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PROPS FOR INVOLUTIVE MONOIDS AND INVOLUTIVE
BIMONOIDS

DANIEL GRAVES

Abstract. The category of involutive non-commutative sets encodes the structure
of an involution compatible with a (co)associative (co)multiplication. We prove that
the category of involutive bimonoids in a symmetric monoidal category is equivalent
to the category of algebras over a PROP constructed from the category of involutive
non-commutative sets.

Introduction

The categorification of algebras over a unital commutative ring k to algebras over a
PROP was first introduced by Markl in order to study the deformation theory of algebras
[Mar96]. In that paper he defined PROPs, in terms of generators and relations, whose
categories of algebras are equivalent to the category of associative algebras, the category
of commutative algebras and the category of bialgebras over k [Mar96, Examples 2.5, 2.6
and 2.7].

Pirashvili [Pir02] gave an explicit description of a PROP that categorified associa-
tive algebras, commutative algebras and bialgebras in the category of vector spaces over
a field. This PROP is constructed from the category of non-commutative sets, intro-
duced by Feigin and Tsygan [FT87, A10], using the generalized Quillen Q-construction
of Fiedorowicz and Loday [FL91, 2.5]. An alternative approach, using distributive laws
for PROPs, was given by Lack [Lac04, Section 5]. In this setting, Pirashvili’s PROP
is described as a composite constructed from the PRO of finite ordinals and its opposite
category and the result is shown to be more general, holding for bimonoids in a symmetric
monoidal category.

In this paper we combine both of these methods. We introduce the PROP of involutive
non-commutative sets, denoted IF(as). Using the machinery of [Lac04] we describe
a composite PROP constructed from IF(as) whose algebras in a symmetric monoidal
category are the involutive bimonoids.

The paper is organized as follows. In Section 1 we recall the definition of involutive
bimonoid in a symmetric monoidal category. In Section 2 we recall the definitions of PRO
and PROP, together with some examples. In Section 3 we define the PROP of involutive
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non-commutative sets, IF(as), and prove that the category of algebras of IF(as) in a
symmetric monoidal category C is equivalent to the category of involutive monoids in
C. In Section 4 we construct a double category from IF(as) whose bimorphisms encode
the compatibility conditions for an involutive bimonoid. In Section 5 we construct a
composite PROP, in the sense of [Lac04, Section 4], from the PROP IF(as) and its
opposite category. This can be seen as a composite of the PROPs for involutive monoids
and involutive comonoids described in Section 3, where the compatibility of the two is
encoded in the double category described in Section 4. We prove that the category of
algebras of this composite PROP in a symmetric monoidal category C is equivalent to
the category of involutive bimonoids in C.
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1. Involutive monoids and involutive bimonoids

1.1. Definition. A monoid M in a symmetric monoidal category C is called involutive if
it comes equipped with a monoid morphism j : M →M op satisfying j2 = idM . We denote
the category of involutive monoids and involution-preserving morphisms by IMon (C).

We denote the category of involutive comonoids in C by IComon (C) = IMon (Cop)op.
A bimonoid B in C is said to be involutive if it comes equipped with a bimonoid

morphism j : B → Bop,cop such that j2 = idB. We denote the category of involutive
bimonoids in C by IBimon (C).

2. PROs and PROPs

2.1. Definition. For n > 1 we define n to be the set {1, . . . , n}. We define 0 = ∅.

2.2. Definition. A PRO T is a strict monoidal category whose objects are the sets n for
n > 0 and whose tensor product is given by the disjoint union. For a monoidal category
C, an algebra of T in C is a strict monoidal functor T→ C.

2.3. Definition. A PROP P is a symmetric strict monoidal category whose objects are
the sets n for n > 0 with tensor product given by the disjoint union. For a symmetric
monoidal category C, a P-algebra in C is a symmetric strict monoidal functor P → C.
We denote the category of P-algebras in C and natural transformations by Alg (P,C).

2.4. Example. We denote by D the PRO of finite ordinals and order-preserving maps
as in [Lac04, 2.2]. For a strict monoidal category C, an algebra of D in C is a monoid in
C, see [ML98, VII 5].
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2.5. Definition. Let C2 = 〈t | t2 = 1〉. Let C2 be the PRO such that HomC2 (n,m) is
empty if n 6= m and HomC2 (n, n) = Cn

2 . The disjoint union of morphisms corresponds to
the product of group elements.

2.6. Example. Following [Lac04, 2.4], let P denote the PRO of finite sets and bijections.

2.7. Remark. An equivalent definition of a PROP is as a PRO T with a map of PROs
P→ T. Therefore P is a PROP. Given a PROP P we will denote its underlying PRO by
P0.

2.8. Example. Following [Lac04, 5.1, 5.2], we denote by F the PROP of finite sets
and finite set maps. For a symmetric monoidal category C, the category Alg (F,C) is
equivalent to the category of commutative monoids in C and Alg (Fop,C) is equivalent
to the category of cocommutative comonoids in C.

We can form new PROs and PROPs via the notion of a distributive law as defined in
[Lac04, Section 3] and [RW02, Section 2]. In particular we will form a composite PROP
from D, P and C2 whose structure is that of the hyperoctahedral category defined by
Fiedorowicz and Loday [FL91, Section 3]. We begin by recalling the definition of the
hyperoctahedral groups.

2.9. Definition. For n > 1, the hyperoctahedral group Hn is defined to be the semi-
direct product Cn

2 o Σn where Σn acts on Cn
2 by permuting the factors.

2.10. Example. A pair (x, f) where f ∈ HomF (n,m) and x ∈ HomC2 (m,m) determines
a unique pair (f, x′) where f has remained unchanged and, if x = (g1, . . . , gm), x′ =(
gf(1), . . . , gf(n)

)
∈ HomC2 (n, n). A straightforward check of the relations in [RW02, 2.4]

and [Lac04, 3.7] shows that this defines a distributive law C2 ⊗ F → F ⊗ C2 which is
compatible with the monoidal structures of F and C2.

By [Lac04, Theorem 3.8], F ⊗ C2 is a PRO such that morphisms in HomF⊗C2 (n,m)
can be written uniquely as pairs (f, x) with x ∈ HomC2 (n, n) and f ∈ HomF (n,m) with
composition determined by the distributive law. In fact, F ⊗ C2 has a canonical PROP
structure induced from the PROP structure on F.

2.11. Example. A pair (x, σ) where σ ∈ HomP (n, n) and x ∈ HomC2 (n, n) determines
a unique pair (σ, x′) where σ has remained unchanged and, if x = (g1, . . . , gn), x′ =(
gσ(1), . . . , gσ(n)

)
.

Similarly to the previous example, this is a distributive law compatible with the
monoidal structure of P and C2 and we have a PRO P⊗ C2.

We observe that HomP⊗C2 (n, n) is isomorphic to Hn, the nth hyperoctahedral group as
defined in Definition 2.9. We therefore write H = P⊗C2. We note that H has a canonical
PROP structure induced from P. We refer to H as the PROP of hyperoctahedral groups.
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2.12. Example. Given a pair (g, ϕ) where ϕ ∈ HomD (n,m) and g ∈ HomH (m,m) there
is a unique pair (g? (ϕ) , ϕ?(g)) where ϕ?(g) ∈ HomH (n, n) and g?(ϕ) ∈ HomD (n,m), as
constructed in [FL91, 3.1]. The fact that these assignments satisfy the relations of [RW02,
2.4] follows from the fact that they satisfy the relations of a crossed simplicial group given
in [FL91, 1.6] and a routine check shows that they respect the monoidal structures of D
and H.

We therefore have a PRO D ⊗ H defined similarly to the examples above. In fact,
D⊗H has a canonical PROP structure induced from H.

2.13. Proposition. Let C be a symmetric monoidal category. There is an equivalence
of categories

Alg (D⊗H,C) ' IMon (C) .

Proof. By [Lac04, 3.10], a (D⊗H)0-algebra structure on an object M of C consists of
a D-algebra structure and a H-algebra structure subject to a compatibility condition. A
D-algebra structure is a monoid structure. A H-algebra is an object M together with a
morphism j : M → M satisfying j2 = idM and, for each element g ∈ Hn, a morphism
M⊗n → M⊗n given by applying j to the tensor factors according to the element of Cn

2

followed by an isomorphism determined by the element of Σn. Arguing analogously to
[Lac04, 5.5] a (D⊗H)0-algebra structure is a D ⊗ H-algebra structure if and only if the
only isomorphisms M⊗n → M⊗n are those induced from the symmetry isomorphisms.
The compatibility condition is precisely the condition requiring j to be an involution
compatible with the monoid structure. Finally, a morphism in C is a map of involutive
monoids if and only if it respects the D-algebra structure and the H-algebra structure.
By [Lac04, 3.12], this is true if and only if it respects the D⊗H-algebra structure.

2.14. Remark. This result tells us that the PROP governing the structure of an invo-
lutive monoid can be thought of as a composite of PROPs governing the structure of a
monoid and the structure of an involution respectively. We will give an explicit descrip-
tion of this category, where the technicalities of distributive laws are distilled into data
on the preimages of set maps in Section 3.

We have chosen to emphasize the connection between involutive monoids and the
category associated to the hyperoctahedral crossed simplicial group. One advantage of
this approach is that the distributive laws employed are already well-known, being the
composition in hyperoctahedral groups and the hyperoctahedral category. It is also an
interesting new application of the hyperoctahedral crossed simplicial group: the other
known applications are found in the field of equivariant stable homotopy theory!

An alternative method of proof would be to begin with the composite PROP D⊗P of
[Lac04, 3.14], define a distributive law between this and the PRO C2 and to analyse the
resulting composite.

2.15. Corollary. There is an equivalence of categories

Alg ((D⊗H)op ,C) ' IComon (C) .
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Proof. We observe that

IComon (C) = IMon (Cop)op ' Alg ((D⊗H) ,Cop)op = Alg ((D⊗H)op ,C)

as required.

2.16. Proposition. Let C be a symmetric monoidal category. There is an equivalence
of categories between Alg (F⊗ C2,C) and the category of involutive commutative monoids
in C. The category Alg ((F⊗ C2)

op ,C) is equivalent to the category of involutive cocom-
mutative comonoids in C.

Proof. The proof of the first equivalence is similar to Proposition 2.13. We note that an
F-algebra structure is a commutative monoid structure. A C2-algebra structure consists
of an object M in C together with a morphism j : M → M satisfying j2 = idM and
for each element of Cn

2 a morphism M⊗n → M⊗n defined by applying j to the tensor
factors according to the element of Cn

2 . An (F⊗ C2)0-structure is a F ⊗ C2-structure if
and only if the only isomorphisms M⊗n → M⊗n are those induced from the symmetry
isomorphisms. The compatibility condition in this case is the condition that requires j to
be an involution compatible with a commutative monoid structure. Finally we note that a
morphism in C is a map of involutive commutative monoids if and only if it preserves both
the F-algebra structure and the C2-algebra structure. The second equivalence follows a
similar argument to Corollary 2.15.

3. The PROPs IF(as) and IF
In the previous section we described a PROP for involutive monoids as a composite.
In this section we provide an explicit description of this PROP, called the category of
involutive non-commutative sets. A variant of this category first appeared in the author’s
thesis [Gra19, Part V]. This category takes the technicalities of the composition of pairs
defined via a distributive law and presents it as simple structure on the preimages of maps
of finite sets. We shall also see, in Section 4, that we can construct a double category from
the category of involutive non-commutative sets whose bimorphisms encode the structure
of an involutive bimonoid.

The PROP of involutive, non-commutative sets, IF(as) will have as objects the sets
n of Definition 2.1 for n > 0. An element f ∈ HomIF(as) (n,m) will be a map of sets such
that the preimage of each singleton i ∈ m is a totally ordered set such that each element
comes adorned with a superscript label from the group C2 = 〈t | t2 = 1〉. Note that for
m > 1, the set HomIF(as) (0,m) will be the singleton set consisting of the unique set map
∅ → m and HomIF(as) (m, 0) will be the empty set.

3.1. Remark. Henceforth we will say that a morphism in IF(as) is a map of sets together
with a labelled, ordered set for each preimage. In particular, note that we will use preimage
to mean preimage of a singleton.
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3.2. Example. Let f ∈ HomIF(as) (5, 4) have underlying map of sets

1 2 3 4 5

1 2 3 4

with the following labelled, ordered sets as preimages:

f−1(1) =
{

21
}
, f−1(2) =

{
1t
}
, f−1(3) =

{
4t < 51

}
and f−1(4) =

{
3t
}
.

We will denote composition in IF(as) by • in order to distinguish from the composition
of maps of sets. In particular, we use ◦ for two morphisms in IF(as) if we are referring
to the composite of the underlying maps of sets. In order to ease notation we have chosen
not to introduce notation for the forgetful functor IF(as)→ Set.

Let f1 ∈ HomIF(as) (n,m) and f2 ∈ HomIF(as) (m, l). In order to define the composite
f2 • f1 ∈ HomIF(as) (n, l) we must provide a map of sets and describe the labelled total
orderings on each of the preimages.

As a map of sets, f2 • f1 is the composite of the underlying map of sets f2 ◦ f1. In
order to specify a labelled, ordered set for the preimage of each singleton in l under the
composite we first make a definition.

3.3. Definition. We define an action of C2, which will be denoted by a superscript, on
finite, ordered sets with C2-labels by{

j
αj1
1 < · · · < jαjrr

}t
=
{
jtαjrr < · · · < j

tαj1
1

}
.

That is, we invert the ordering and multiply each label by t ∈ C2.

3.4. Definition. Let f1 ∈ HomIF(as) (n,m) and f2 ∈ HomIF(as) (m, l). We define f2 •
f1 ∈ HomIF(as) (n, l) to have underlying map of sets f2 ◦ f1. We define the labelled totally
ordered set (f2 • f1)−1(i) to be the ordered disjoint union of labelled, ordered sets∐

jαj∈f−1
2 (i)

f−11 (j)αj .

3.5. Definition. The PROP of involutive, non-commutative sets, IF(as), has as objects
the sets n of Definition 2.1 for n > 0. An element of HomIF(as)(n,m) is a map of sets with
a total ordering on each preimage such that each element of the domain comes adorned
with a superscript label from the group C2. Composition of morphisms is as defined in
Definition 3.4. The symmetry isomorphisms are given by block permutations.

3.6. Remark. For each m > 1, the set HomIF(as) (0,m) is the singleton set consisting of
the unique set map ∅ → m and HomIF(as) (m, 0) is the empty set.
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3.7. Remark. Recall the PROP of non-commutative sets, F(as), from [Pir02, Section
3]. That is, the category whose objects are the sets n for n > 0 and whose morphisms
are maps of sets with a total ordering on the preimage of each singleton in the codomain.
We observe that F(as) is isomorphic to the subcategory of IF(as) which contains only
the morphisms for which every label is 1 ∈ C2.

3.8. Definition. We define the fundamental morphisms m, u and i of IF(as) as fol-
lows.

� Let m ∈ HomIF(as) (2, 1) be defined by m−1(1) = {11 < 21},

� let u be the unique morphism in HomIF(as) (0, 1) and

� let i ∈ HomIF(as) (1, 1) be defined by i−1(1) = {1t}.

3.9. Remark. The morphism m will encode the multiplication and comultiplication in
a bimonoid, the morphism u will encode the unit and counit and the morphism i will
encode the involution.

3.10. Remark. We note that IF(as) contains the morphisms of the PRO of finite ordi-
nals D. These are the order-preserving maps of sets with the canonical total ordering on
each preimage with each label being 1 ∈ C2. Furthermore, IF(as) contains the morphisms
of the PROP of hyperoctahedral groups H. These are the bijections in IF(as).

3.11. Proposition. There is an isomorphism of PROPs IF(as) ∼= D⊗H.

Proof. Consider the data of a morphism f ∈ HomIF(as) (n,m). The total ordering
data on preimages determines a unique bijection of the set n with a C2-label for each
singleton preimage determined by the labelling data. That is, the preimage data de-
termines a unique bijection g ∈ HomIF(as) (n, n). There is then a unique morphism
ϕ ∈ HomIF(as) (n,m) such that ϕ is order-preserving, with the canonical total ordering
on each preimage, every label is 1 ∈ C2 and f = ϕ • g. In other words, any morphism
in IF(as) can be written uniquely as a composite of a morphism in H followed by a
morphism in D.

For composable morphisms f1 and f2 in IF(as) write f2 • f1 = ϕ2 • g2 • ϕ1 • g1.
A straightforward check shows that the composite g2 • ϕ1 in IF(as) is equal to the
composite g2? (ϕ1)•ϕ?1 (g2), where g2? (ϕ1) ∈ HomIF(as) (n,m) is an order-preserving map
and ϕ?1 (g2) ∈ HomIF(as) (n, n) is a bijection, both maps being determined using the
structure of the hyperoctahedral crossed simplicial group described in [FL91, 3.1]. It
follows that there is an isomorphism of PROPs IF(as) ∼= D ⊗ H given by sending a
morphism f = ϕ • g in IF(as) to the pair (ϕ, g).

3.12. Corollary. Let C be a symmetric monoidal category. There are equivalences of
categories

Alg (IF(as),C) ' IMon (C) and Alg (IF(as)op,C) ' IComon (C) .

Proof. This follows from Proposition 3.11, Proposition 2.13 and Corollary 2.15.
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3.13. Definition. Let IF be the category whose objects are the sets n of Definition 2.1
for n > 0. A morphism in IF is a map of sets such that the elements of the preimage of
each singleton in the codomain come adorned with a label from C2. Composition is given
by composition of set maps and multiplication of labels.

3.14. Proposition. There is an isomorphism of PROPs IF ∼= F⊗ C2.

Proof. The method of proof is similar to Proposition 3.11.

3.15. Corollary. Let C be a symmetric monoidal category. The categories Alg (IF ,C)
and Alg (IFop,C) are equivalent to the category of involutive monoids in C and the
category of involutive cocommutative comonoids in C respectively.

Proof. This follows from Proposition 2.16 and Proposition 3.14.

4. Double categories

We construct a double category from IF(as). The bimorphisms of this double category
precisely encode the structure of an involutive bimonoid in a symmetric monoidal category.
This double category also possesses extra structure: it satisfies the star condition of [FL91,
2.3]. This extra structure will be used in Section 5 to construct a PROP which governs the
structure of an involutive bimonoid. We also construct a double category from IF and
two double categories that combine the structure of IF(as) and IF which will encode
commutativity and cocommutativity.

Recall from [FL91, Section 2.1] that a small double category D consists of a set of ob-
jects, a set of horizontal morphisms, a set of vertical morphisms and a set of bimorphisms
subject to natural composition identities.

4.1. Definition. The double category IF(as)2 has as objects the objects of IF(as).
Furthermore, the sets of horizontal and vertical morphisms in IF(as)2 are both equal
to the set of all morphisms in IF(as). A bimorphism in IF(as)2 is a not necessarily
commutative square

n p

m q

ϕ1

f1

ϕ

f

of morphisms in IF(as) such that

� the underlying diagram of finite sets is a pullback square,

� for all x ∈ m the map ϕ−11 (x) → ϕ−1(f(x)) induced by f1 is an isomorphism of
labelled, ordered sets and

� for all y ∈ p the map f−11 (y) → f−1(ϕ(y)) induced by ϕ1 is an isomorphism of
labelled ordered sets.
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4.2. Remark. The composition laws of a double category can be verified using the fact
that the composite of pullback squares is itself a pullback square and using the composition
rule for morphisms in IF(as) described in Definition 3.4.

4.3. Definition. Let B1, B2, B3, B4 and J denote the bimorphisms

4 2 0 0 0 0 0 2 1 1

2 1 0 1 2 1 0 1 1 1

mq2•τ2,3

mq2

m id0

id0

u u2

id0

u id0

u2

m id1

id1

i

m u m u i

respectively in IF(as)2. Here τ2,3 is the transposition (2 3) with the label 1 ∈ C2 for each
preimage. We call B1, B2, B3, B4 and J the fundamental bimorphisms of IF(as)2.

4.4. Remark. The fundamental bimorphisms encode the compatibility conditions of an
involutive bimonoid. The notation is chosen such that the bimorphisms B1 to B4 encode
the compatibility conditions of a bimonoid and J encodes the compatibility condition of
an involution.

4.5. Definition. The double category IF2 is defined similarly to IF(as)2; the objects
are those of IF , the sets of horizontal and vertical morphisms are the set of morphisms
in IF and the bimorphisms are defined similarly to the bimorphisms of IF(as)2.

4.6. Definition. The double category V has as objects the objects of IF(as). The set of
vertical morphisms is the set of morphisms in IF(as). The set of horizontal morphisms is
the set of morphisms in IF . The bimorphisms are defined similarly to those of IF(as)2
except that the horizontal morphisms are now in IF .

The double category H is defined similarly; the set of horizontal morphisms is the set
of morphisms in IF(as), the set of vertical morphisms is the set of morphisms in IF
and the bimorphisms are defined similarly to those of IF(as)2 except that the vertical
morphisms are in IF .

4.7. Remark. Recall from [FL91, 2.3] that a double category D is said to satisfy the
star condition if a horizontal morphism and a vertical morphism with the same codomain
determine a unique bimorphism in D.

Let D = IF(as)2, IF2, V or H. Given a horizontal morphism f : m → q and a
vertical morphism ϕ : p→ q in D we determine a unique bimorphism by first taking the
pullback of the underlying maps of sets. The resulting maps have a unique lift to the
category D where the preimage data is induced from f and ϕ using the conditions on
bimorphisms. Therefore these four double categories satisfy the star condition.

5. Involutive bimonoids

We construct composite PROPs, in the sense of [Lac04, Section 4], from the PROPs
IF(as), IF and their opposites. We prove that the category of algebras of the composite
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PROP constructed from IF(as) and its opposite in a symmetric monoidal category C is
equivalent to the category of involutive bimonoids in C.

5.1. Proposition. There exist composite PROPs

IF ⊗P IFop, IF ⊗P IF(as)op, IF(as)⊗P IFop and IF(as)⊗P IF(as)op.

Proof. We provide the details for the case IF ⊗P IFop. The others are similar.
A pair (ϕ, f) where f ∈ HomIF

(
m, q

)
and ϕ ∈ HomIFop

(
q, p
)

can be written as a
diagram

p

m q

ϕ

f

in IF . By the star condition for the double category IF2, there exist unique morphisms
ϕ1 and f1 in IF forming a bimorphism

n p

m q

ϕ1

f1

ϕ

f

in IF2.
We observe that the assignment (ϕ, f) 7→ (f1, ϕ1) defines a distributive law of PROs

IFop⊗IF → IF ⊗IFop, in the sense of [Lac04, 3.6]. The star condition, together with
the composition rule for bimorphisms, ensures that the equations for a distributive law
are satisfied and compatibility with the monoidal structure follows from the compatibility
of the star condition with the disjoint union.

Furthermore, since both IF and IFop are PROPs, we observe that IF ⊗ IFop has a
PROP structure.

A morphism in IF ⊗ IFop from n to m can be written as a span

n p m.
ϕ f

Two spans

n p m and n p m
ϕ f ϕ1 f1

are said to be equivalent if there exists a bijection h : p → p in IF such that ϕ1 ◦ h = ϕ
and f1 ◦ h = f .

It follows from [Lac04, Theorem 4.6] that IF ⊗P IFop, that is the category obtained
from IF ⊗ IFop by identifying equivalent spans, is a composite PROP defined via a
distributive law induced from the one defined for PROs.

The remaining three cases are similar, making use of the star condition from the double
categories V , H and IF(as)2 respectively.
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5.2. Definition. For ease of notation, let Q = IF(as)⊗P IF(as)op. Let QV = IF ⊗P
IF(as)op. Let QH = IFop ⊗P IF(as). Let QIF = IF ⊗P IFop.

5.3. Theorem. Let C be a symmetric monoidal category. There is an equivalence of
categories

Alg (Q,C) ' IBimon (C) .

Proof. By [Lac04, Proposition 4.7], an algebra for Q in C consists of an object M with
an IF(as)-algebra structure and an IF(as)op-algebra structure subject to compatibil-
ity conditions. An IF(as)-algebra structure is an involutive monoid structure and an
IF(as)op-algebra structure is an involutive comonoid structure. Let F be the IF(as)-
algebra and let G be the IF(as)op-algebra. The compatibility condition requires that for
every bimorphism

n p

m q

ϕ1

f1

ϕ

f

in the double category IF(as)2, the diagram

M⊗n M⊗p

M⊗m M⊗q

F (f1)

G(ϕ1)

F (f)

G(ϕ)

commutes. Arguing analogously to [Lac04, 5.3], it suffices to have commutativity for the
fundamental bimorphisms of Definition 4.3. These are precisely the conditions requiring
M to be an involutive bimonoid. Finally we observe that a morphism in C is a morphism
of involutive bimonoids if and only if it preserves the IF(as)-algebra structure and the
IF(as)op-algebra structure. By [Lac04, 4.8] this is true if and only if it preserves the
Q-algebra structure.

5.4. Remark. The theorem tells us that the PROP governing the structure of involutive
bimonoids is a composite of the PROPs for involutive monoids and involutive comonoids
where the compatibility conditions are precisely the fundamental bimorphisms of the
category IF(as)2 and the distributive law is determined by the star condition. We have
chosen this method of proof as we believe that the double category IF(as)2 most neatly
encapsulates the structure required to construct the PROP Q.

An alternative method of proof would be to define a distributive law between the
PROP given in [Lac04, 5.9] and the PRO C2 and analyse the resulting composite. The
technical details of such a proof are quite similar to those we have used.
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5.5. Theorem. Let C be a symmetric monoidal category.

1. The category Alg (QV ,C) is equivalent to the category of involutive commutative
bimonoids in C.

2. The category Alg (QH,C) is equivalent to the category of involutive cocommutative
bimonoids in C.

3. The category Alg (QIF ,C) is equivalent to the category of involutive, commutative,
cocommutative bimonoids in C.

Proof. These equivalences are proved similarly to Theorem 5.3.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
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