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PUSHFORWARDS AND GAUGE TRANSFORMATIONS FOR
CATEGORICAL CONNECTIONS

SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

Abstract. We construct and establish results for a categorical counterpart of push-
forwards of connections on principal bundles. This categorical pushforward takes as
input a categorical connection AP on a categorical bundle P and an appropriate func-
tor S : P → Q and outputs a categorical connection S∗AP on the categorical bundle
Q. Applying this construction to the case of categorical bundles arising from decorated
path spaces in principal bundles, we obtain a transformation of classical connections
that combines the traditional gauge transformation with an affine translation.

1. Introduction

Categorical bundle theory provides a rich framework within which geometric notions such
as connections and parallel transport can be formulated and studied at multiple levels
using the language and techniques of category theory. There are distinct formalisms for
categorical bundle theory; in this paper we follow the categorical framework for connec-
tions over path spaces developed in [11, 12]; for ease of reference, section 4 includes a
largely self-contained description of the framework. Very briefly put, a categorical prin-
cipal bundle is a categorical counterpart of a classical principal bundle; it is given by
a functor π : P → M, where P, the ‘bundle category’, is a category on which a given
categorical group G acts and M is the ‘base category’, just as in the traditional case a
principal G-bundle is given by means of a surjective map π : P →M between manifolds,
along with an action of the Lie group G on P . Categorical groups (defined in section 2)
are essential to our whole framework in the same way that Lie groups are to traditional
principal bundle theory. Just as a connection on π : P → M can be specified through
all horizontal lifts of paths on M to paths on P , a categorical connection is defined as
a specification of ‘horizontal lifts’ of functors in the base category M to functors in the
bundle category P, satisfying certain geometrically-motivated conditions.

For a good enough bundle morphism f : P → Q between classical principal bundles
there is the traditional notion of pushforward for any connection on P to a connection on
Q (horizontal paths in Q would be f -images of horizontal paths in P ). A major goal of this
paper is to introduce and study a categorical counterpart of the traditional pushforward
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for categorical connections on categorical bundles. The definition of pushforward of a
categorical connection is given in section 6.2 (equations (6.3)).

Using the new notion of pushforwards of categorical connections we study a concrete
example arising from categories associated to path spaces. This leads us, in section 8, to
an extended form of the traditional gauge transformation of connection forms.

The main objectives of this paper are to:

1. construct and study the notion of a pushforward for connections on categorical
bundles;

2. use the pushforward to construct an extension of the notion of the traditional gauge
transformation to include affine translates A 7→ ϕ∗A + Λ, where ϕ is a traditional
gauge transformation and Λ is an appropriate type of 1-form.

A principal G-bundle is a smooth submersion π : P → M of manifolds, along with a
smooth free right action (p, g) 7→ pg of a Lie group G on P , preserving the fibers of the
projection π; there is also a local triviality property (see Kobayashi and Nomizu [28] for
the theory). A connection A on this bundle is a 1-form on P with values in the Lie algebra
L(G) with certain properties; the geometric significance of A is that it leads to a way of
lifting a path γ on M to a path γ̃p, initiating at p, on P , with π ◦ γ̃p = γ.

To review briefly, there are different counterparts of the classical theory of bundles
in the categorical framework. In the approach we follow, a categorical principal bundle
is given by a functor πP : P → M, and there is an action P ×G → M, where G is a
categorical group; we will explain these concepts in section 4. A categorical connection
is a prescription to lift morphisms γ of the base category M to morphisms γp in P.
A traditional gauge transformation is a smooth mapping P → P that preserves fibers
and the action of G, and is specified by a smooth function θ : P → G which has an
equivariance property. We will show (in section 7.4) that the categorical counterpart of
this, a categorical gauge transformation, is specified by both the function θ and a 1-form
on Mor(P) that takes values in the Lie algebra of a subgroup of Mor(G).

1.1. Technical description. In classical bundle theory a connection on a principal
bundle can be pushed forward to produce a connection on a different bundle. In more
detail, suppose πP : P →M and πQ : Q→M are principal G- and K−bundles, where G
and K are Lie groups. Suppose s : G→ K is a Lie group homomorphism and

P Q

M

S

πP πQ

(1.1)

a commutative diagram, with S a smooth map that satisfies S(pg) = S(p)s(g) for all
p ∈ P and g ∈ G. Then a connection AP on P produces a connection S∗AP on Q
essentially by declaring that S map AP -horizontal paths on P to S∗AP -horizontal paths
on Q. (For details see [28, Proposition 6.2].)
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A basic example is the case where M is a Riemannian manifold of dimension n, K
is the orthogonal group O(n), with s being the inclusion into the general linear group
GL(n), P is the bundle of orthonormal frames for the tangent bundle of M , and S is the
inclusion map into the bundle Q of all frames over M .

In section 4 we give a self-contained description of the mathematical formalism de-
veloped in our earlier works, but in a modified form that brings out some features more
clearly. We review the notion of a categorical group G, which involves two groups G and
H intertwined in a special structure called a crossed module; when G is a categorical Lie
group, the associated groups G and H are Lie groups. We also describe the notions of
categorical path spaces and a categorical principal bundle πP : P → M. Briefly, M is a
category whose objects are points of a manifold and whose morphisms correspond to paths
on the manifold. A central example of interest for categorical bundles is that of a deco-
rated bundle PA,dec → M, which arises from a classical principal G-bundle π : P → M ,
a connection A on this bundle, and an additional new structure group H as mentioned
above. Then the objects of PA,dec are just the points of P , while morphisms are of the
form (γ̃A, h), where γ̃A is any A-horizontal path on P and h ∈ H is a decoration of that
path.

In section 6 we construct and study the categorical counterpart of the pushforward
(1.1). Briefly, if

P Q

M

S

πP πQ

(1.2)

is a categorical counterpart to the diagram (1.1) then, by pushing forward horizontal lifts,
we obtain a categorical connection S∗AP on Q from a given categorical connection AP

on P.
In our presentation we build up to this general notion of pushforward by first studying

examples of interest in sections 4.4 and 5.7.
In section 5.5 we use a process that is a kind of inverse of the pushforward that works

only in the context we need. Briefly, if S : P → Q is a functor between categorical
principal bundles, preserving all relevant structures, then a categorical connection AQ

can be “lifted” to a categorical connection AP on P such that the pushforward of AP to
Q is the original connection AQ.

We use pushforwards to construct an extension of the notion of gauge transformation
of connections. In classical bundle theory, a global gauge transformation is specified by a
smooth map θ : P → G that is equivariant in the sense that

θpg = g−1θpg, (1.3)

for all p ∈ P and g ∈ G. In Theorem 7.5 we show that a categorical gauge transformation
on PA,dec is specified by a pair (θ,ΛH), where θ : P → G is as above, and ΛH is a smooth
1-form on P with values in the Lie algebra L(H) (recall G is associated with two Lie
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groups, G and H) that satisfies the equivariance condition

ΛH
pg(vg) = α(g−1)ΛH

p (v), (1.4)

for all p ∈ P , v ∈ TpP , and g ∈ P .
A categorical bundle morphism Θ : PA,dec → PA,dec is a functor that preserves the

categorical bundle structure. In Theorem 7.5 we find the detailed structure of such bundle
morphisms. The morphism Θ induces a connection on the classical bundle P , by keeping
track of what happens to the horizontal path γ. Thus the traditional connection A
gives rise, through this process, to a new connection, and it is this generalized gauge
transformation that we introduce and study in section 8.

In our concluding result, Theorem 8.5, we show that the action of the categorical
gauge transformation on categorical connections leads to the following transformation of
the classical gauge field A:

A 7→ Ad(θ)A− (dθ)θ−1 + τΛH . (1.5)

In [13, equation (1.2)] we used a different approach, in terms of local trivializations of
bundles, to obtain a version of this result, with all forms pulled down to the base manifold.
This transformation law (1.5) is also superficially resembles to the gauge transformation
law in higher gauge theories obtained by Wang [52, equation (1.2)]), within a different
framework.

In Section 8.6 we give an informal overview of the application of the framework devel-
oped here for higher categorical gauge transformations, which is to be pursued formally
in our upcoming work.

1.2. Background in Higher Gauge Theory. Parallel-transport over path spaces
have been studied in both the mathematics and physics literature. We shall mention
just a few other works, though there is now quite a substantial body of literature on
different approaches to higher gauge theories. Among the early works that directly or
indirectly influenced the study of higher gauge theories is Migdal’s work [35], wherein
a loop-space formulation of quantum chromodynamics was used. Gross [20] developed
a mathematically precise theory of connections over path spaces and derived results for
Yang-Mills theory using this framework. Singer [42] made use of geometry over path
bundles in the context of quantum Yang-Mills theory. Alvarez, Ferreira, and Sánchez-
Guillén [1], and later [2], studied the problem of finding conserved quantities in integrable
field-theoretic systems. Here they considered parallel transport over higher-dimensional
geometric objects, and used multiple higher forms, beyond the usual 1-form, for such
parallel transport processes. Pfeiffer [38] and Girelli and Pfeiffer [19] used category-
theoretic methods. Other works with a heavier category-theoretic focus include Baez
and Schreiber [5], Baez, Schreiber and Huerta [4, 5], Baez and Wise [6], Martins and
Picken [32–34], Parzygnat [36], and Sati, Schreiber, and Stasheff [39]. Higher gauge
transformations have been studied within other frameworks by Breen and Messing [9],
Schreiber and Waldorf [40, 41], Soncini and Zucchini [43], Waldorf [48–50], and Wang
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[51–53]. In our approach we don’t use Čech cohomology or gerbes, and we don’t make
any use of local trivializations. We do not assume any familiarity with higher categories
[27, 31], which does provide structures and language relevant for higher gauge theory.
Currently the most extensive online resource related to higher gauge theories is available
at https://ncatlab.org/nlab/show/HomePage

Our approach to categorical principal bundles, developed in [11,12], is an application of
category theory to geometry. This approach, including gauge transformations as developed
in this paper, can be extended to higher path/surface spaces, but in this paper we have
focused on just path space categories.

1.3. Results and organization. We review the basic notions of categorical groups
as well as our framework for categorical bundle theory in sections 2 to 4. In section 4.1,
we introduce a categorical bundle P•• that views path categorical bundles in terms of
endpoints: this structure will be very useful for the rest of the paper.

In section 5 we give a self-contained account of categorical bundles, following the
framework we have introduced in earlier works, and introduce the notion of pushing for-
ward a categorical connection in the context of a specific type of bundle. In Theorem 5.8
we prove that this process does produce a categorical connection.

In section 6 we introduce pushforwards of categorical connections in the general case.
The main result in this section is Theorem 6.3, which shows that the procedure of pushing
forward does indeed produce a categorical connection on a new bundle.

Next, in section 7 we use the notion of pushforwards of categorical connections to
study functorial gauge transformations of categorical connections. The main result here,
Theorem 7.5, gives a concrete description of such functorial gauge transformations.

Finally, in section 8 we specialize to the case of certain decorated categorical bundles
arising from classical bundle with connections. Here we can interweave the categorical
bundle theory, with its notion of pushforwards of connections, with classical bundles and
connections, thereby obtaining a transformation of connections on classical bundles. This
extended gauge transformation on a classical principal bundle π : P →M is specified by
a function θ : P → G and a 1-form ΛH on P with values in a Lie algebra L(H). The
main result in this section, Theorem 8.5, shows that, working with a classical connection
A on a principal G-bundle P →M , the categorical gauge transformation results in a new
connection given by

Ad(θ)A− (dθ)θ−1 + τΛH . (1.6)

In this paper we will not go beyond connection 1-forms but the investigation may be ex-
tended to connections given by higher order forms within the general framework described
in section 5.

https://ncatlab.org/nlab/show/HomePage
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1.4. A note on notation. We will use a convenient but nonstandard convention of
displaying maps or morphisms from right to left rather than left to right. Thus

q p

γ

(1.7)

is a map (or morphism or path) with domain (source or initial point) p and codomain (tar-
get or terminal point) q. The advantage of this display convention is that a composition
δ ◦ γ is displayed in the same order as δ and γ appear in δ ◦ γ :

r q p

δ γ

This convention has been used extensively by Parzygnat (for example, in [36]).

2. Categorical groups

A categorical group is a category G along with a functor

G×G→ G

that makes both Obj(G) and Mor(G) groups. A categorical Lie group is a categorical
group G for which Obj(G) and Mor(G) are both Lie groups, the source and target maps

s, t : Mor(G)→ Obj(G)

are smooth and so is the identity-assigning morphism

Obj(G)→ Mor(G) : a 7→ 1a.

Associated to a categorical group G is a crossed module (G,H, α, τ), where

G = Obj(G)

H = ker s : Mor(G)→ Obj(G).
(2.1)

(The correspondence between categorical groups and crossed modules is credited to George
Janelidze by Mac Lane [31, sec XII.8]; see also Janelidze [26]. The structure seems to
appear also in Turing [47].) Thus any element of H is a morphism e→ x for some x ∈ G,
with e being the identity in G. The homomorphism

τ : H → G

is just the target map t restricted to H, and

α : G×H → H : (g, h) 7→ αg(h)
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is given by
αg(h) = 1gh1g−1 .

The categorical group G can be reconstructed from (G,H, α, τ) by taking G to have
object group G and morphism group the semi-direct product H ⋊α G. Henceforth,

we will write (h, g) ∈ H ⋊α G as hg;

(this notation carries a slight risk of confusion but is very convenient). In particular, we
identify g ∈ G with (e, g) ∈ H ⋊α G and h ∈ H with (h, e). Then

αg(h) = ghg−1. (2.2)

We note the Peiffer identities [37]:

τ
(
αg(h)

)
= gτ(h)g−1

ατ(h)(h
′) = hh′h−1 (2.3)

for all g ∈ G and h ∈ H.
With (h, g) ∈ H ⋊α G viewed as an element of Mor(G), the source and targets are

s(h, g) = g, and t(h, g) = τ(h)g. (2.4)

Composition of morphisms, viewed as an operation on H ×G, is given by

(h2, g2) ◦ (h1, g1) = (h2h1, g1), (2.5)

where g2 = τ(h1)g1 for the composition to be meaningful.
The categorical group G is a categorical Lie group if and only if G and H are Lie

groups and α and τ are smooth.

2.1. The categorical group G••. For any group G, let G•• be the categorical group
whose objects are the elements of G and for which there is a unique morphism g0 → g1
for any g0, g1 ∈ G. Following the notational convention in (1.7), we display this unique
morphism as

g1 ← g0,

where g0 is the source of the morphism and g1 is the target. In the crossed module
notation H ⋊α G, the group H is the same as G, with τ being just the identity map and
α given by conjugation. The target map t is given by

g1 = t(k, g0) = kg0,

for k ∈ H = G. Thus

g1 ←[ g0 corresponds to (g1g
−1
0 , g0) ∈ G⋊α G. (2.6)
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Thus the object group of G•• is G (not to be confused with the category whose only
object is G), and whose morphism group is G × G. If G is a categorical group whose
object group is G then we have the functor

S : G→ G••, (2.7)

which is just the identity map G → G on objects, and takes any ϕ ∈ Mor(G) to the
morphism

t(ϕ)←[ s(ϕ) (2.8)

in Mor(G••). It is readily checked that S is indeed a functor, and, moreover, it is a
homorphism of groups at the object and at the morphism levels. If G is a categorical Lie
group then so is G•• in the obvious way, and S is smooth both at the object and at the
morphism levels.

3. Categorical path spaces

In this section we describe the framework of path space categories that we will use. This
framework, using specific parametrizations of paths, is described specifically in sections
3.2 and 3.4. Alternative frameworks, such as the thin-homotopy approach, are mentioned
in section 3.5. For more on the background and ideas, in the context of string theory,
connected with the description of paths in terms of parametrization see Stasheff [46] and
references therein such as the papers [21,22].

3.1. Smooth spaces.We will not need any details concerning smooth structures on path
spaces but we note here some minimal background. For our purposes it is convenient to
use the framework of diffeological spaces, introduced by Souriau [44] and discussed further
by several authors [3,23,30]; however, we will use the term smooth space, which is used by
Baez and Hoffnung [3] in a broader sense. There are several other approaches to smooth
structures, such as the one by Fröhlicher [18]; Batubenge, Iglesias-Zemmour, Karshon and
Watts [7] and Stacey [45] provide overviews and comparisons of different approaches to
smoothness.

Very briefly, we take a smooth space to be a non-empty set X along with a diffeology,
a family SX of maps U → X, called plots, with U running over all open subsets of all
finite-dimensional spaces Rn with n ≥ 0, such that: (i) all maps from the one-point space
R0 to X are in SX ; (ii) if ϕ : U → X is in SX and if g : V → U is C∞, where V is an
open subset of some Rn, then ϕ ◦ g ∈ SX ; (iii) if ϕ : U → X is such that the restriction of
ϕ to every member of an open covering of U is in SX then ϕ ∈ SX .

If X is a smooth space and X0 is a non-empty subset of X, then a diffeology on X0 is
obtained by taking as plots all the plots U → X whose images lie in X0. In particular, a
closed interval [a, b] is a smooth space.

IfX and Y are smooth spaces then a map F : X → Y is said to be smooth if F ◦ϕ ∈ SY

for all ϕ ∈ SX . Thus the condition is that for any plot of X the composition with F is a
plot of Y .
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A surjective map h : X → Y pushes forward a diffeology SX on X to a diffeology
h∗SX on Y , with h∗SX consisting of all maps h ◦ ϕ with ϕ running over SX .

3.2. Path spaces. Let a < b be real numbers, and C∞
0 ([a, b];X) the set of all smooth

maps [a, b] → X, where X is a smooth space, that are constant near a and near b. We
define a plot for C∞

0 ([a, b];X) to be a smooth variation of paths on X in the following
sense. Let U be any nonempty open subset of some Rm, with m ≥ 0. Consider a map of
the form

U → C∞
0 ([a, b];X) : u 7→ ϕu,

such that
U × [a, b]→ X : (u, t) 7→ ϕu(t)

is smooth, and there is an ϵ > 0 such that, for each u ∈ U , the path ϕu is constant on
[a, a + ϵ) and on (b − ϵ, b]. We take all such maps as the plots specifying a diffeology on
C∞

0 ([a, b];X). Varying a and b, gives a smooth space that is the disjoint union

P1(X) = ∪a,b∈R,a<bC
∞
0 ([a, b];X), (3.1)

on which the smooth structure (diffeology) is the union of the ones on each C∞
0 ([a, b];X).

On P1(X) there is an action of R by time-translation: if u ∈ R and γ ∈ C∞
0 ([a, b];X)

then we have the path

γ+u ∈ C∞
0 ([a− u, b− u];X) : t 7→ γ(t+ u).

Then there is a natural surjection of P1(X) onto the quotient space P1(X)/R. The plots
on P1(X) composed with this projection give plots on P1(X)/R, and make the latter into
a smooth space.

Given a path δ : [a, b] → X and a path γ : [b, c] → X, with δ(b) = γ(b), we can form
a composite path

γ ∗ δ : [a, c]→ X : u 7→

{
δ(u) if t ∈ [a, b];

γ(u) if u ∈ [b, c].
(3.2)

The following result shows that composition of paths is a smooth operation.

3.3. Proposition. Let a, b, c ∈ R with a < b < c, and let K be the subset of the product
C∞

0 ([b, c];X)×C∞
0 ([a, b];X) consisting of all pairs (γ, δ) for which γ(b) = δ(b). Then the

composite map
K : K → C∞

0 ([a, c];X) : (γ, δ) 7→ γ ∗ δ (3.3)

is smooth.

Proof. A plot of K is a plot of C∞
0 ([b, c];X) × C∞

0 ([a, b];X) that takes values in the
subset K. Thus this plot is of the form

(ϕ, ψ)
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where there is a non-empty open subset U of Rm, for some m ≥ 0, and ϕ : U →
C∞

0 ([b, c];X) and ψ : U → C∞
0 ([a, b];X) are smooth. Then K ◦ (ϕ, ψ) maps u ∈ U

to κu = ϕu ◦ ψu : [a, c] → X. Now κu is smooth on [b, c], being the same as ϕu on that
interval, and also smooth on [a, b]; furthermore, it is constant near b. It follows, by using
property (iii) of plots, that κu is smooth on [a, c]. Moreover, there is an ϵ1 > 0 such that
each ϕu is constant within an ϵ1-neighborhood of the points b and c, and there is an ϵ2 > 0
such that each ψu is constant within an ϵ2-neighborhood of a and b. Hence, κu is constant
within an ϵ-neighborhood of a and c, where ϵ = min{ϵ1, ϵ2}. Thus K ◦ (ϕ, ψ) is a plot of
C∞

0 ([a, c];X). This means that K is smooth.

That the operation of composition ∗ is associative, without any need for using homo-
topy equivalence, makes it convenient for our purposes as it makes it easy to consider
paths as morphisms. The framework of Moore paths, where continuous maps [0, r]→ X,
with varying r ∈ [0,∞), are the paths and composition is done by translating the domain
appropriately first, is in the same spirit as our approach.

3.4. Categorical path spaces. From a smooth space X we can construct a category
P1(X) as follows. The object set of P1(X) is X, and the morphism set is P1(X)/R. Let us
look at the morphisms in more detail. The morphisms of P1(X) arise from smooth paths
[a, b]→ X : u 7→ γ(u), for any a, b ∈ R with a ≤ b, constant near the endpoints a and b,
with two such paths identified if one is obtained from the other by a constant translation
of the parameter u. A morphism’s source is the initial point, which we often denote γ0,
and the target is the terminal point, which we denote γ1. The identity morphism at an
object p ∈ X is the equivalence class of the point-path [a, a]→ X : a 7→ p. Composition
of morphisms corresponds to composition of paths, with the first path terminating at
the source of the second. The set of morphisms Mor(P1(X)) has a natural smooth space
structure, and the source and target maps

s, t : Mor(P1(X))→ X

are smooth.

γ1 = γ(b)
γ0 = γ(a)

γ

X

A morphism γ0 → γ1 of P1(X) arising from a
path γ : [a, b]→ X

Figure 1: The category P1(X)

If f : X → Y is a smooth map between smooth spaces then γ 7→ f ◦ γ induces a
smooth map

P1(f) : P1(X)→ P1(Y ).

In fact, P1 is a functor from the category of smooth spaces and smooth maps into itself.
Lastly, let us note that P1 can be composed with itself multiple times to yield “higher”



PUSHFORWARDS 1025

path spaces. There is an alternative, technically easier, way to work with higher path
spaces, by viewing them as being obtained from smooth maps [a1, b1] × . . . [ak, bk] → X
that are suitably constant near the boundary of the domain. We mention this for cultural
context; we will not work with such higher path spaces in this paper.

By a categorical space we will mean a category for which both object set and morphism
set are equipped with smooth space structures such that the following maps are smooth:
(i) source and target maps; (ii) the identity assigning map a 7→ 1a; (iii) the composition
of morphisms, defined on the set of all composable pairs of morphisms.

There is a special case that we use frequently, for which it is convenient to use a simpler
notation. For a smooth manifold M we denote the path space category P1(M) by M.

3.5. Backtrack and Thin Homotopy Equivalences equivalence.There are sev-
eral reasonable choices for the path space category. One we have used before [11] involves
identifying paths that are the same except for some pieces that are backtracked. More pre-
cisely, for a path γ : [a, b]→ X let γ−1 : [b, b+ b−a]→ X be given by γ−1(t) = γ(2b− t).
It is reasonable to identify the composite γ−1 ∗ γ : [a, 2b− a]→ X with the constant path
at γ(a). Next we identify two paths that differ by a finite number of compositions of the
type γ−1 ∗ γ. We call this backtrack equivalence. With this equivalence, the paths with a
fixed initial point form a group under composition. In Singer [42] a principal bundle is
constructed informally for which this group of loops based at a fixed point serves as the
structure group of a principal bundle. In some approaches to categorical gauge theory or
geometry one uses “thin homotopy” classes of paths. Smooth paths γ, δ : [a, b]→ M are
thin homotopy equivalent if there is a smooth map F : [0, 1]× [a, b]→M : (t, s) 7→ Ft(s),
with F0 = γ and F1 = δ, such that the differential dF has rank ≤ 1 everywhere (intu-
itively, the image of F has zero area). Our framework of categorical bundle theory works
more naturally and easily using reparametrization equivalence classes of paths rather than
thin homotopy classes, just as a technical matter.

4. Categorical principal bundles

This section is devoted to the framework of categorical bundles we use. There are multiple
approaches to and formulations of the notion of categorical bundles; this section focuses
on the framework we have developed in earlier works such as [11], which we use in this
paper.

4.1. The categorical bundle P••. Let

π : P →M

be a principal G-bundle, where G is a Lie group. Specifically, P andM are smooth spaces,
π is a surjective submersion, and there is a smooth free right action of G on P :

P ×G→ P : (p, g) 7→ pg = Rgp
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which preserves the fibers of π. We will construct categorical spaces from this bundle.
Intuitively, the category P•• will have the points of P as objects, and morphisms are
paths on M connecting the projections on M of the source and the target.

s(γ) = p0

t(γ) = p1

γ0
γ1

γ

γ = (p1, p0; γ)

M

P

Figure 2: A morphism γ = (p1, p0; γ) of P
••.

More precisely, we define P•• to be the category whose object set is P and whose
morphisms are of the form

(p1, p0; γ) ∈ P × P ×Mor(M),

with γ having source π(p0) and target π(p1):

π(p1) π(p0)

γ

Source and targets are given by

s(p1, p0; γ) = p0 and t(p1, p0; γ) = p1. (4.1)

Composition is given by

(p2, p1; δ) ◦ (p1, p0; γ) = (p2, p0; δ ◦ γ). (4.2)

The identity morphism at p is (p, p; 1π(p)), where 1u is the point-path at u.
A categorical right action of a categorical group G on a category X is a functor

R : X×G→ X,

which is a group right action at both object and morphism levels. In the context of
categorical Lie groups and categorical spaces we also require that the actions, both at the
object level and the morphism level, be smooth.
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The categorical group G•• has a categorical right action on P•• given on objects by
the action of G on P and on morphisms by

(p1, p0; γ)(g1 ←[ g0) = (p1g1, p0g0; γ). (4.3)

We have the projection functor
π : P•• →M,

given on objects by the bundle projection π : P →M and on morphisms by

π(p1, p0; γ) = γ.

4.2. The decorated categorical bundle PA,dec. Now consider a connection A on a
principal G-bundle π : P →M , and let G be a categorical Lie group with associated Lie
crossed module (G,H, α, τ). From this we can construct a categorical principal G-bundle
that we call decorated bundle and denote

π : PA,dec →M. (4.4)

The object space of PA,dec is P . A morphism of PA,dec is to be thought of as an A-
horizontal path on P equipped with a decorating element drawn from H. More precisely,
a morphism of PA,dec is of the form

γ = (γ̃, h),

where γ̃ is a morphism of P coming from an A-horizontal path on P , smooth and constant
near its initial and terminal points, and h ∈ H. Source and target maps are defined by:

s(γ;h) = s(γ̃)

t(γ;h) = t(γ̃)τ(h),
(4.5)

where s(γ̃) = γ̃0 is the initial point of γ̃ and t(γ̃) = γ̃1 is the terminal point. We call (4.4)
the decorated bundle corresponding to the bundle π : P →M and connection A.

The categorical group G acts on PA,dec on objects by the action of G on P and on
morphisms by:

(γ̃;h)h′g′ = (γ̃g′; γ; g′
−1
hh′g′). (4.6)

Here it is useful to recall that the notation hg is really a short form of (h, g). For
(δ̃;h2), (γ̃;h1) ∈ Mor(PA,dec), with

δ̃0 = γ̃1τ(h1), (4.7)

the composition of morphisms is defined by

(δ̃;h2) ◦ (γ̃;h1) =
(
δ̃τ(h1)

−1 ◦ γ̃;h1h2
)
. (4.8)

The source of either side is γ̃0 and the target of either side is δ̃1τ(h2). Moreover, the
identity morphism at p is (1p; e), where 1p is the constant point-path at p.
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s(γ, h) = γ0
(γ, h)

γ1

t(γ, h) = γ1τ(h)

γ0
γ1

γ

γ

M

P

Figure 3: The decorated bundle, showing the source and target of a morphism (γ, h).
Only

(
γ1, γ0; γ

)
is needed about γ.

We check the behavior of compositions under the action of the categorical group.
Consider the composition (4.8) under the action of a composition (h′2g

′
2) ◦ (h′1g′1); for the

latter to be meaningful we have g′2 = τ(h′1)g
′
1. With this, we have:

(δ̃;h2)(h
′
2g

′
2) ◦ (γ̃;h1)(h′1g′1)

=
(
δ̃g′2; g

′−1
2 h2h

′
2g

′
2

)
◦
(
γ̃g′1; g

′−1
1 h1h

′
1g

′
1

)
=

(
δ̃τ(h1)

−1g′1 ◦ γ̃g′1; g′
−1
1 h1h2h

′
2h

′
1g

′
1

)
,

(4.9)

which agrees with (
(δ̃;h2) ◦ (γ̃;h1)

)(
(h′2g

′
2) ◦ (h′1g′1)

)
=

(
δ̃τ(h1)

−1 ◦ γ̃; h1h2
)
(h′2h

′
1g

′
1)

=
((
δ̃τ(h1)

−1 ◦ γ̃
)
g′1; g

′−1
1 h1h2h

′
2h

′
1g

′
1

)
=

(
δ̃τ(h1)

−1g′1 ◦ γ̃g′1; g′
−1
1 h1h2h

′
2h

′
1g

′
1

)
.

(4.10)

This means that compositions of morphisms in G and PA,dec commute with the action of
Mor(G) on Mor(PA,dec).

4.3. Categorical principal bundles. We have discussed P•• and PA,dec. These are
both examples of the general notion of a categorical principal bundle as defined in our
earlier work [11]. Let G be a categorical Lie group, and let M be a categorical space; we
have in mind the usual case where M arises from a manifold M . A categorical principal
bundle with structure categorical group G is comprised of categorical spaces P and M, a
functor

π : P→M
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that is smooth and surjective both on the level of objects and on the level of morphisms,
along with a functor

P×G→ P

that is a free smooth right action both on objects and on morphisms, such that π(pg) =
π(p) for all objects/morphisms p of P and all objects/morphisms g of G. In practice we
are only concerned with the case where G is a categorical Lie group, Obj(P) and Obj(M)
are smooth manifolds, and the object bundle

Obj(P)→ Obj(M)

is a principal G-bundle, where G = Obj(G).

4.4. The functor S. Let P →M be a categorical principal G-bundle, and P•• →M
the categorical G••-bundle discussed earlier, obtained from the object principal G-bundle
π : P →M . Let

S : P→ P••, (4.11)

be given on objects by p 7→ p and on morphisms by

S(γ̃) = (γ̃1, γ̃0; π(γ̃)), (4.12)

where the subscripts 0 and 1 signify source and target, respectively. It is readily verified
that this is a functor (commutes with source and targets, respects compositions, and maps
identities to identities). Moreover, for any ϕ ∈ Mor(G), we also have

S(γ̃ϕ) =
(
γ̃1ϕ1, γ̃0ϕ0; π(γ̃)

)
= S(γ̃)S(ϕ), (4.13)

where the first equality holds because of the functorial nature of the action of G on P
and the second equality is verified from the definition of S given in (2.7) and (2.8).

4.5. The functor S for decorated bundles. Now we specialize to the case where
P → M is the usual decorated bundle PA,dec → M, with A being a connection on the
underlying object bundle P → M , as discussed in section 4.2. We recall that the PA,dec

and P•• both have P as object space, but morphisms of P•• are of the form (p1, p0; γ),
where γ ∈ Mor(M) runs from source π(p0) to target π(p1), while morphisms of PA,dec

are of the form (γ̃;h), where now γ̃ is an A-horizontal morphism of P and h is a general
element of H. Then we have the functor

S : PA,dec → P••, (4.14)

given on objects by p 7→ p and on morphisms by

S(γ̃;h) = (γ̃1τ(h), γ̃0; γ), (4.15)

where γ̃0 = s(γ̃) and γ̃1 = t(γ̃). Let us verify for this case the properties of S noted in the
general context earlier.
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4.6. Proposition. The assignment S given above is a functor. Moreover, it is a mor-
phism of categorical principal bundles in the following sense:

S(pg) = S(p)g for all (p, g) ∈ P ×G,
S
(
(γ̃;h)h′g′

)
= S(γ̃;h)S(h′, g′)

(4.16)

for all (γ̃;h) ∈ Mor
(
PA,dec

)
and (h′, g′) ∈ H ⋊α G, and S is as given in (2.7) and (2.8).

Proof. From (4.15) it is readily seen that Smaps sources and targets properly. Moreover,
for compositions we have:

S
(
(δ̃;h2) ◦ (γ̃;h1)

)
= S(δ̃τ(h1)−1 ◦ γ̃;h1h2)
=

(
δ̃1τ(h2), γ̃0; δ ◦ γ),

(4.17)

which agrees with

S(δ̃;h2) ◦ S(γ̃;h1) =
(
δ̃1τ(h2), δ̃0; δ

)
◦
(
γ̃1τ(h1), γ̃0; γ

)
=

(
δ̃1τ(h2), γ̃0; δ ◦ γ),

(4.18)

where we used the composition law (4.2).
The first equation in (4.16) is immediate from the definition of S in (4.14) acting on

objects. Next, using the definition (4.15) of S on morphisms and the action given by (4.6),
we have

S
(
(γ̃;h)h′g′

)
= S(γ̃g′; g′−1

hh′g′)

=
(
γ̃1τ(hh

′)g′, γ̃0g
′; γ

)
,

(4.19)

and

S(γ̃;h)S(h′g′) =
(
γ̃1τ(h), γ̃0; γ)

(
τ(h′)g′ ←[ g′

)
=

(
γ̃1τ(hh

′)g′, γ̃0g
′; γ

)
.

(4.20)

Thus S satisfies (4.16).

5. Connections on Categorical Bundles

Let G be a categorical Lie group with associated Lie crossed module (G,H, α, τ). We
will now look at a counterpart of some of the previously discussed constructions, but with
the traditional principal bundle π : P → M , with classical connection A, replaced by a
categorical bundle π : P → M with a categorical analog of a classical connection. To
avoid confusion of terminologies we emphasize that this analogy should be interpreted in
a very specific sense as defined below. Here we do not make any effort to construct a
differential geometric connection on the principal bundle over a path space category. In
fact a differential geometric connection on a bundle over a path space category provides an
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enriched version of the one we are interested in this paper, which we have studied in some
of our earlier papers [11, 12]. The construction of such “higher connections” necessarily
involves construction of differential forms on a path space, viewed as a diffeological space.
Foundational work in this direction was initiated by K. T. Chen in a series of articles
[14–17]. Among more recent works on connection structures on bundles over path spaces
we mention the papers by Kohno [29], Igusa on superconnections on graded vector spaces
over a path space [25], and by Block and Smith on Riemann-Hilbert correspondence [8].
While in this paper we do not explore such higher connections, and focus mainly on
the study of gauge transformations of categorical connections, the framework we will be
developing here can be adapted for a higher structure (see Section 8.6 and the concluding
remarks).

5.1. Categorical connections. A connection A on a principal G-bundle specifies a
special path γ̃Ap on P , starting at any given point p on the fiber over γ0, and is called the
A-horizontal lift of γ starting at p. This generalizes then readily to categorical bundles. A
categorical connection A on a categorical principal G-bundle π : P→M assigns to each
γ ∈ Mor(M) and each p ∈ Obj(P) with π(p) = s(γ), a morphism, called the horizontal
lift,

τA(γ; p) ∈ Mor(P)

with source p and whose π-projection is γ, such that the following conditions hold:

(CC1) If γ = 1u, the identity at u = π(p) ∈ Obj(M), then τA(γ; p) = 1p;

(CC2) τA(γ; pg) = τA(γ; p)1g for all g ∈ G;

(CC3) If γ, δ ∈ Mor(M) are such that the composite δ ◦γ is defined then the horizontal lift
τA(δ ◦γ; p) is the composite of the horizontal lift τA(γ; p) followed by the horizontal
lift of δ:

τA(δ ◦ γ; p) = τA
(
δ; t

(
τA(γ; p)

))
◦ τA(γ; p). (5.1)

We also require that (γ; p) → τA(γ; p) be smooth, where, of course, p ∈ Obj(P) and
γ ∈ Mor(M) are such that π(p) = s(γ),

5.2. The standard example. Let A be a connection on a classical principal G-bundle
π : P →M , where G = Obj(G) is the object group of a categorical Lie groupG associated
to the crossed module (G,H, α, τ). Then we can construct a categorical connection A••

on the categorical G••-bundle π : P•• →M by setting

τA••(γ; p) = (q, p; γ), (5.2)

where q is the point obtained by parallel transporting p along γ by A.
Intuitively, every categorical connection on P•• arises in this way from a classical

connection on P .
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5.3. The horizontal bundle PA.With setting as above, by a horizontal morphism we
shall mean a morphism of the form τA(γ; p). Property (CC3) implies that the composition
of horizontal lifts is horizontal. Thus we have a category PA, whose object set is Obj(P)
and whose morphisms are all the horizontal morphisms. The categorical group involved
for this bundle has object group G and the only morphisms are the identity morphisms
1g for all g ∈ G.

5.4. The decorated bundle PA,dec. In section 4.2 we saw how a classical connection
A on a principal G-bundle π : P →M , along with a categorical Lie group G whose object
group is G, lead to a categorical G-bundle π : PA,dec → M. Here we shall see how this
process generalizes to a categorical connection on a categorical principal bundle. Let G
and G1 be categorical Lie groups, with

Obj(G1) = Obj(G) = G.

We have in mind the case where G1 is G••. As before we have taken (G,H, α, τ) to be
the Lie crossed module associated to G.

Let A be a categorical connection on a categorical principal G1-bundle π : P → M.
Thus to each γ ∈ Mor(M) and p ∈ Obj(P) there is the associated horizontal lift τA(γ; p).
The decorated categorical principal G-bundle

PA,dec, (5.3)

has
Obj(PA,dec) = P, Mor(PA,dec) = Mor(PA)×H. (5.4)

Source and targets are given by

s(γ;h) = γ0, t(γ;h) = γ1τ(h), (5.5)

where, as always, the subscripts 0 and 1 signify source and target, respectively. We have
the functor

S : PA,dec → P••, (5.6)

given on objects by p 7→ p and on morphisms by

S(γ;h) =
(
γ1τ(h), γ0; π(γ)

)
. (5.7)

This is the more abstract form of the functor S introduced in (4.16) in the context of the
decorated categorical bundle arising from a classical principal G-bundle with connection
for A.

5.5. Lifting a connection. Our goal here and in the next subsection is to transfer
connections from one bundle to another. First, here, we see how a connection on P•• can
be lifted to a connection on PA,dec, by decorating each horizontal morphism in P•• with
the identity e ∈ H.
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5.6. Proposition. With notation as above, let A be a categorical connection on the
categorical G••-bundle P••. For any γ ∈ Mor(M) and p ∈ P on the fiber over s(γ), let

τAd
(γ; p) =

(
τA(γ; p), e

)
∈ Mor(PA,dec). (5.8)

Then Ad is a categorical connection on PA,dec.

Proof. First we note that
(
τA(γ; p), e

)
is indeed in Mor(PA,dec). The condition (CC1)

is readily verified. Condition (CC2) follows by applying the definition (4.6) of the action
of H ⋊α G on Mor(PA,dec). Lastly, (CC3) follows by using the composition specification
(4.8). Smoothness of (γ; p) 7→

(
τA(γ; p), e

)
follows from smoothness of τA.

5.7. Pushing forward a connection. Let π : P → M be a categorical G-bundle
and π : P•• →M the corresponding categorical G••-bundle. We have then the functor

S : P→ P••, (5.9)

introduced in (4.11). Now supposeA is a categorical connection on P→M. We construct
a categorical connection A•• on P•• →M as follows. For γ ∈ Mor(M) and p ∈ Obj(P)
on the fiber above the source γ0, we set

τA••(γ; p) = S
(
τA(γ; p)

)
. (5.10)

Because of the properties of S this assignment defines a categorical connection A••.
Specializing this pushforward process to a connection on PA,dec produces a connection

on P••, which we verify in the following result.

5.8. Theorem.With notation as above, suppose A1 is a categorical connection on PA,dec.
If τA1(γ; p) =

(
γ̃, h

)
, where γ ∈ Mor(P) and p ∈ Obj(P), with π(p) = s(γ), we set

τA••
1
(γ; p) =

(
qτ(h), p; γ

)
∈ Mor(P••), (5.11)

where q = t(γ̃). Then A••
1 is a categorical connection on P••.

Proof. For notational convenience let us write A2 for A••
1 .

For (CC1) we note that if γ = 1u, where u = π(p), then

τA1(1u; p) = (1p, e), (5.12)

and so
τA2(1u; p) =

(
p, p; 1u

)
. (5.13)

Next, for (CC2), if τA1(γ; p) = (γ̃, h), where γ̃ runs from p to q, then

(γ̃, h)1g = (γ̃1g, g
−1hg) (5.14)

and so, noting that γ̃1g runs from pg to pq, we have

τA2(γ; pg) = (qg g−1τ(h)g, pg; γ) = (qτ(h)g, pg; γ). (5.15)
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This agrees with:

τA2(γ; p)1g =
(
qτ(h), p; γ

)
1g =

(
qτ(h)g, pg; γ

)
. (5.16)

Thus (CC2) holds.
Now, for (CC3), we consider a composite δ ◦ γ and p ∈ P with π(p) = u = s(γ). Let

τA1(γ; p) = (γ̃, h1) and τA1(δ; q) = (δ̃, h2), (5.17)

where q = t(γ̃).
Then

τA1(δ ◦ γ; p) = τA1

(
δ; t

(
τA1(γ; p)

))
◦ τA1(γ, p)

= τA1

(
δ; qτ(h1)

)
◦ (γ̃, h1)

=
(
δ̃τ(h1), τ(h1)

−1h2τ(h1)
)
◦ (γ̃, h1)

=
(
δ̃τ(h1), h

−1
1 h2h1

)
◦ (γ̃, h1)

=
(
δ̃ ◦ γ̃, h2h1)

(5.18)

where we used the second of the Peiffer identities (2.3). Hence,

τA2(δ ◦ γ; p) =
(
rτ(h2h1), p; δ ◦ γ). (5.19)

On the other hand,

τA2

(
δ; t

(
τA2(γ; p)

))
◦ τA2(γ, p)

= τA2

(
δ; qτ(h1)

)
◦
(
pτ(h1), p; γ

)
=

(
rτ(h1)τ(h1)

−1τ(h2)τ(h1), qτ(h1); δ
)
◦
(
pτ(h1), p; γ

)
=

(
rτ(h2h1), qτ(h1); δ

)
◦
(
p1τ(h1), p; γ

)
=

(
rτ(h2h1), p; δ ◦ γ

)
,

(5.20)

which agrees with the right side in (5.18). Thus (CC3) holds.
Smoothness of τA2 follows from smoothness of τA1 and of τ .

6. Pushforwards of Categorical Connections

In this section we present a more abstract construction of the pushforward discussed in
section 5.7.

Let us briefly recall how classical connections can be pushed forward from one bundle to
another. For a detailed and more general account we refer to Kobayashi and Nomizu [28,
section II.6]; there is also a pullback process for classical bundles that we will not discuss
here. Recall that in the classical geometric framework a connection A on a principal
G-bundle P →M is given by an L(G)-valued 1-form; more geometrically, we understand
the connection A as providing parallel-transports or horizontal paths, which are paths in
P whose tangent vectors are annihilated by A. In the categorical bundles framework we
also have a pullback in the special situation discussed in section 5.5.
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6.1. Pushforwards of classical connections. Let G and K be Lie groups, and
s : G→ K a smooth homomorphism. Now consider a commutative diagram

P Q

M

S

πP πQ

(6.1)

where πP : P → M is a principal G-bundle and πQ : Q → M is a principal K-bundle,
and suppose that the smooth map S is equivariant in the following sense

S(pg) = S(p)s(g), (6.2)

for all p ∈ P and g ∈ G.
With this setting there is a way to push forward a connection A on P to a connection

f∗A on Q as follows. Let q ∈ Q and v ∈ TqQ. We pick any point p ∈ P on the fiber over
πQ(q); then q = S(p)k, for some k ∈ K. Then the horizontal space ker(f∗A)q for f∗A at
q is f∗(kerAp)k. More geometrically, f∗A-horizontal paths in Q are K-translates of the
images under f of A-horizontal paths in P .

6.2. Pushforwards of categorical connections. We now construct a categorical
counterpart of this pushforward process. Let P and Q be, respectively, a G- and an
K- categorical principal bundle over the same base category M. Here G and a K are
categorical Lie groups. Suppose S : P→ Q and S : G → K are functors satisfying

S(pg) = S(p)S(g)
S(γ̃ϕ) = S(γ̃)S(ϕ)

(6.3)

for all p ∈ Obj(P), g ∈ Obj(G), γ̃ ∈ Mor(P) and ϕ ∈ Mor(G). We assume also that

πQ
(
S(p)

)
= πP(p) (6.4)

for all p ∈ Obj(P). We say that the pair S and S, satisfying (6.3) and (6.4), is a morphism
from the bundle P to the bundle Q.

A categorical connection is known when all the horiziontal morphisms are known.
Starting from a categorical connection τP on P we specify a categorical connection Q by
requiring that the S-images of τP-horizontal morphisms be τQ-horizontal. The following
result ensures that τQ is a categorical connection.

To avoid notational clutter we will write γ1b as γb, for γ a morphism in P or Q and
b an object of G or K. This is consistent with standard practice for the case where γ
corresponds to a horizontal path.

6.3. Theorem. We use the notation as above. Let τP be a categorical connection on P,
and, for any γ ∈ Mor(M) and any q ∈ Obj(Q) on the Q-fiber over the source s(γ), let

τQ(γ, q) := S(τP(γ, p))kp,q, (6.5)

where p ∈ Obj(P) is any point on the P-fiber over s(γ) and kpq ∈ Obj(K) is specified
by requiring that q = S(p)kp,q. Then τQ satisfies conditions (CC1)-(CC3) for categorical
connections,



1036 SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

Proof. First, let us verify that (6.5) is independent of the choice of the point p. Suppose
a ∈ Obj(G) is such that S(pa) = S(p) = q. Then

S(a) = e,

the identity in the group Obj(K). We observe that

q = S(p)kp,q = S(pa)kp,q,

and so
kpa,q = kp,q. (6.6)

Then

S(τP(γ, pa))kpa,q = S(τP(γ, p)1a)kpa,q
= S(τP(γ, p))S(1a)kp,q
= S(τP(γ, p))1S(a)kp,q
= S(τP(γ, p))kp,q,

(6.7)

since S(a) = e. Thus (6.5) is independent of the choice of p.
Next we verify the conditions (CC1-3) from section 5.1. Condition (CC1) is readily

verified and we omit the argument.
For (CC2) consider γ ∈ Mor(M), q ∈ Obj(Q) a point lying on the fiber above the

source s(γ). We choose any p ∈ Obj(P) on the fiber over s(γ), and let kp,q ∈ Obj(K) be
such that q = S(p)kp,q. Then, for k ∈ Obj(K), we have

qk = S(p)kp,qk,

and so
kp,qk = kp,qk. (6.8)

Hence

τQ(γ, qk) = S(τP(γ, p))kp,qk
= τQ(γ, q)k.

(6.9)

Thus, the translate of any τQ-horizontal morphisms by any k ∈ Obj(K) is τQ-horizontal.
Next, we verify that the condition (CC3) holds; this condition means that compositions

of τQ-horizontal morphisms are τQ-horizontal. By definition of τQ, as given in (6.5), a
τQ-horizontal morphism is of the form

τQ(γ, q) = S
(
τP(γ, p)

)
kp,q.

Let γ1, γ2 ∈ Mor(M) and p1, p2 ∈ Obj(P) be such that the composition

S
(
τP(γ2, p2)

)
kp2,q2 ◦ S

(
τP(γ1, p1)

)
kp1,q1 (6.10)
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is defined. Let p′1 be the terminal point (target) of τP(γ1, p1). Since the composition
(6.10) is defined we have

S(p2)kp2,q2 = S(p′1)kp1,q1 . (6.11)

Applying πQ shows that
πP(p2) = πP(p

′
1),

and so the composition γ2 ◦ γ1 is defined. Moreover,

p2 = p′1a,

for some a ∈ Obj(G). Then, applying S and using (6.11), we see that

S(a)kp2,q2 = kp1,q1 . (6.12)

Using this relation in (6.10) turns it into[
S
(
τP(γ2, p2)

)
◦ S

(
τP(γ1, p1)

)
S(a)

]
kp2,q2 . (6.13)

The term within [· · · ] is equal to

S
(
τP(γ2, p2)

)
◦ S

(
τP(γ1, p)

)
, (6.14)

where
p = p1a.

Since S is a functor, we have

S
(
τP(γ2, p2)

)
◦ S

(
τP(γ1, p)

)
= S

(
τP(γ2, p2) ◦ τP(γ1, p)

)
= S

(
τP(γ2 ◦ γ1, p)

)
.

(6.15)

Combining this with the expression in (6.13) shows that the original composition of τQ-
horizontal morphisms given in (6.10) is equal to

S
(
τP(γ2 ◦ γ1, p)

)
kp2,q2 . (6.16)

By definition of τQ, as given in (6.5), we have

S
(
τP(γ2 ◦ γ1, p)

)
kp2,q2 = τQ(γ2 ◦ γ1, q′2), (6.17)

where q′2 = S(p)kp2,q2 . Thus, the composition of τQ-horizontal morphisms given in (6.10)
is the τQ-horizontal morphism τQ(γ2 ◦ γ1, q′2).
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7. Gauge Transformations

By a gauge transformation on the categorical G-bundle π : P→M we mean a functor

Θ : P→ P

that commutes with the action of G, satisfies π ◦ Θ = π, and is smooth on both objects
and morphisms, Θ−1 exists and is also smooth on objects and morphisms. In [13] we have
studied gauge transformations mainly in the context of decorated categorical bundles and
twisted product bundles.

7.1. Gauge transformations for objects and morphisms. For any p ∈ Obj(P)
the point (object) Θ(p) lies on the same fiber as p and so there is a θp ∈ G such that

Θp = pθp.

Next, for the same reason, for any γ ∈ Mor(P) we have

Θ(γ) = γθ(γ),

for some θ(γ) ∈ Mor(G). Now since Mor(G) ≃ H ⋊α G we can write any element of
Mor(G) as a product of an element of H and an element of G, in either order, with both
of these groups being viewed as subgroups of Mor(G). Moreover, gh, with g ∈ G and
h ∈ H, has source g and target gτ(h)g−1.

Thus we can write
θ(γ) = hγgγ

for some gγ ∈ G, which is the source of θ(γ) ∈ Mor(G), and hγ ∈ H. Thus,

Θ(p) = pθp

Θ(γ) = γhγgγ
(7.1)

for some gγ ∈ G, hγ ∈ H. The source of Θ(γ) is then γ0gγ. For this to match Θ(γ0),
which is γ0θγ0

, we have
gγ = θγ0

. (7.2)

7.2. Gauge transformations for morphism compositions. Next consider a com-
position δ ◦ γ of morphisms δ and γ in P.

r q p

δ γ

For Θ to be a functor, Θ applied to δ ◦ γ must agree with Θ(δ) ◦Θ(γ). For the latter
we compute

Θ(δ) ◦Θ(γ) = δhδθq ◦ γhγθp
= (δ ◦ γ)

(
(hδ, θq) ◦ (hγ, θp)

)
= (δ ◦ γ)(hδhγ, θp).

(7.3)
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For this to agree with Θ(δ ◦ γ), whose value is given by

Θ(δ ◦ γ) = (δ ◦ γ)(hδ◦γ, θp),

the condition is
hδ◦γ = hδhγ. (7.4)

We can summarize this discussion in the following conclusion.

7.3. Theorem. Let Θ : P → P be a gauge transformation for the categorical G-
bundle π : P → M, where the categorical Lie group G has associate Lie crossed module
(G,H, α, τ). Then

Θ(p) = pθp

Θ(γ) = γhγgγ,
(7.5)

for all p ∈ Obj(P) and γ ∈ Mor(P), where θp, gγ ∈ G and hγ ∈ H, and, furthermore,

gγ = θp

hδ◦γ = hδhγ,
(7.6)

whenever γ, δ ∈ Mor(P) are composable morphisms with p = s(γ), and

θpa = a−1θpa

hγa = a−1hγa

hγb = hγθpbθ
−1
p

(7.7)

for all a ∈ G and b ∈ H, with p being s(γ).
Conversely, if Θ : P → P is such that conditions (7.5), (7.6) and (7.7) hold then Θ

is a functor that commutes with the projection πP and with the action of the categorical
group G.

Proof. We have already established all claims except for (7.7). Next, we have, for p ∈ P
and a ∈ G,

Θ(pa) = Θ(p)a = paa−1θpa, (7.8)

which proves the first equation in (7.7). Using this, we see that for γ ∈ Mor(P) with
source p, and for any a ∈ G, we have

Θ(γa) = Θ(γ)a = γhγθpa = γaa−1hγaθpa, (7.9)

which implies the second relation in (7.7). Finally, for b ∈ H, noting that

s(γb) = s(γ)s(b) = pe = p,

we have
Θ(γb) = γhγθpb = γ(hγθpbθp

−1)θp. (7.10)

This shows that hγb = hγθpbθp
−1, which is the third equation in (7.7).
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7.4. Gauge transformations at the differential level. We work now with a
classical connection A on a principal G-bundle π : P →M , and the decorated categorical
principal bundlePA,dec. Let (G,H, α, τ) be a Lie crossed module with associate categorical
group denoted G. Let θ : P → G be a smooth mapping that satisfies

θpa = a−1θpa for all a ∈ G and p ∈ P . (7.11)

Let ΛH be a smooth 1-form on P with values in the Lie algebra L(H) satisfying

ΛH
pa(va) = α(a−1)ΛH

p (v), (7.12)

for all p ∈ P , a ∈ G, and v ∈ TpP , and vanishes on vertical vectors (that is, vectors in
the kernel of dπ).

For any A-horizontal path γ̃ : [a, b]→ P we define

hγ̃ = h(b), (7.13)

where h : [a, b]→ H is the solution to the differential equation

dh(u)

du
h(u)−1 = −ΛH

(
γ̃′(u)

)
(7.14)

In the following result we show how ΛH and θ give rise to a gauge transformation Θ on
the categorical bundle PA,dec →M. We denote a typical A-horizontal path on P by γ̃ or
δ̃.

7.5. Theorem. With θ and ΛH , and other notation as above, let

Θ : PA,dec → PA,dec (7.15)

be given on objects and on morphisms by

Θ(p) = pθp

Θ(γ) = γhγ̃θph,
(7.16)

for all p ∈ Obj(P) and γ ∈ Mor(PA,dec) of the form

γ = (γ̃, h),

where p = s(γ̃). Then Θ is a gauge transformation.

The second condition in (7.5) is motivated by the third equation in (7.7) holds. It is
easier to understand if we write the condition as

Θ(γ) = γhγθp, (7.17)

with
hγ = hγ̃θphθ

−1
p . (7.18)

In the conclusion what is missing from saying that Θ is a gauge transformation is the
smoothness.
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Proof. We will verify the conditions given in Theorem 7.3 hold.
Consider smooth A-horizontal paths γ̃ : [a, b] → P and δ̃ : [b, c] → P , constant near

the initial and terminal points, that are composable; this means,

δ̃(b) = γ̃(b).

On the interval [a, c] let us consider the map

f : [a, c]→ H : u 7→

{
h1(u) if u ∈ [a, b];

h2(u)h1(b) if u ∈ [b, c],
(7.19)

where h1(·) is a solution to (7.14) for u ∈ [a, b] with h1(a) = e, and h2(·) is a solution to
(7.14) for u ∈ [b, c] with h2(b) = e. Then f solves the equation (7.14) for h, with f(a) = e.
Thus

df(u)

du
f(u)−1 = −ΛH

(
(δ̃ ◦ γ̃)′(u)

)
(7.20)

for all u ∈ [a, c] and f(u) = e. Hence

f(c) = hδ̃◦γ̃,

and so
hδ̃◦γ̃ = h2(c)h1(b) = hδ̃hγ̃. (7.21)

The condition (7.12) ensures that

hγ̃a = α(a−1)hγ̃ = a−1hγ̃a, (7.22)

Recall from (7.17) and (7.18) that for a morphism γ of PA,dec given by (γ̃, h), with
source p, we have defined

hγ = hγ̃θphθ
−1
p . (7.23)

For any b ∈ H we have
γb = (γ̃, hb),

and so
hγb = hγ̃θphbθ

−1
p = hγ̃θphθ

−1
p θpbθ

−1
p = hγθpbθ

−1
p , (7.24)

which shows that the third equation in (7.7) holds.
Finally, for a ∈ G, we have

γa = (γ̃a, a−1ha), (7.25)

and so

hγa = hγ̃aθpa(a
−1ha)θ−1

pa (from the definition (7.18))

= hγ̃aa
−1θphθ

−1
p a

= a−1hγ̃aa
−1θphθ

−1
p a (using (7.22))

= a−1hγ̃θphθ
−1
p a

= a−1hγa (using (7.23)).

(7.26)
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Thus we have verified that the functions p 7→ θp and γ 7→ hγ satisfy all the properties, other
than smoothness, listed in Theorem 7.3 associated with a categorical gauge transforma-
tion. Smoothness of Θ on objects follows from the smoothness of the mapping θ : P → G.
Smoothness of Θ on morphisms follows from the fact that if (u, v) 7→ γ̃(u; v) ∈ P is smooth
for u ∈ [a, b] and v running over some Rk, then the solution u 7→ h(u; v) to the differential
equation (7.14), with γ̃′(u; v) instead of γ̃′(u) on the right side, depends smoothly also on
the parameter v.

8. Categorical gauge transformations of classical connections

Let A be a connection on a principal G-bundle π : P →M . We then have the categorical
connection A•• on the categorical G••-bundle π : P•• → M and we have the decorated
categorical G-bundle π : PA,dec →M. Let γ ∈ Mor(M). Then the A-horizontal lift γ̃Ap of
γ, with initial point p, gives a morphism

γAp = (γ̃Ap ; e) ∈ Mor
(
PA,dec

)
.

Applying a gauge transformation

Θ : PA,dec → PA,dec (8.1)

to the morphism γAp yields the morphism

Θ(γAp ) =
(
γ̃θp;hγ̃

)
, (8.2)

where, for notational simplicity, we are writing γ̃Ap simply as γ̃, and we are using other
notation as before. This then pushes down to the morphism(

qgqτ(hγ̃), pθp; γ
)
∈ Mor(P••), (8.3)

where q is the terminal point of γ̃Ap . Let us assume that the new categorical connection
on P•• also arises from a classical connection on P . Thus the resulting connection on P
parallel transports the point p along γ to the point qθqτ(hγ̃)θp

−1.
Thus the new horizontal path is

t 7→ γ(t) = γ̃tθγ̃tτ(hγ̃t)θ
−1
p , (8.4)

where, of course, γ̃ is A-horizontal, with initial point p.

8.1. Parallel transport with respect to a shifted connection. Suppose A
is a connection form on π : P → M , and C is an L(G)-valued 1-form on P that satisfies
the AdG-equivariance

Cpg(vpg) = Ad(g)−1Cp(vp) for all p ∈ P ,

and vanishes on vertical vectors:

Cp(Vp) = 0 for all Vp ∈ ker dπp and all p ∈ P .

Then A+ C is also a connection form. We note how (A + C)-horizontal paths are given
by suitable right-translations of A-horizontal paths.
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8.2. Lemma. Let A be a connection on a principal G-bundle π : P →M , and C an AdG-
equivariant 1-form on P with values in L(G) that vanishes on vertical vectors. Suppose
[a, b]→ P : t 7→ γ̃(t) is an A-horizontal path. Then [a, b]→ P : t 7→ γ̃(t)ξ(t) is horizontal
with respect to the connection A+ C, if t 7→ ξ(t) satisfies the differential equation

ξ′(t)ξ(t)−1 = −C
(
γ̃′(t)

)
for all t ∈ [a, b]. (8.5)

Proof. We apply A+ C to t 7→ γ̃(t)ξ(t) to compute:

(A+ C)
(
γ̃′(t)ξ(t) + γ̃(t)ξ′(t)

)
= 0 + ξ(t)−1ξ′(t) + ξ(t)−1C

(
γ̃′(t)

)
ξ(t) + 0

= ξ(t)−1
[
ξ′(t)ξ(t)−1 + C

(
γ̃′(t)

)]
ξ(t).

(8.6)

Thus the path [a, b]→ P : t 7→ γ̃(t)ξ(t) is (A+C)-horizontal if and only if equation (8.5)
holds.

8.3. Traditional gauge transformation of A. Let ϕ : P → P be a traditional
gauge transformation; this means that it is a smooth G-equivariant map for which π ◦ϕ =
π. Since p and ϕ(p) are on the same π-fiber, there is a unique θ(p) ∈ G such that

ϕ(p) = pθ(p) for all p ∈ P . (8.7)

Local triviality can be used to show that θ is smooth, and G-equivariance of ϕ is equivalent
to the condition

θ(pg) = g−1θ(p)g for all p ∈ P and g ∈ G. (8.8)

(Proofs may be found in any standard text on bundle theory such as [28].) Then

(ϕ−1)∗A = Ad(θ−1
p )Ap − (dθ|p)θ−1

p . (8.9)

If γ̃ is A-horizontal then ϕ ◦ γ̃ is (ϕ−1)∗A-horizontal:

(ϕ−1)∗A
(
(ϕ ◦ γ̃)′(t)

)
= A

(
ϕ−1
∗ (ϕ ◦ γ̃)′(t)

)
= A

(
γ̃′(t)

)
= 0. (8.10)

8.4. Horizontal paths and generalized gauge transformations. In view of
(8.10) and Lemma 8.2, if γ̃ is an A-horizontal path on P , and θ : P → G is as above,
associated to a gauge transformation ϕ : P → P , then the path

[a, b]→ P : t 7→ γ̃(t)θ
(
γ̃(t)

)
ξ(t) (8.11)

is horizontal with respect to the connection

Ad(θ)A− (dθ)θ−1 + τΛH , (8.12)

where
ξ′(t)ξ(t)−1 = −τΛH

(
γ̃′(t)

)
(8.13)

for all t ∈ [a, b]. We can write ξ as

ξ(t) = τ
(
hγ̃(t)

)
, (8.14)

where t 7→ hγ̃(t) solves
dhγ̃(t)

dt
hγ̃(t)

−1 = −ΛH
(
γ̃′(t)

)
. (8.15)

Thus, we have established the following result.
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8.5. Theorem. With notation as above, and γ̃ : [a, b] → P the A-horizontal path on P
with initial point p, the path

[a, b]→ P : t 7→ γ̃(t)θγ̃(t)τ
(
hγ̃(t)

)
θ(p)−1 (8.16)

has initial point p and is horizontal with respect to the connection

Ad(θ)A− (dθ)θ−1 + τΛH . (8.17)

Looking back at (8.4) we conclude that the connection form induced by the gauge
transformation Θ on PA,dec is given by (8.17).

8.6. Higher order gauge transformations. The purpose of this section is to give
a heuristic description of how the results and constructions developed in this paper can
be used for studying higher gauge transformations. It is not our intention here to give a
formal or a very rigorous treatment of higher gauge transformations, a project we leave
to a future work.

In section 3.4 we have briefly recalled the construction of the path space category
P1(X) for a given smooth space X, whose object space is X and morphisms are smooth
paths [a, b]→ X constant on neighborhoods of a and b, with two such paths identified if
they are reparametrizations of each other under a constant translation:

Mor(P1(X)) := P1(X)/R. (8.18)

The space P1(X)/R has a natural smooth structure [12, section 2]. We take P0(X) to
be the discrete category, with both object space and morphism space being X, each
morphism being thought of as the constant path at a point. Inductively, then, we have
a hierarchy of (smooth) categorical spaces such that the object space at any level is the
morphism space of the preceding one,

Obj(Pi(X)) = Mor(Pi−1(X)), (8.19)

and
Mor(Pi(X)) = P1

(
Obj(Pi−1(X))

)
/R, i ≥ 1. (8.20)

We will only be interested for the cases i ≤ 2. Now consider a classical connection A on
a classical principal G-bundle π : P →M . Let

PAP := { A-horizontal paths on P} ⊂ P1(P ). (8.21)

be the smooth space obtained from A-horizontal lifts of paths in P1(M). We note that a
horizontal path remains horizontal when the parametrization is changed by a translation.
The quotient space PAP/R := PA projects smoothly onto P1(M)/R under the projection
map γ̃ 7→ π(γ̃). Moreover, the Lie group G has a natural right action on PAP/R by
constant vertical shifts along the fiber:

(γ̃g)(t) := γ̃(t)g. (8.22)
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In turn PAP/R = PA can be formally viewed as a smooth principal G-bundle over the
smooth space P1(M)/R. This principal G-bundle and connections on it have been ex-
tensively studied in several of our previous works [10–12]. In particular, given a classical
connection A on the principal G-bundle π : P →M, and an L(H)-valued 2-form B on P
satisfying

Bpg(ug, vg) = αg−1

(
Bp(u, v)

)
,

B(u, v) = 0, if u or v is vertical,
(8.23)

we constructed a connection on the principal G-bundle PAP/R→ P1(M)/R given by (see
Sections 2 and 3 of [12]):

ωγ̃ := Aγ̃(0) + τ

∫
B(·, γ̃′), ∀γ̃ ∈ PAP/R, (8.24)

where (G,H, τ, α) is a Lie crossed module, and the second term on the right hand side is a
first order Chen integral [14,15]. It is possible to find a more general form of a connection
involving higher degree differential forms and higher order Chen integrals. Other than
Chen’s original works, the reader may consult the works of Igusa [24, 25], and Block and
Smith [8] for a very interesting construction of connections on a graded vector space over
a path space using higher order Chen integrals.

Once we have such a connection ω on the principal G-bundle PAP/R→ P1(M)/R, the
decoration process described in section 4.2 will produce a categorical principal G-bundle
PA

ω,dec over the category P2(M), where morphisms of PA
ω,dec are of the form

(Γ̃, h)

for ω-horizontal lift Γ̃ of a path Γ: [a, b]→ P1(M)/R. See Section 8 of [11] for a detailed
discussion on the horizontal lift and parallel transport by the connection ω. Likewise, one
can adapt the construction of section 4.1 to obtain a categorical principalG••-bundle PA

••

over P2(M). Henceforth all the results, most importantly the methods of pushforward
and pullback and the gauge transformations, till Theorem 7.3 would be applicable to
the principal bundles over P2(M). The study of gauge transformations of such higher
bundles at a differential level is expected to yield the higher gauge transformations of the
higher differential forms (such as the L(H)-valued 2-form B in the definition of ω). It
would be particularly interesting to re-examine the results of section 8 through successive
applications of pullbacks and pushforwards in the context of higher principal bundles
explained above.

8.7. Concluding remarks. In this work we have constructed pushforwards of categor-
ical connections. Applying this to a decorated categorical bundle, whose ingredients are
a classical principal G-bundle π : P → M with a connection and a second Lie structure
group H, intertwined with G in a specific way, we obtain a transformation of A of the
form ϕ∗A + τΛH , where ϕ : P → P is a classical gauge transformation and τΛH arises
from a particular type of L(H)-valued 1 form on P .
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We have applied the pushforward method only to bundles over path spaces. How-
ever, as described in section 5 in the context of the categorical bundles P•• and PA,dec,
we have constructed a more general framework for categorical bundles. That framework
permits construction of higher bundles over path spaces, and iterations thereof to higher
dimensional ‘paths’, and corresponding connections that involve higher-degree differential
forms. We expect that the ideas and constructions developed in this paper to extend to
higher gauge theories with higher path spaces, and the corresponding gauge transforma-
tions would involve not only the classical transformation ϕ and the 1-form ΛH but also
higher-order forms with values in other Lie algebras. We leave the development of such a
theory involving higher dimensional structures for future work.
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[18] Alfred Frölicher, Smooth structures, Category theory (Gummersbach, 1981), 1982, pp. 69–81.

[19] Florian Girelli and Hendryk Pfeiffer, Higher gauge theory—differential versus integral formulation,
J. Math. Phys. 45 (2004), no. 10, 3949–3971.
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