

Given a decorated bicategory B we call the decorated bicategory H∗QB the saturation
of B. We say that a decorated bicategory B is saturated whenever B is equal to its
saturation H∗QB. While the free globularly generated double category QB might not
always provide a solution to Problem 1.2 for the decorated bicategory B provided as set
of initial conditions, the free globularly generated double category QH∗QB always provides
a solution to Problem 1.2 for the saturationH∗QB of B. We compute saturations of certain
decorated bicategories in the following sections. Observe that if a decorated bicategory B
is saturated then the vertical �ltration and the free vertical �ltration of QB coincide and
thus the free vertical lenght and the usual vertical length of squares in QB and of QB itself
coincide. Decorated bicategories with reduced decorations are saturated by proposition
3.2.

4. Length

In this section we apply the free globularly generated double category construction to
provide examples of double categories of non-trivial length. All the examples of double
categories considered in [16], i.e. trivial double categories, and double categories of bor-
disms, algebras and von Neumann algebras are proven to be of length 1. The following
example proves that the concept of length of a double category is non-trivial by explicitly
constructing a double category of length equal to 2.

4.1. Example. Let B denote the following 2-category: B has three objects a, b, c and
only identity horizontal 1-cells. All 2-cells in B will be identities except for one vertical
endomorphism cell of ib. This cell, together with the identity 2-cell of ib will form the
group Z2 under both horizontal and vertical composition. Pictorially B is represented by
the diagram:

a a

b b

c c

id

Z2

id
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Now decorate B with the following category B∗: B∗ has non-identity morphism α :
a // b, β, β′ : b // c and γ : a // c satisfying the relation βα = γ = β′α. We rep-
resent B∗ pictorially as:

a

b

c

α

γ

β β′

We claim that `QB = 2. Observe �rst that since B∗ is reduced, it is enough to prove
that `freeQB = 2. We exhibit a pair of horizontally composable squares ϕ, ψ in QB of
vertical length 1 such that ϕ∗∞ψ is not a morphism in V1. Write ϕ and ψ for the squares
pictorially represented as:

a a a a

b b b b

b b b b

c c c c

α αiα

−1

β βiβ

α αiα

−1

β′ β′iβ′

Thus de�ned ϕ, ψ satisfy the equation t∞ϕ = s∞ϕ = γ and thus are horizontally compos-
able in QB. We prove that ϕ ∗∞ ψ is not a morphism in V1. To do this we �rst observe
that s∞ϕ ∗∞ ψ = t∞ϕ ∗∞ ψ = γ. The only squares in V1 with source and target equal
to γ are iγ and the squares ϕ and ψ. To see that ϕ ∗∞ ψ is not equal to any of these
three squares in QB observe that while ϕ ∗∞ ϕ = iγ and ψ ∗∞ ψ = iγ, ϕ ∗∞ ψ satis�es the
relations ϕ ∗∞ (ϕ ∗∞ ψ) = ψ and (ϕ ∗∞ ψ) ∗∞ ψ = ϕ. From this and from the obvious fact
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that ϕ ∗∞ ψ is not equal to iγ it follows that ϕ ∗∞ ψ does not have vertical length equal
to 1. `QB thus satis�es the inequality `QB ≥ 2, but it is obvious from the de�nition of B
and B∗ that `QB ≤ 2. We conclude that `QB = 2.

The above example shows that the concept of vertical length of a double category is not
trivial. We explain how to extend the construction presented in example 4.1 to a sequence
of saturated decorated bicategories Bk such that `QB = k for every k.

Let k be a positive integer. We make the underlying bicategory of Bk to be the k + 2
vertex/2-cell version of the 2-category employed in the construction of example 4.1. The
underlying 2-category of Bk is represented by a vertical sequence of k+ 2 diagrams of the
form:

• •

• •

• •

• •

id

Z2

.

.

.

Z2

id

We de�ne the decoration B∗k of Bk. We make B∗k to be generated by the graph Gk, which
we de�ne inductively as follows: We make G1 be the graph generated by the arrows α, β, β

′

de�ning the category B∗ in example 4.1. Let k > 1. Assuming the graph Gk−1 has been
de�ned, we make the graph Gk to be the graph pictorially represented by the diagram:
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•

•

•

αk

Gk−1 βk

where the green arrow represents the graph Gk−1. It easily proven that thus de�ned the
graph Gk has k + 2 vertices and exactly k + 1 paths of maximal length k + 1. Let B∗k
be the category generated by Gk by identifying the maximal paths in each of the Gm for
m ≤ k. Thus de�ned Gk has a unique maximal path, which we denote by γk. Observe
that B∗1 is the category B∗ of example 4.1. Now, assume the existence of a square ϕk−1 in
Bk−1 of length k − 1 having γk−1 as source and target. Write ψk, ψ

′
k to be the following

two squares of QBk :

• • • •

• • • •

• • • •

• • • •

αk αkiαk

−1

γk−1 γk−1ϕk−1

αk αkiαk

−1

βk βkiβk

Thus de�ned ψk, ψ
′
k are of length k − 1 and by arguments similar to those presented in

example 4.1 the horizontal composition ψk ∗∞ ψ′k is of length k. We write ϕk for this
square. The free globularly generated double category QBk is thus of length ≥ k for every
k. It is easily seen that `QBk is in fact equal to k for every k.

Finally, observe that if B∞ is the limit limBk, i.e. B∞ is equal to the limit of diagram
of 2-categories Bk, decorated by the limit of the diagram of categories B∗k, then `QB∞ =∞.
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5. Group decorations

In this section we study free globularly generated double categories associated to monoidal
categories decorated by groups. We prove that the free globularly generated double cate-
gory associated to any such decorated bicategory has free lenght equal to 1. Moreover, we
prove that in this case the free globularly generated double category construction special-
izes to the free product operation of groups. We use this to provide explicit descriptions for
saturations of such decorated bicategories. We begin by proving the following proposition.

5.1. Proposition. Let G be a group. Let D be a monoidal category. If we write B for
the decorated bicategory (ΩG, 2D) then `freeQB = 1.

Proof. Let G be a group. Let D be a monoidal category. We wish to prove that the
free globularly generated double category QB associated to B = (ΩG, 2D) is such that
`freeQB = 1.

We prove that V1 is closed under ∗∞. Let ϕ, ψ be squares in V1 such that tϕ = sψ. If
ϕ, ψ are globular squares in B then ϕ ∗∞ ψ is a globular square in B and thus is a square
in V1. We thus assume that φ, ψ are not globular squares in B. By results of [16] ϕ, ψ are
horizontal endomorphisms. Represent ϕ and ψ pictorially as:

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

a

g

b

gϕ

a′

g

b′

gψ

where a, a′, b and b′ are objects in D and g ∈ G. Write ϕ and ψ as vertical compositions
of the form

ϕ = ϕk+1 •∞ igk •∞ · · · •∞ ig1 •∞ ϕ0

and

ψ = ψs+1 •∞ ig′s •∞ · · · •∞ ig′1 •∞ ψ0

where g1, ..., gk, g
′
1, ..., g

′
s are elements of G such that g1 . . . gk = g = g′1 . . . g

′
s, where

ϕ1, ..., ϕk, ψ1, ..., ψk ∈ EndD(1), where ϕ0, ψ0 are morphisms, in D, from a to 1 and from
a′ to 1 respectively, and where ϕk+1, ψk+1 are morphisms, in D, from 1 to b and b′ re-
spectively. We refer to these decompositions as equations 1 and 2. We make the above
decompositions of ϕ and ψ horizontally compatible. Write g1 as g1g

−1g = g1g
−1(g′1 . . . g

′
s).

Using this write ig1 as ig1g−1(ig′s •∞ · · · •∞ ig′1). Inserting an identity endomorphism in be-
tween each ig′i and ig′i+1

in the above decomposition we obtain a decomposition of ig1 •∞ϕ0

as:
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ig1 •∞ ϕ0 = ig1g−1 •∞ (ig′s •∞ idig′s •∞ · · · •∞ idig′1 •∞ ig
′
1
• idig′s ) •∞ ϕ0

Write η for the vertical composition

ϕk+1 •∞ igk · · · •∞ ig2 •∞ ϕ1

obtained from decomposition 1 by removing the �rst two terms from right to left. Sub-
stituting in decomposition 1 we obtain a decomposition of ϕ as a vertical composition of
the form:

(η •∞ ig1g−1) •∞ (ig′s •∞ idig′s •∞ · · · •∞ idig′1 •∞ ig
′
1
•∞ ϕ0)

If we write ν1, ν2 for the expression on the �rst and second parenthesis above respectively
we obtain a pictorial representation of ϕ as:

∗ ∗

∗ ∗

∗ ∗

a

g gν1

b

ν2

Writing ψ as iidb′ •∞ ψ we obtain a pictorial representation of ψ as:

∗ ∗

∗ ∗

∗ ∗

a′

g

b′

gν1

b′

idb′

The horizontal composition ϕ ∗∞ ψ thus admits a pictorial representation as:
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∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

a

g gν1

b

ν2

a′

b′

gν1

b′

idb′

By the way ν1 was de�ned the horizontal composition of the two upper squares in the
above diagram is equal to

ψ = ψs+1 •∞ ig′s •∞ · · · •∞ ig′1 •∞ (ϕ0 ∗∞ ψ0)

which is clear of free vertical length 1. The horizontal composition of the two bottom
squares of the above diagram is clearly of free vertical length 1 and thus ϕ ∗∞ ψ is of
vertical length 1. We conclude that `freeQB = 1 as desired.

We use proposition 5.1 to relate the free globularly generated double category construction
to the free product operation between groups. Moreover, we provide an explicit description
of saturations of single object 2-categories decorated by deloopings of groups. This is the
content of the following corollary.

5.2. Corollary. Let G,A be groups. Suppose A is abelian. Let B denote the decorated

category (ΩG, 2ΩA). In that case QB has ΩG as category of objects and Ω(G ∗ A) as

category of squares. Moreover, the saturation H∗QB of B has the subgroup of G ∗ A of

words akgk . . . aig1 such that gk . . . g1 = 1 as groupoid of globular squares.

The following example shows that the assumption of G being a group is essential for
proposition 5.1. We show the existence of a single object bicategory B decorated by a
reduced monoid such that QB has squares of length equal to 2.

5.3. Example. Let B be the decorated bicategory (Ω(N \ {1}), 2ΩZ2). From proposition
3.2 and from the fact that N \ {1} is a reduced monoid it follows that B is saturated.
We claim that QB admits squares of length equal to 2. To see this let ϕ be the following
quare:
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∗ ∗

∗ ∗

∗ ∗

∗ ∗

3 3i3

−1

3 3i3

and let ψ be the square:

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

2 2i2

−1

2 2i2

−1

2 2i2

Thus de�ned both ϕ and ψ are horizontal endomorphisms in V1 such that t∞ϕ = 6 = s∞ψ.
By the fact that both 2 and 3 are irreducible in N \ {1} it easily follows that ϕ ∗∞ ψ and
any horizontal composition of ϕ ∗∞ ψ with itself are not morphisms in V1 and are thus of
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free length ≥ 2. Clearly both ϕ ∗∞ ψ and horizontal composition of ϕ ∗∞ ψ with itself are
of free length ≤ 2 and thus are of free length exactly 2.

Observe that the arguments of subdividing squares of free length 1 employed in the proof
of proposition 5.1 can easily be modi�ed to prove that the free globularly generated
double category associated to any monoidal category decorated by ΩN has vertical length
1. Moreover, observe that in the case in which a decorated bicategory B is of the form
(ΩM,A) for monoids/algebras M,A where A is commutative, then the �rst term of the
free vertical �ltration V1 of QB is equal to the delooping Ω(M ∗ A) of M ∗ A.

6. von Neumann algebras

In this section we study applications of the free globularly generated double category con-
struction to the problem of existence of functorial extensions of the Haagerup standard
form construction and the Connes fusion operation, see [1]. We prove that the bicategory
of factors, Hilbert bimodules, and intertwining operators, decorated by not-necessarily
�nite index inclusions is saturated. This provides extensions of the Haagerup standard
form construction and the Connes fusion operation, on the category of factors and not-
necessarily �nite index inclusions and a certain linear category properly containing the
category of Hilbert spaces and bounded operators. These functors are compatible in the
sense that they form the structure data of a category internal to linear categories inter-
nalizing the decorated bicategory of factors. We apply the saturation process introduced
in section 3 to the problem of extending the Haagerup standard form construction and
the Connes fusion operation, to functors on a category of general (not-necessarily factors)
von Neumann algebras and general (not-necessarily �nite index) von Neumann algebra
morphisms.

Our construction is as follows: We write Modfact for the bicategory whose 2-cells are
of the form:

A B

H

K

ϕ

where A,B are factors, H,K are A-B left-right Hilbert bimodules over A,B and where
ϕ is a bounded intertwiner from H to K. The horizontal identity cells in Modfact are of
the form:

A A

L2(A)

L2(A)

idL2(A)
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where A is a factor and where L2(A) denotes the Haagerup standard form of A, see [14,1].
Given two horizontally compatible 2-cells in Modfact of the form:

A B C

H

K

ϕ

H′

K′

ϕ′

the horizontal composition of ϕ and ϕ′ in Modfact is the 2-cell:

A C

H �B H′

K �B K′

ϕ �B ϕ′

where H �B H
′, K �B K

′ and ϕ �B ϕ
′ denote the Connes fusion of H and H ′, of K

and K ′ and of ϕ and ϕ′ respectively. Thus de�ned Modfact is linear (C∗ tensor in fact).
We write vNfact for the category whose objects are factors and whose morphisms are
(possibly in�nite index) von Neumann algebra morphisms. Thus de�ned vNfact is linear.
The pair (vNfact,Modfact) is thus a linear decorated bicategory. We write W ∗

fact for this
decorated bicategory. We prove the following proposition.

6.1. Proposition. The linear decorated bicategoryW ∗
fact is saturated and moreover, the

equation `QC
W ∗fact

= 1 holds.

Proof. We wish to prove that W ∗
fact is saturated and that it satis�es the equation

`QC
W ∗fact

= 1. We prove that every square in V1 is a multiple of a square admitting a

pictorial representation as:

• •

• •

• •

• •
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Let ϕ be a square in QC
W ∗fact

of free length 1. Represent ϕ pictorially as:

A A

B B

α

f

β

fϕ

Write ϕ as a vertical composition of the form

ψk+1 •∞ ifk •∞ ψk−1 •∞ · · · •∞ ψ1 •∞ if1 •∞ ψ0

where fi is morphism from a factor Ai−1 to a factor Ai, where f admits a decomposition
as f = fk . . . f1, and where ψi is a square of the form:

Ai Ai

Ai Ai

ψi

for every 1 ≤ i ≤ k and where ψ0, ψk+1 are squares of the form:

A A B B

A A B B

α

ψ0

β

ψ1

Let 1 ≤ i ≤ k. From the fact that Ai is a factor it follows that the algebra of endomor-
phisms EndW ∗fact(L

2(Ai)) of Ai is 1-dimensional and thus is equal to CidL2(Ai). From this
it follows there exists a λi ∈ C such that the square ψi is equal to λi times the square:

Ai Ai

Ai Ai

idL2(Ai)
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From this we conclude that ϕ is equal to Πk
i=1λi times the square:

A A

A A

B B

B B

α

ψ0

f fif

β

ψ1

This proves our claim. Observe that a square of the form above is globular if and only if
it is a square in W ∗

free. This proves that H∗QC
W ∗free

= W ∗
free. The equation `QC

W ∗free
= 1

follows from the fact that the horizontal composition of two squares admitting pictorial
representations as above admits a pictorial representation as above. This concludes the
proof of the proposition.

The category of squares QC
W ∗free1

of QC
W ∗free

is thus a linear category whose objects are

Hilbert bimodules between factors, whose morphisms are either usual intertwining op-
erators between Hilbert bimodules or formal compositions as described in the proof of
proposition 6.1. The function associating to every von Neumann algebra A its Haagerup
standard form L2(A) admits an extension, as the horizontal identity functor of QW ∗free

, to
a linear functor

L2 : vNfact //QC
W ∗free1

The functor (on the left and right entries) associating to every compatible pair of Hilbert
bimodules H,K or intertwining operators ϕ, ψ their Connes fusion H � K or ϕ � ψ
respectively, admits an extension (to the bottom variable), as the horizontal composition
functor of QW ∗fact

, to a linear functor

�• : QC
W ∗free1

×
vN

fact QC
W ∗free1

//QC
W ∗free1

Moreover, these two linear functors are compatible in the sense that they provide QC
W ∗free

with the structure of a category internal to linear categories.
The techniques employed in the proof of proposition 6.1 do not apply to the bicategory

of general, i.e. non-necessarily factor, von Neumann algebras nor even to semisimple von
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Neumann algebras. Through corollary 3.4 we obtain weaker versions of proposition 6.1
for the case of von Neumann algebras with not-necessarily trivial center. Write Mod for
the linear bicategory whose 2-cells are of the form:

A B

H

K

ϕ

where A,B are now general von Neumann algebras, H,K are left-right Hilbert bimodules
over A,B, and ϕ is an intertwining operator from H to K. The horizontal identity and
horizontal composition on Mod are de�ned in analogy to those de�ning Modfact. Write
vN for the linear category of von Neumann algebras and general (not-necessarily �nite)
von Neumann algebra morphisms. The pair (vN,Mod) is a decorated linear category.
We write W ∗ for this decorated bicategory. Write W̃ ∗ for the saturation of W ∗. In that
case the category of morphisms QC

W̃ ∗1
of QC

W̃ ∗
is a linear category, whose objects are Hilbert

bimodules over general von Neumann algebras, and whose morphisms contain the usual
intertwining operators in Mod. The function associating to every von Neumann algebra
A its Haagerup standard form L2(A) extends, as the horizontal identity functor of QC

W̃ ∗
,

to a linear functor

L2 : vN //QC
W̃ ∗1

and the Connes fusion bifunctor � extends, as the horizontal composition functor of QC
W̃ ∗

,
to a linear functor

�• : QC
W̃ ∗1
×vN QC

W̃ ∗1
//QC

W̃ ∗1

Moreover, these functors are compatible in the sense that they provide QC
W̃ ∗

with the
structure of a linear double category.

In [1,2] a solution to Problem 1.2 is presented for the decorated bicategory whose
2-cells are of the form:

A B

H

K

ϕ

where A,B are factors (more generally A,B are semisimple) H,K are left-right Hilbert
bimodules over A,B and where ϕ is an intertwiner operator from H to K, and whose
decoration is the category of factors and �nite index inclusions. The horizontal identity
and the horizontal composition functors, i.e. the corresponding functorial extensions of
the Haagerup standard form construction and the Connes fusion operation, are de�ned
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making strong use of the Kosaki theory of minimal conditional expectations of �nite index
subfactors [15]. We write BDH for this double category. We ask how the double category
QC
W ∗fact

described in the proof of proposition 6.1 and BDH are related. We consider the

sub-double category of QC
W ∗fact

generated by globular squares and the squares of the form:

A A

B B

H

f

K

fϕ

where f is an inclusion of �nite Jones index. We write QC
W ∗fin

for this double category and

we write W ∗
fin for H∗QC

W ∗fin
. We have the following equation:

H∗QW ∗fin
= W ∗

fin = H∗BDH

and thus QC
W ∗fin

and BDH have the same category of objects, the same collection of

horizontal morphisms, and the same collection of horizontal and globular squares. It is
natural to expect some higher relation between the squares of QC

W ∗fin
and the squares of

γBDH to hold. It is easily seen that certain relations that hold in γBDH do not hold
on QC

W ∗fin
, e.g. change of base algebra. This makes it obvious that the double categories

γBDH and QC
W ∗fin

are non-equivalent. There is an obvious strict tensor double functor

π from QC
W ∗fin

to γBDH such that π restricts to the identity on H∗QC
W ∗fin

. This double

functor preserves squares of the form:

A A

B B

f fL2(f)

Since both QC
W ∗fin

to γBDH are generated by both H∗QC
W ∗fin

and the set of squares as

above, the double functor π is unique with respect to its value onH∗QC
W ∗fin

and is surjective

on squares. We study double functors of this form and the way they relate free globu-
larly generated double categories to globularly generated internalizations in the second
installment of the present series of papers.

The constructions presented above have an obvious drawback. All the categories of
von Neumann algebras and all the bicategories of Hilbert bimodules we have considered
are symmetric monoidal. We wish for the corresponding free globularly generated double
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categories and thus for the corresponding functorial extensions of the Haagerup standard
form construction and the Connes fusion operation to be symmetric monoidal. It is
not obvious how to extend the combined coherence data of both the decoration and the
underlying bicategory of a symmetric monoidal bicategory into coherence data for the
obvious choice of monoidal structure on the free globularly generated double category
construction. These questions will be explored elsewhere.
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