On Triangulation-based Dense Neighborhood Graph
Discovery

Nan Wang, Jingbo Zhang, Kian-Lee Tan, Anthony K. H. Tung *

School of Computing, National University of Singapore, Singapore
{wangnan, jingbo, tankl, atungy@comp.nus.edu.sg

ABSTRACT

This paper introduces a new definition of dense subgraph pattern,
the DN-graph. DN-graph considers both the size of the sub-
structure and the minimum level of interactions between any pair
of the vertices.

The mining of D N-graphs inherits the difficulty of finding clique,
the fully-connected subgraphs. We thus opt for approximately lo-
cating the D N-graphs using the state-of-the-art graph triangulation
methods. Our solution consists of a family of algorithms, each of
which targets a different problem setting. These algorithms are iter-
ative, and utilize repeated scans through the triangles in the graph to
approximately locate the D N-graphs. Each scan on the graph tri-
angles improves the results. Since the triangles are not physically
materialized, the algorithms have small memory footprint.

With our solution, the users can adopt a “pay as you go” ap-
proach. They have the flexibility to terminate the mining process
once they are satisfied with the quality of the results. As a result,
our algorithms can cope with semi-streaming environment where
the graph edges cannot fit into main memory. Results of extensive
performance study confirmed our claims.

1. INTRODUCTION

Graphs are the most pervasive model of entity interactions as it
concisely captures the interactions among entities. However, for
large graphs (which are becoming increasingly common in many
applications), it becomes too complicated for human beings to find
key information without the help of suitable graph mining technol-
ogy. Graph mining refers to the process of discovering designated
subgraphs from a target graph, in the hope of uncovering unknown
knowledge about the graph. When facing unsolvable resource con-
straint, how to answer the mining question to the best, becomes
more challenging.

Most recent works on graph mining [4, 2, 3, 6, 10] believe that
dense patterns are prominent. They capture the most active involve-

*Support in part by NUS FRC Grant R-252-000-370-112
as part of the research project entitled “Visual Exploration
and Mining of Cohesive Subgraphs in Complex Relational
Graph” (http://nusdm.comp.nus.edu.sg/).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/11... $ 10.00.

58

ment of entity interactions. Subsequently, researchers propose var-
ious definitions of dense substructures. In section 2, we review
some of these patterns.

Intuitively, a dense pattern contains a set of highly relevant ver-
tices. They usually share large number of common neighbors (two
vertices are neighbors if they connect to each other by an edge).
The definition of D N-graph (a.k.a. Dense Neighborhood graph)
follows this intuition.

This paper provides a set of algorithms to mine D N-graphs from
large scaled graphs. The problem of mining D N-graphs is an
NP-complete problem (due to the close relationship between DN -
graphs and cliques, lemma 3.1 will cover this in detail). As such,
in this paper, we opt to design approximate solutions. In our solu-
tions, the local neighborhood size is the most important, but diffi-
cult, quantity to be computed. We associate this quantity with local
triangle counting in order to approximate it efficiently.

Graph triangulation refers to the process of generating all tri-
angles in a graph. Our approach locates D N-graph by using the
state-of-the-art triangulation algorithm [14, 5]. As the storage of
triangles can be expensive, we do not store these triangles. Instead,
we design our approach to operate iteratively. In each iteration,
our scheme dynamically regenerates all triangles and improve the
connectivity estimation between vertices in each round.

Such an iterative, triangulation-based approach has three advan-
tages. Firstly, most of the details involved in efficient processing,
such as minimizing I/Os, are abstracted within the triangulation al-
gorithm. The abstraction ensures our approach’s extensibility to
different input settings, e.g. when the target graph is too large to fit
into memory, our approach only needs to change the access method
of the graph links. In addition, the estimation of the local neighbor-
hood is encapsulated within the triangulation algorithm. Secondly,
as the estimation of the local density value improves with each ad-
ditional iteration, users can adopt a “pay as you go” approach and
obtain the most updated results on demand. Finally, when the graph
is too large to fit into the main memory, we can collect statistics in
the first iteration to support effective buffer management, should
there be a need to store the local density value on a disk, since the
triangles are generated in the same ordering in every iteration

In this paper, we present triangulation based dense graph min-
ing algorithms. Together they form an algorithm family. Their key
features are compared in Table 1. For brevity, we name them re-
spectively as 1) TriDN, 2) BiTriDN and 3) StreamDN.

Algorithms TriDN and BiTriDN are two variances that handle
in-memory graphs. Both algorithms iteratively generate triangles
to refine the A value. These two processes reach convergence when
all \ values remain the same as previous iteration.

The third algorithm, StreamDN, is for semi-streaming graph
setting. In section 4.2, we introduce the model of semi-streaming

In .
Memory Time Space
TriDN 3 | O(|V]log|V
ves [orogviiEl3) | O 5V
BIMDN | 3, [0(VogV]
(Binary Bounding) i O(klog|V'||E|Z) +|E|)
Stream D N
(Semi-Stream) No O(k|E]) o(vy)

Table 1: A Family of D N-Graph Mining Algorithms

graph. To mine semi-streaming graphs, algorithm Stream DN ap-
plies the min-wise independent set property, which provides an
approximation for triangulation using sequentially scan of graph
edges, with bounded error.

The rest of the paper is organized as follows: In Section 2, we
review related works. The definition of D N-graph is formally pre-
sented in Section 3. We present algorithms for finding DN graphs
in Section 4. Experimental studies are then described in Section 5.
Section 6 concludes our work.

2. RELATED WORK

A dense graph pattern is a connected subgraph that has signifi-
cant more internal connections with respect to the surrounding ver-
tices. Depending on the semantic meanings of the graph data, vari-
ous forms of dense patterns have been investigated in the literature.

(1) Clique/Quasi-Clique. A clique represents the highest level
of internal interactions. In graph theory, a clique is a fully con-
nected subgraph. Each pair of vertices are connected by an edge.
A quasi-clique, on the other hand, is an “almost” clique with a few
missing edges. If a clique is not a proper subgraph of any larger
clique, we call it a “closed” clique. (2) High Degree Patterns. This
pattern requires the average vertex degree to be above certain level
or outstanding among surrounding vertices. Here a vertex’s degree
is the number of edges intercepting the vertex. Unlike cliques, a
high degree pattern do not require high interconnection within the
pattern [8]. (3) Dense Bipartite Patterns. If the involved entities
belong to two distinctive classes, and only entities from different
classes have associations, the dense bipartite patterns are bipartite
graphs with outstandingly many edges. (4) Heavy Patterns. Previ-
ous patterns emphasize on the topological features. The heavy pat-
terns, however, aim at maximizing edge weights [9]. If the weights
on the edges of a weighted graph follow the triangle inequality,
the heavy pattern is also a dense pattern in the un-weighted graph.
Even though this type of pattern is not our preliminary target for
this paper, it is presented here for completeness purpose.

In this paper, we view a dense subgraph as a set of vertices shar-
ing many common neighbors. If two connected vertices share one
common neighbor, they form a triangle together with their com-
mon neighbor. In view of the association between dense patterns
and triangles, we further study the problem of triangle counting.

Triangle counting and listing have been well studied in the liter-
ature. Given a graph G with |V| vertices and |E| edges, [14] pro-
posed a triangle-listing algorithm with time complexity O(|E |%)
and with O(3| E|+3|V|) space. Further work [13] improves the per-
formance of the algorithm by separating the vertices into two types,
dense and sparse. The improved technique has the same time com-
plexity as the work in [14], while it reduces the space complexity to
O(|E| + |V]). The above ideas count triangles by scanning graph
edges, and join adjacency list of the two vertices. The scanning of
graphs makes these techniques highly adaptable to streaming envi-

59

ronment (In section 4.2, we discuss the graph streaming model.).

Other research works on mining dense subgraphs can be classi-
fied according to their counterparts in item-set mining approaches.
The most relevant work is the density based solution [15]. This
work provides not only a way to find the closed cliques (biggest
clique among the neighborhood) but to order all graph vertices
into a linear fashion for visualization purpose. One of the lead-
ing approaches in [8] adopts two-level-shingling method. Although
the work only demonstrates its power in collecting statistics from
extremely large graph, its performance is impressive and this ap-
proach can be employed into graph mining domain to handle large
scale graphs.

3. DN-GRAPH AS A DENSITY INDICATOR

A graph G(V, E) consists of a set of vertices V" and set of inter-
actions E over V x V. The size of G, denoted as |V|, is the number
of vertices in V. The neighborhood of a graph vertex v, is the set
of vertices directly connecting to v. We use N (v) to represent it.
If vertex u and v share some common neighbors, we use Nn (u, v)
to represent the joint neighborhood. The neighborhood of e is the
joint neighborhood of its two end vertices. We denote the joint
neighborhood as N.. For a subgraph G’ of G, the neighborhood
of G', N(G’), is the set of vertices u € G \ G’, which immedi-
ately connect with vertices in G. Inside a graph, the measurement
of minimal joint neighborhood size between any connected vertex
pair is denoted as X. We use the notation A(G)/A(V') to refer to the
measurement of a graph GG with vertex set V. For brevity, we omit
the content inside bracket and use A when the context is clear. We
also use a to represent an upperbound of quantity a. The upper-
bound of A is thus written as \.

In this paper, a clique is a fully connected graph, in which every
pair of vertices are connected by an edge. If the size of a clique
is ¢, we call the clique a c-clique. When compared with clique of
the same size, a quasi-clique has only a fraction (say J) of edges in
the graph, it is a J quasi-clique.Conventionally ¢ is in the interval
(0.5,1].

DEFINITION 1. DN-Graph

A DN-graph with parameter X\, denoted G'(V', E', \), is a con-
nected subgraph G'(V', E') of graph G(V, E) that satisfies the
following conditions: (1) Every connected pair of vertices in G’
share at least A common neighbors.

(2) foranyv € V\ V', A\(V' U {v}) < A and for any v € V',
AV = {v}) < A

As the definition states, a D N-graph should be a connected sub-
graph in which the lower bound of shared neighborhood between
any connected vertices, A, is locally maximized. Being a DN-
graph, it has local maximal A value and the size of the D N-graph is
maximized. This ensures that the D N-graph has more distinguish-
ing power and maximal coverage. Similar with the graph’s diam-
eter and minimum cut, A is an indicator of the graphs’ underlying
density. As proven in the appendix (Proposition 8.3), it is a local
maximum graph. For example, in figure 1, subgraph ABCDEF
is a DN-graph of \ value 3. If we include one more vertex A’,
the X value of the graph A’ ABCDEF’s drops significantly to 0.
Similarly, taking away any vertex, say A, leads to a lower value .

D N-graph is designed to represent dense patterns, as it captures
subgraphs with more internal associations. It is thus not surprising
to see the correlation between DN-graph’s A value and maximum
clique size, which is another popular dense indicator.

Figure 2 illustrates the relationship between A\ and the size of
the maximum clique within a dynamic graph. The graph consists

Figure 1: A DN-Graph

of 20 separated vertices and initially has no edges. The topology
of the dynamic graph is varied by adding edge to the graph one at
a time. For comparison purpose, the vertices are deliberately sep-
arated into two groups. Each group consists of 10 vertices. One
group (“dense”) has much higher probability of being connected to
each other with a new edge. The probability of new edge appearing
between the vertices of the other group is significantly lower. As
the edges are added, the whole graph becomes a 20-clique. Unsur-
prisingly, the “dense” group becomes a 10-clique much faster com-
pared with the “sparse” subgraph. Correspondingly, the A value
of the “dense” group grows substantially faster than the “sparse”
one. From this example, we can see that the growth in A is a good
indication that a subgraph will eventually form a dense clique.

Besides the level of connectivity, a D N-graph also imposes re-
strictions on the minimal size of the shared neighborhood. This
restriction is especially useful when predicting protein complexes
via densely connected proteins within a protein-protein interaction
(PPI) graph. A protein complex’s formation often serves to acti-
vate or inhibit one or more of the complex members[11]. In a PPI
network, we can observe the phenomenon that members of a pro-
tein complex share (significantly many) neighbors. The DN -graph
definition reconciles the sharing of neighborhood.

Based on D N-graph, this paper provides effective solutions to-
wards mining D N-graphs within a massive graph, Formally:

DEFINITION 2. DN-graph mining problem
Given a graph G(V, E), we want to find all DN-graphs g(v, e, \)
in G.

18 | whole-Graph ——
dense-Graph -
15 f|sparse-Graph -

60

90 120
Graph Size |E|

Figure 2: The Growth in \ Value of a 20-Vertex Dynamic
Graph

150 180

60

Generally speaking, the level of interactions among entities de-
termines the density of the substructures. From this point of view, it
is not surprising to see that some patterns are transformable to oth-
ers. For example, a DN-graph is a more general case of a closed
clique (Recall that a clique is a fully connected graph, while the
closed clique is the local maximal clique). In fact, a D N-graph is
a relaxation of a clique, with less rigid size constraints. Lemma 3.1
states the relationship formally:

LEMMA 3.1. DN-Graph and Closed Clique
A graph contains a closed clique of size d if and only if the graph
contains a DN-graph g with A = d — 2 and |g| = d.

The proof of above lemma is explained in detail in appendix
8.2. Here we omit it for brevity. Using Lemma 3.1, we are able
to reduce the close clique mining problem to DN-graph mining
problem. The reduction signifies that D N-graph mining is NP-
complete (detail please refer to appendix 8.4). Prompted by this
result, we seek to develop heuristical solutions instead.

Like the closed clique mining problem, the computational bot-
tleneck for D N-graph mining is on counting degrees within a sub-
graph. In fact, the counting of local degrees relies heavily on the
multiple joins of neighbors, which are computationally expensive.
To avoid the complexity of multiple joins, we next introduce the
concept of A(e).

3.1 DN-Graph and \(e)

As discussed previously, the bottleneck of D N-graph mining is
excessive number of neighborhood joins required. This is because
we have to test combinatorial number of subgraphs for their A value
and most subgraphs tested are not D N-graphs.

Most of A value testings however are unnecessary. Due to the lo-
cal maximality feature of a D N-graph, it is impossible for any two
different D N-graphs to share any common vertices or edges. Once
we verify that a graph, g4, is a D N-graph, we need not consider
other subgraphs that intercept with g4, . In fact, by computing the A
value of edges, we can locate D N-graphs. If we assign the A value
of gan as the density value of its edges, a D N-graph becomes a set
of edges with local maximal A.

Before explaining the process of locating D N-graph using edge
density, let us first define edge density, A(e), formally:

DEFINITION 3. A(e)
Given a graph G(V, E) and an edge e € E, \(e) is the maximal
MG') value where e € E(G') and G' C (G).

The value A(e) indicates quantitatively, the most prominent rela-
tionships between two linked vertices. With the definition of local
density, we next prove that using A(e), we are able to find all DN-
graphs.

THEOREM 3.1. Locating DN-Graph Using \(e)
A graph G is a DN-graph if and only if

e all edges e within G' have equal \(e) value, represented as
Amaz and,

o forallu € N(G")andv € G', AM(u,v) < Amag-

For a proof of Theorem 3.1, readers are referred to Appendix 8.3.
Based on Theorem 3.1,we can locate the D N-graph by connecting
edges with local maximal A(e).

Computing A(e) for all edges is however computationally pro-
hibitive, as discussed in section 3. To facilitate approximation effi-
ciently, we first find an upper bound value for A(e), the A(e), and

then iteratively refine A(e) to capture the actual A(e) as accurately
as possible.

The approximation is based on the fact that for an edge e, its
A(e) value is upper bounded by the joint neighborhood size of the
end vertices of e. This joint neighborhood size is in fact the number
of triangles e participates in a graph. Thus we are inspired to use
triangulation to approximate \(e) for every graph edge.

4. LOCAL TRIANGULATION ANDITS AP-
PLICATION IN bN-GRAPH MINING

A triangle consists of a vertex triple (u,v,w) and three edges
(u,v), (v,w) and (u,w). The problem of counting or listing all
triangles within a graph is referred as Graph Triangulation in this
paper:

DEFINITION 4. Graph Triangulation

Given a graph G(V, E), Graph Triangulation finds all vertex triples
(u, v, w), where every vertex pair inside the triple are connected by
an edge, denoted as e(u,v), e(v, w) and e(u, w) respectively.

The joint neighborhood of an edge e(u, v) upper-bounds A(e),
while the number of triangles e(u,v) participates in is equal to
the joint neighborhood size. This indicates that graph triangula-
tion provides an upper bound A(e) for every edge e. Here we use
A(u, v) to represent the current upper bound of edge (u, v). What's
more, given a graph triangle, the X(u, v) can tighten the other two
edges’ density upper bound. The following proposition gives the
relationship between an edge e’s (5\(6)) and its neighbors’:

PROPOSITION 4.1. Neighbor Bounding ofS\(e)

Inside a triangle (u,v,w), if A(u,v) < min(A(u, w), AM(v, w)),
we say w supports N(u,v). A u,v) is valid if and only if |{w|w
supports Nu,v)}| > A(u,v)

PROOF. The proof of necessary condition for proposition 4.1
follows the definition of the A value and is omitted for brevity. Now
we prove the sufficient condition: If the number of supporting ver-
tices is greater or equal to A(e), then A(e) is an upper bound for
Ae). We prove this by contradiction. Suppose there are fewer
than A(e) supporting vertices for A(e), according to the definition
of A(e), A(e) < A(e), which means \(e) is larger than A(e). In
that case, A(e) is not a valid upper bound of A(e) This contradicts
with earlier assumption. With the above reasoning, we complete
the proof of proposition 4.1. [

4.1 Triangulation Based b ~N-Graph Mining

The elementary operation behind local triangulation is the join-
ing of vertex neighborhoods. As studied in [13], the performance
of a local triangulation algorithm heavily depends on the order of
those join operations. In fact, it is a necessary preprocessing step
to sort vertices according to their degrees for effective triangulation
(Appendix 8.5 will explains the algorithm in detail).

4.1.1 Generate Triangles to Refine Local Density

We adopt the graph triangulation algorithm in [13]. The algo-
rithm generates triangles systematically for each edge of the graph.
The generation of the triangles is a sequence of join operations be-
tween the neighbors of two connected vertices. Based on a special
order of joining operations, the triangles are generated in a stream-
ing fashion. The D N-graph mining algorithm thus obtains the lo-
cal density information gradually along the triangle streams. Based
on proposition 4.1, we can use the number of triangles an edge
participates in (I'C/(e)) as the initial upper bound of the A(e), the

61

A(e). To give an even more accurate bound for A(e), the algorithm
uses the density value of e’s neighbors’ to validate the current upper
bound A(e). Figure 3 shows how this process works graphically.

In the first round of graph triangulation, we are aware of the tri-
angular count of e(a, b) (which is in fact A(e)), and nothing about
its neighbors. However, the triangular counts of the neighbors
(ak.a local density estimation) are available once the first round of
graph triangulation is completed. To compute a more accurate A(e)
for each edge, we will simply go through more rounds of triangu-
lation and make use of the density information of the neighbors to
further validate a new estimation of A(e) for each edge.

For a triangle (a,b,n1), the algorithm checks whether the tri-
angles (a,b,n1) can possibly be a supporting evidence that edge
e(a,b) is in a DN-graph, with A(e). This is done by checking
whether both the other two edges of triangle (a, b, n1) (i.e. e(a,nl)
and e(b,n1)) have A greater or equal to A(e). If this is the case, this
means that n1 is such a supporting vertex.

The triangle is then represented as a solid line indicating that
e(a,b) finds a new supporting vertex nl in DN-graph with A(e).
As new triangles approach, the algorithm counts the number of sup-
porting vertices for edge (a,b) to form DN-graph, with current
value of :\(e). After one pass of all triangles, the number of vertices
that support each edge’s density upper bound S\(e) are available for
further computation.

Algorithm 1 Triangulation based D N-Graph Mining
Require: Graph G(V, E)

1: Triangles = Triangulation(G), k(e)=Triangle_count(e)
2: while converge AND iteration!=MAX_ITR do

3: sc =0, converge=TRUE

4: for all Triangles (a, b, c) € G do

5: Increment corresponding sc(e) if e is supported
6: end for

7. for all edges e € G do

8 if (sc(e) < A(e)) then

9: Find next possible value A(e) for e
10: converge = FALSE
11: end if
12: end for
13: Increment iteration by 1
14: end while
15: return A(e) foreache € E

With the supporting neighbors’ information, the algorithm is able
to determine the upper bound of X for each graph edge (the up-
per bound is denoted as A(e)). If sufficient supporting vertices are
found for A(e) for an edge e(a,b), A(e) is a valid upper bound
of e(a,b)’s A value. If there is not enough supporting vertices for
e(a, b), the algorithm finds the next possible A(e) value and tests
it in the next round of triangulation. The algorithmic description
is given in Algorithm 1. Within the algorithm, sc(e) records the
number of vertices supporting current :\(e) value.

4.1.2 () Bounding Choice

We can derive two variants of D N-graph mining algorithms from
Algorithm 1, namely algorithms TriDN and BiTriDN. The two
algorithms have different ways to decide the next possible A(e)
value. The first variant, called TriD N, decreases A(e) by one (Line
9 in Algorithm 1 becomes A(e) = A(e)—1), if current A(e) cannot
obtain sufficient supporting vertices count. This strategy is useful

when the triangle counts are close to the actual A(e) values (quali-
tatively, when |T'C'(e) + 2 — A(e)| < logA(e)).

Figure 3: Use Triangle to Refine \(e)

When the triangulation results are far above actual A(e), we can
employ the second variant, called BiTriD N, which adopts a binary
search strategy for the next possible value of DN (e). BiTriDN re-
quires additional information of possible DN (e)’s range. We use
two numbers bk (e) and A(e) to record the lower bound and up-
per bound of A(e) value, and mk(e) denotes the medium of range
[Ibk(e), A(e) 1. For completeness, we rewrite Line 7 onwards in
Algorithm 1. BiTriDN has the advantage of fast convergence if
the graph to be mined has many high degree vertices (qualitatively,
when |T'C(e) + 2 — X(e)| > logA(e)). Appendix 8.7 gives the
proof of the correctness for both bounding choices. Interested read-
ers are referred to Appendix 8.8 for the complexity analysis of both
algorithms.

Algorithm 2 Binary D N-Graph Mining Variance “BiTriDN”
Require: Graph G(V, E)
1: mk(e) = k(e) =TC(e) + 2, lbk(e) = 2
2: Get support count sci(€) for all edges’ A(e) {This part is the
same as in Algorithm 1}

3: for alledge e € G do _

4: i (scmr(e) < mk(e) AND lbk(e) < A(e)) then
5 A(e) = mk(e) — 1, converge = FALSE

6: else

7: lbk(e) = mk(e)

8: endif B

9: mk(e) = M

10: end for _

11: return \(e) foreache € E

4.2 Extension of DN-Graph Mining to Semi-
Streaming Graph

The semi-streaming graph model assumes the vertices of the
graph can be fitted into main memory, and the interactions among
vertices are stored in an ordered manner within the secondary stor-
age. While this assumption may not hold for arbitrarily large graphs,
we can still handle up to Giga scale vertices (assume |V/| vertices
require |V'|log|V| bits storage) with today’s main memory capaci-
ties. Following the nature of physical storage devices, our stream-
ing model assumes random access in primary storage (i.e. memory)
and only sequential access in secondary storage. In the secondary
storage, graph interactions are stored in the form of adjacency list.
As a feasible solution towards a streaming graph G(V, E), it should
not exceed log|V'| scans of G’s adjacency list.

In the semi-streaming graph setting, the exact triangulation algo-
rithm proposed in [13] cannot be directly applied in the D N-graph
mining solutions. The information of the neighbors are stored in
secondary storage and may not be immediately available when the

62

algorithm retrieves it.

In view of above difficulty, our streaming solution first performs
a semi-streaming triangulation, followed by the complete D N-graph
mining solution in semi-streaming setting.

The neighborhoods join operations are in fact the process of de-
termining the similarity between two sets. The most well-adapted
measurement for set similarity is Jaccard coefficient. For two sets
A and B, Jaccard coefficient is calculated as J(A, B) = “:Bg‘ .

In the semi-streaming graph setting, it is however expensive to
calculated Jaccard coefficient between two neighborhoods. Since
the operation of set joining requires expensive pre-processing of
sets such as sorting or heap building.

In view of above difficulty, we use the property of min-wise in-
dependent set to approximate Jaccard coefficient. When dealing
with large sets, min-wise independent property approximate set in-
tersection size using sequential scan only.

Suppose A and B are defined on the set universe X, and 7 is
a permutation over universe X, the min-wise independent prop-
erty states: If 7[X] is a uniformly chosen random permutation over
X, and W C [X] is any subset over the universe, and 7[W] is
the projection of W by permutation 7, then the probability that
two subsets’ minimal projected images are equal is the same as the
Jaccard coefficient. Formally, P[min(w[A]) == min(x[B])]
J(A, B). [5] proposes a streaming local triangle counting algo-
rithm based on min-wise independent property(Appendix 8.6 out-
lines the technique).

The algorithm proposed in [5] estimates local triangulation using
edge scans. It forms the first step of algorithm StreamDN. The
next step is to calculate each edge’s A value using only edge scans
! StreamDN, as presented in Algorithm 3, adopts the bounding
process as algorithm BiTriDN. That is:

The only difference between the streaming version of the algo-
rithm and BiTriD N is when counting the supporting vertices. In
StreamD N, we can only access the graph edges sequentially. In
view of the restriction, proposition 4.1 is relaxed to as follows:

PROPOSITION 4.2. Relaxed Neighbor Bounding of \(e)

Given a graph edge e(u,v) and the joint neighbor set Nn(u,v),
we say a vertex w € Nn(u,v) is a supporting vertex of 5\(6) if
Mu, w) > Ae). An integer k is a valid upper bound of X(e) if and
only if there are at least k of such supporting vertices in Nn(u, v)

The proof for proposition 4.2 is omitted for brevity.

"For brevity, in following parts of the paper, we use streaming
D N-graph mining algorithm instead of explicitly stating “semi-
streaming”

Algorithm 3 Streaming DN-Graph Mining Algorithm
“StreamDN”
Require: Graph G(V, E), r : # of scans of graph links k : # of
bits for hash values
1: mk(e) = Ae) = TC(e), Ibk(e) =0
: Triangulation and store triangle count 7’C'(v, u) for alle € E
as in algorithm 5 in appendix.
: while !converge AND iteration!=MAX_ITR do
scix = 0 ubk(e) = A(e) =TC(e), lbk(e) =0
for all edge (u,v) € G do
scx (u, v)=number of u’s neighbor with A(u, v)
Bound A(u, v) using ubk(u, v)/Ibk(u, v)/sck (u, v) {the
same as Algorithm 2}
end for
9: end while
: return \(e) value for every graph edge e

AN A Sl

o

4.2.1 Error-Bound on Streaming DN-Graph Mining

As mentioned in the previous subsections, the number of per-
mutations adopted determines the estimation accuracy of min-wise
independent property. The error, however, is bounded. If we de-
note the joint size as X = |A N B| and the estimated value X =
TC(A, B), the error bound is:

JE— €2 .~
PIX — X| > eX] > 2e~ 577 AB) 4 %[5]

The complexity analysis for streaming D N-graph mining is pre-
sented in the appendix. In fact, the triangle based approach al-
gorithm can also be applied to dynamic graphs and we attach the
adapted algorithm for dynamic setting in Appendix 8.9.

S. EXPERIMENTAL STUDY

In this section, we study the performance of the D N-graph min-
ing algorithms. Experimental data come from both theoretically
proven data generators ([7]), as well as domain datasets. All the ex-
periments are conducted on a workstation with a Quad-Core AMD
Opteron(tm) processor 8356, 128GB RAM and 700GB hard disk.
The operating system is Windows server 2003, Enterprize x64 edi-
tion.

Synthetic Graph Generators (Ggc). We use the clique hiding
graph generator developed by M. Brockington and J. Culberson
[7]. This graph generator randomly embeds a fixed size clique (c)
into a graph of (|V|) vertices. The graph density, p, is calculated as
p= % The resulting graphs are random graphs with one
known fixed size clique embedded. Table 2 summarizes the key
parameters, with the default values highlighted in bold.

| Parameters Experimental Range

c: clique size [20, 40, 60, 80, 100]

|V'|: # of vertices | [1000,2000, 3000, 4000, 5000]

p: edge density(%) 4, 8,12, 16, 20]

Table 2: Parameter Table

Domain Graph Datasets We also employ 3 real life datasets in
our study. These datasets are either collected by domain experts
or extracted from well-known public databases. 1) Protein Pro-
tein Interaction (PPI) dataset: This dataset[16] contains 17203 in-

63

teractions among 4930 proteins.2) Netflix dataset: It is compiled
from Netflix raw data consisting of 480,000 customers and 17,000
movies records [1]. 3) Flickr dataset: This dataset is derived from
the well-known photo sharing network Flickr with 1,715,255 ver-
tices and 22,613,982 edges. Each vertex represents a person.

5.1 Performance Evaluation

5.1.1 DN-Graph Mining Accuracy

The first set of experiments evaluate the accuracy of D N-Graph
algorithms on the synthetic data generated by G gc. We focused on
two algorithms - TriDN and BiTriDN. We compared the results
and observed similar behaviors between the two algorithms. Due to
space limitation, we only present the results of algorithm BiTriD V.

4 8 12 16 20

(a) Vary c

(b) Vvary p

Figure 4:)\ Value for Fixed |V| = 3000

There are three groups of experiments, each of which fixes a
GEc parameter to the default value. Group 1: When we fixed
|V'| = 300, Figure 4(a) and figure 4(a) show the calculated A values
of different datasets. From figure 4(a), the algorithm accurately
reports the D N-graph size as ¢, when the embedded clique is in fact
the dense area of the dataset. When the graph is denser (p > %12),
the clique becomes a less dense area. In these datasets, BiTriDN
reports higher A value (up to A = 90). We examined the dataset and
verified that BiTriDN did find D N-graph with higher A value (>
c), and confirmed the correctness of BiTriD N’s results. Similarly,
the results in figure 4(b) shows the A value over different densities,
which once more confirms BiTriDN’s accuracy. Group 2: When
we fixed p = 12%, the results in figures 5(a) and 5(b) show that
BiTriD N identifies the A value accurately. Similar observations
are made for experiments in Group 3 when we fixed ¢ = 40 (see
figures 6(a) and 6(b)).

0
100 1000 2000 3000
c vl

(a) Vary c (b) Vary |V|
Figure 5:) Value for Fixed p = 12%

4000 5000

5.1.2 Convergence of DN-Graph Mining Algorithms

In this set of experiments, we compare the pace of convergence
between two algorithms: TriDN and BiTriDN. The synthetic
datasets are generated from G ¢ as well. The maximal iteration is
set to be 40 rounds to avoid pro-long running of the experiments.
Plots in figure 7(a) and 7(b) show the number of iterations to reach
convergence with different graph density p and graph size |V'|. The

160 | pa —é— 160 [k —é— ¢
p8 O . 2k O
120 [P12 A '@ 120 H[3¥ A
p16 <> ak O
20 =€) 5k -
< p20 & e - < &
80 - & 80
Py T B By 401 1o R
[0
1000 2000 3000 4000 5000 4 8 12 16 20
vl P

(@) Vary |V| (b) vary p

Figure 6: X Value for Fixed ¢ = 40

results from both plots show that algorithm BiTriD N can converge
within 10 to 25 rounds on most parameter settings. However, in
most of the experiments, TriD N has not reached convergence after
the preset maximal iteration (in figure 7(a) and 7(b), we omitted
parameter settings which do not converge). This provides strong
support on the claim that BiTriD N converges significantly faster
than TriDN.

BTv1K —+—BTv4K
BTV2K '"é’"BTVSK B
BTvV3K e

Tv2K
Tv3K ~f=}- BTp4 —+—BTp12 ~[-BTp20 --A-
+

BTp8 ~»~BTpl6 ~O~ Tp4 ~+

Tv1K

Iterations
Iterations

[
1000 2000 3000
p [v]

(a) Vary p, fixed ¢ (b) Vary |V, fixed ¢ = 40

4000 5000

Figure 7: Convergence of TriDN and BiTriD N

5.1.3 Time Performance in Memory

In this study, we evaluate the efficiency (i.e., running time) of
the two algorithms TriDN and BiTriD N over the synthetic data
generated by Ggc. For a fixed parameter setting, the two algo-
rithms converge at different iteration. To remove the effect of dif-
ferent convergence speed towards time performance, all time are
measured for only 1 iteration in this study. Both algorithms have
almost same behavior for 1 iteration. Figure 8(a) and 8(b) show the

© 0120
? ?
2 2
o o
£ £
0 [)
° ° O O
b b
4 4 O = =] = il
4 8 12 16 20 20 40 60 80 100
p c
(a) Vary p (b) Vary ¢

Figure 8: BiTriD N One Iteration Running Time |V'| = 3000

running time when |V'| is fixed. The results match the complexity
analysis in section 4.1. The effects of edges distribution change are
shown in figure 8(a) and 8(b). The synthetic graph generator Ggc
varies the edge distribution by varying the embedded clique size
c. Experiments on these data always indicate that only |V'| and p
affect the running time. Figure 9(a) and 9(b) present the effect of
different graph size | E| over the running time. The trend over time

roughly follows complexity O(E%).

64

N
’JBOU A _
- g
ﬂGOD 0
g o
E) 3
B E
’U‘.DD 'ﬁl e
] - o
a o
b4
200 . o &
B & 03
) A

N T
4 6 8 10 12
4 8 12 16 20
Graph size |E| (x10°)

P

(a) vary |[V],c = 40 (b) Vary p, fix ¢ = 40

Figure 9: BiTriD N Iteration Running Time |c| = 40

5.1.4 Memory Usage

We also monitor the peak memory usage of both TriDN and
BiTriDN on the synthetic data. Figure 10 shows that both algo-
rithms increase their memory usage when the graph size/density
increase. Meanwhile, the results tell us that the memory usage of
TriDN is always slightly less than that of BiTriD N under the same
parameter setting. This is because in BiTriD N, additional mem-
ory is used to store both the upper bound and lower bound of the A
value.

Peak Memory (KB)

2000

3000 4000 5000

vl

Figure 10: Memory Usage of TriD N and BiTriDN

5.1.5 Test on Very Large Graph

In this experiment, we applied BiTriDN on the Flickr dataset.
The running time per iteration is between 55 minutes to 1 hour.
The stable memory usage is less than 1G. The program converges
after 66 iterations. Each iteration’s A values are recorded for each
vertex. When algorithm converges, the largest D N-graph’s highest
A is 278. We note that at the 35th iteration, the largest A\ value al-
ready reaches 279. Figure 11(a) plots the trend of maximal vertex
A value’s change. From this experiment, the D N-graph mining re-
sults have high availability as the results are updated at every itera-
tion. What’s more, if allowing small errors, the program converges
very fast. These fast convergence feature is observed for all real
datasets we tested on. We did not reports all results due to space
limitation.

StreamH
BiTriH —

BiTrH Intermediate Result
BiTrH Final Result ~{=3~

Max A
IS
5
8
% over BiTril Max A

1 4 14 24 34 44 54 64

iteration # scans

(a) Convergence (b) StreamD N Accuracy

Figure 11: Performance on Flickr Dataset

5.1.6 StreamDN Performance on Flickr Dataset

In this set of experiments, the Stream DN algorithm is ran on
the Flickr dataset. The implementation mimics the behavior of
disk scan on main memory as our experiment machine has large
enough memory. The results in figure 11(b) shows StreamDN
over-estimates with respect to BiTriD N algorithm’s results by 72%
during the first 66 scans of the whole Flickr dataset. With the anal-
ysis of StreamDN’s running time complexity, we confirmed that
the triangulation based D N-graph mining algorithms can handle
streaming setting with reasonable accuracy.

5.1.7 DN-graph Semantics in Various Domain

In the movie co-comments network, two movies are connected
by a weighted edge if these two movies share enough commenters
such that the Jaccard Coefficient of the two movies’ commenters
sets is above a certain threshold. Figure 12 shows a set of movies
and their interactions found in 100 movies co-comments network
with a threshold of 0.5. These movies are reported with A = 9.
All of the 9 movies have exceptional high IMDB scores (> 8 out
of 10, which means they are exceptionally popular). Besides the
popularity, we found 7 of them are from USA, while the remaining
2 are from France and Japan respectively. The 9 movies all belongs
to genre Violence/Fantasy.

7 Seconds

They Came Back »T"'

Pt
<wu @)
‘g'dy

The Lord of
the Rings

Pitcher and
the Pin-Up

WWE: Royal
Rumble 2005

WWE:
Armageddon 2003

Elfen Lied

Figure 12: Patterns Discovered in NetFlix

YGL044C

YGR156W

A—2
'/I_I‘IA\\>

N7
NZ=&

YNL317W

Figure 13: A 20-Protein Complex in Form of D N-Graph

Many proteins are functional only when they are assembled into
a protein complex. Our D N-Graph mining algorithm can detect
important protein complexes out of large amount of protein-protein
interaction (PPI) data. For example, mRNA_CF_Complex in fig-
ure 13 is a 20 protein complex confirmed by the benchmark. The
red colored nodes are active proteins that functionally interact with
other proteins within the complex. These proteins can be suc-
cessfully detected as an DN-Graph by our algorithm, while oth-

65

ers (blue-colored nodes) are missed out in our results. The reason
for missing out those proteins is because these proteins have fewer
interactions with the rest of the proteins. Even with those miss-
ing points, our results are already a significant improvement over
known results (For further results, please refer to Appendix 8.10).

6. CONCLUSION

In this paper, we present a new graph dense structure D N-graph.
The D N-graph complements popular dense structures by imposing
both size and degree constraints. We then discuss the graph local
triangulation problem and its connection with DN-graph mining
problem. Based on that, we propose solutions to effectively locate
D N-graphs. The solutions are set of algorithms catering for differ-
ent problem settings from in memory to streaming. The iterative,
triangulation based solution has the advantages that the details can
be abstracted within the triangulation algorithm. Since the algo-
rithm improves the result at every iteration, users can stop the algo-
rithm at any time and get the best results within the time limit. Our
experimental study shows our solutions are both time and space
efficient.

REFERENCES

Netflix Prize Data Set, 2009 (accessed July 23, 2009).

J. Abello, M. Resende, and R. Sudarsky. Massive quasi-clique
detection. In Proc. 5th Latin American Symposium on Theoretical
Informatics, pages 598-612, 2002.

I. Akihiro, W. Takashi, and M. Hiroshi. Complete mining of frequent
patterns from graphs: Mining graph data. Machine Learning,
50(3):321-354, 2003.

P. Aloy, B. BaPttcher, H. Ceulemans, C. Leutwein, C. Mellwig,

S. Fischer, A. C. Gavin, P. Bork, S. G. Furga, L. Serrano, and R. D.
Russell. Structure-based assembly of protein complexes in yeast.
Science, 303(5666):2026-2029, 2004.

L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive
graphs. In ACM KDD ’08, pages 16-24, New York, NY, USA, 2008.
V. Boginski, S. Butenko, and P. Pardalos. Mining market data: a
network approach. Computer Operational Research,
33(11):3171-3184, 2006.

M. Brockington and J. Culberson. Camouflaging independent sets in
quasi-random graphs. DIMACS Series, 26:75-88, 1994.

D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB’05, pages 721-732, 2005.

J. Han, N. Stefanovic, and K. Koperski. Selective materialization: An
efficient method for spatial data cube construction. In PAKDD’98
[Lecture Notes in Artificial Intelligence, 1394, Springer Verlag,
1998], pages 144158, 1998.

H. Hu, X. Yan, Y. Huang, J. Han, and X. Zhou. Mining coherent
dense subgraphs across massive biological networks for functional
discovery. Bioinformatics, 21:213-221, 2005.

C. F. J. Rivas. Proteincprotein interactions essentials: Key concepts
to building and analyzing interactome networks. PLoS
Computational Biology, 6:6, 2010.

R. Karp. Reducibility among combinatorial problems. The Journal of
Symbolic Logic, 40:618-619, 1975.

M. Latapy. Practical algorithms for triangle computations in very
large (sparse (power-law)) graphs. Journal of Theoretical Computer
Science, 407:458-473, 2008.

T. Schank and D. Wagner. Finding, counting and listing all triangles
in large graphs, an experimental study. In WEA, pages 606-609,
2005.

N. Wang, S. Parthasarathy, K. L. Tan, and A. Tung. Csv: visualizing
and mining cohesive subgraphs. In SIGMOD 08, pages 445-458,
2008.

I. Xenarios and L. S. etc. DIP, the database of interacting proteins: A
research tool for studying cellular networks of protein interactions.
Nucleic Acids Research, 30(1):303-305, 2002.

7.
(1]
(2]

[3]

[4

flnari

[5]

[6

=

[7

—

[8

—_

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

8. APPENDIX

8.1 An Illustrative Example on Different Den-
sity Patterns

N c4 ‘;/’

Ta44) - :
(a) C4,T(14,4)

T(14,4)
(b) 0 Quasi clique

AN c4 ‘;/ N

T(14,4)

(c) Max Clique
Figure 14: Comparison between Different Dense Sub-
structures

Figure 14(a) to 14(c) present the mining results of two different
density criteria on an illustrative graph. The graph in Figure 14(a)
contains a 4-clique loosely attached to a Turan’s graph. A Turan’s
graph T'(M, N) is a special class of graph, in which N graph ver-
tices are divided equally (or as equal as possible) into N groups.
Every pair of vertices from two different groups has edge connect-
ing them, while members in the same group are not connected. In
fact, Figure 14(a) embeds a Turan’s graph 7°(14, 4). Judging by the
interactions, there are two interesting substructures in Figure 14(a).
One is the 4-clique and the other is the Turan’s graph. If we apply
0 quasi-clique mining, when setting § = 0.8, the mining result in-
cludes the whole example graph (figure 14(b)). The mining results
are so relaxed that two dense substructures cannot be distinguished.
If we insist on regularity of the pattern (e.g. a clique), we can only
find subgraphs of size 4 (as indicated in 14(c)) while missing the
Turan’s graph.

66

8.2 Proof of Lemma 3.1

First we prove the necessary condition. If a graph contains a
DN-graph g with A = d — 2 and |g| = d, according to the defi-
nition of DN-graph, g has d vertices, which shares (d — 2) com-
mon neighbors with every connected vertices in g. For any two
distinct vertices v and u in g, if they are connected, they Both con-
nect to every other vertices inside g. This holds for every vertex
pair, which indicates that if g has an edge, it is a clique. While g
is a D N-graph, it does not contain a proper super graph which is
also a D N-graph, it thus does not have a proper super graph with
A =d—1and |g| = d+ 1. It does not contain a clique of size
d+1.

The sufficient conditions proof is: if a graph contains a closed
clique of size d (*), this clique has d vertices and each pair of ver-
tices share d — 2 common neighbors. A = d — 2 in this case
according to A definition. Being a closed clique, it does not have a
proper super graph which is also a clique. This indicates that it does
not have a proper super graph with . A > d — 1 and size = A + 2.
Suppose there is a super graph with A = d—2+-6 and size = d+e,
there must be some vertices which are not inside g connecting to at
least d — 2 + ¢ — ¢ d-clique vertices, while d — 2 + € — § < d,
indicating € — § < 2, which means size < A. This is either im-
possible or the super graph is a clique, which contradicts with the
assumption (*). So there is not possible such super graph exist. So
the d-clique is an D N-graph. This complete the proof.

8.3 Proof of Theorem 3.1

Figure 15: Proof of Theorem 3.1

To prove the correctness of theorem 3.1, we use the abstract
graph in figure 15. The complete proof consists of two steps. Firstly,
G’ must exist. Secondly, G’ must contain some max-min DN
graph. To prove the existence of G’, we construct G’ using graph
vertices/edges and their A values. First pick a vertex v with A(v) >
A(u) for all (u € N(v)). Denote A(v) as Amaz. By the definition
of local A value, A(v) participates in a connected graph G’ with
MG') = Amae. From v, we find all its immediately connected
neighbors that have A(u) = Apmaz. From each u, we find u’s
immediately connected neighbors with local A value Ay.qq. This
process propagates until no such neighbor exists. The collection
of discovered vertices form a connected subgraph G’ with X value
)\maz .

Next, we show that G’ contains a D N-graph. By first part of the
proof, G’ contains all vertices and edges with A value Anq.. For
avertex v\ € G/, it only can form DN-graph of A = Apae With
vertices inside G’. If denoting the minimal set of vertices from G’
that form an D N-graph with v’ as Vinin, the subgraph Vi, U/
is also a D N-graph. This proves that a graph G’ containing the set
of vertices with A(v) = Amaz > A(u) where v € N(G') must
participate in a D N-graph. The condition that A(v) = Amas and

Amaz > A(u), where u is the neighbor vertices of G’, means the
graph G’ contains vertices with local maximal \ value. Since graph
G’ is always a super graph of some DN-graph, If a solution can
find G, the DN graph can be located within G”.

With above two steps, we prove the correctness of theorem 3.1.

8.4 Closed Clique Finding is NP-Complete

A closed clique is the local maximal clique, where no proper
super graph of it is also a clique. The problem of detecting cliques
is a well known NP-complete problem, which is first discussed in
the landmark paper [12]. As a clique possessing certain property
(here, local maximality), a closed clique detection problem is also
an NP problem.

8.5 Graph Triangulation Algorithms

The exact graph triangulation algorithm was first proposed in
[13].

Algorithm 4 Local Triangulation Algorithm
Require: Graph G(V, E)

1: mk(e) = k(e) = TC(e) + 2, Ibk(e) = 2

2: Order vertices and edges according to degrees

3: for all dense vertex v € G do

4 Retrieve all v’s dense neighbors

5 Joint v and u’s neighborhoods to find triangle < v, u, w >
6: end for
7
8

: for all sparse vertex e(v,u) € G do
Join v and u’s neighbor lists to find triangles containing edge
triangle < v, u, w >
9: end for
10: return All triangles in G

Algorithm 4 separates the vertices in G(V, E) into two classes:
dense and sparse. Vertices with degree greater or equal to \/m
are dense vertices, the remaining are sparse vertices. An edge with
both end vertices being sparse vertices is a sparse edge. For a dense
vertex v, the local triangulation algorithm perform a join on v’s im-
mediate neighbors and the neighborhood list v’s neighbor, u. The
size of the join set is the triangle count of edge (v,u). Similarly,
for sparse edge (v’, u'), algorithm join the neighborhood list of v’
and u'.

8.6 Approximate Graph Triangulation

The approximate graph triangulation algorithm was first pro-
posed in [5].

The basic idea of the streaming triangulation algorithm in Figure
5[5] is to generate r times permutation over vertices set V. For
each permutation, algorithm records every vertex’ minimal neigh-
bors within the permutation. After obtaining the minimal neigh-
bors for each vertex, the algorithm scans the graph once to check
whether the minimal neighbors of two connected vertices are equal.
If they are equal, algorithm increments count Y for the connected
vertices. The estimator for vertex triangle count is:

> Y Yoo) 7 V@I + N ()]

u€eN (v)

This estimator is derived from min-wise independent property. We
use small number of permutation to estimate all permutations over
graph vertices.

67

Algorithm 5 Streaming Triangulation Algorithm
Require: Graph G(V, E), r : # of scans of graph links, k : # of
bits for hash values
1: mk(e) = k(e) = TC(e) + 2, Ibk(e) =
2: Y =0,min(V)=0
3: for s =1TOr do

4: Hash every vertex label hs(v) to any random k bits
5: for all vertex v € V and its neighbor u do

6: min(v) = min(min(v),hs(u))

7: end for

8: for all vertex v € V' and its neighbor v do

9: if (min(u)==min(v)) then
10: Increment Y (u, v) by 1
11: end if
12: end for
13: end for
14: for all every vertex v in G do
150 TC() = X enw) v (IN(©)] + [N (w)])
16: end for
17: return All triangles in G

8.7 Correctness of » Bounding

Let us denote the actual A value for an edge as A(e), and the
exact supporting neighbor count as sc. The upper bound of X value
is denoted as k(e) and the supporting neighbor count of k(e) is
denoted as scx(e). To prove the correctness of Algorithm 1, we
need to show that 1) k(e) is always an upper bound of A(e). 2)
k(e) converges.

PROOF. 1) For the first bounding choice, At the beginning of
the algorithm 1, k(e) is equal to triangle count for e, T'C'(e). since
k(e) > A(e). If the algorithm stops, the upper bound invari-
ance holds. Suppose the invariance holds for iteration ¢ > 0,
k(e) > A(e), atiteration i+1, k(e) is updated to k(e) — 1 when this
condition holds: the number of neighbors having A values greater
or equal to k(e) is less than k(e). This condition uses the value
of k from the neighborhood vertices to verify whether the current
iteration’s k(e) value is valid. Since the neighbor’s k values are the
upper bounds their actual A values, the number of qualified candi-
dates sc(e) > sci(e). Thus when sci(e) is less than k(e), k(e)
is definitely greater than the real A(e) value (as in 4.1). In that
case, k(e) is reduced by 1. And the new k(e) value is still an up-
per bound. The upper bounds invariance is proven to hold. 2) For
the second bounding choice (as in algorithm 2), the proof of upper
bound invariance follows with the exceptions that this bounding
choices test on the median of possible A range instead of k(e) — 1.

The convergence of k(e) is due to the monotonic decreasing of
k(e). The algorithm initializes k(e) as triangle counts. This is an
upper bound of A(e). After that, algorithm only decreases k(e). As
Aa(e€) is always an upper bounds of the actual value A(e), Aq(e)
value will converge. [

8.8 Complexity Analysis

The triangulation algorithm (in Appendix 8.5) sorts vertices and
adjacency list into descending order of degrees. The operations re-
quire O(|V |log|V'|) time complexity. After that, it counts triangles
within the graphs for each vertex. To count triangles, the algorithm
separates vertices into dense vertices and sparse ones according to
vertices’ degrees. For dense vertex, the algorithm lists the number
of triangles | V| participating in O(|E|) time. The total complexity
for counting dense vertices is O(|V||E|). For sparse vertices, the
algorithm counts sparse edges that intersects with sparse vertices.

For a sparse vertex/edge, its neighborhood size is at most constant
(say S). The counting over sparse edges requires O(S|E|) time.
If setting S = \/TE |, taking into consideration of the complex-
ity of counting on dense vertices, The time complexity for triangle
counting procedure is O(|E| 3).

TriDN in Algorithm 1 iterates on all triangles that form the

graph. Each iteration also requires O(\E|%) time. For a fixed

number of iteration k, the algorithm needs O(k|E| %) time in to-
tal. If insisting on convergence, the algorithm may need up to

O(k|V||E|%) As we may need to test local A value \(e) from
v — 2 down to 3. The iterative version of the algorithm for A min-
ing reduces time complexity to O(klog|V || E| %) since it employs
the binary search paradigm to test possible A(e) for every e. The
space complexity of both DN graph mining algorithms are simi-
lar. The triangulation stage requires O(|V'|log|V | + | E|) while the
iteration process requires O(|E|).

For streaming DN graph mining, Algorithm 3 first performs
semi-streaming triangulation following the idea proposed in [5].
While the semi-streaming triangulation scans the graph r passes
to apply min-wise independent set principle and an additional pass
to calculate the estimator of triangle counts, its complexity is of
O(r|E|). The remaining steps of streaming DN graph mining re-
quires O(|E/) time for every iteration. For a fixed number of iter-
ation w, the algorithm needs O(w|E|) time. In summary, the time
complexity of streaming DN graph mining is of O(k|E|), where
k is a constant.

8.9 Dynamic DN-Graph Mining

We have discussed solutions for finding handling static graphs.
These solutions can be extended to graphs with dynamic topology
with minimal modification.

Recall that the triangulation based D N-graph mining solution
consists of two stages. In the first stage, algorithm in figure 1 per-
forms local triangulation on the whole graph. The next step is to
iterate on each discovered triangle. For each triangle, the algorithm
uses it to verify whether it can support its edges’ A\, (e) value. Af-
ter scanning all triangle once, the Aq(e) values for each edge are
updated accordingly.

A dynamic graph G(V,&) = {G*(V*, E")} changes its topol-
ogy over time. Such dynamics can also be modelled as the emerg-
ing and disappearing of triangles inside G. At each discrete time
t, the instance of a streamed graph is the set of vertices and edges
presented at ¢, we use G*(V*, E*) to represent it. Without loss of
generally, this chapter only concerns the addition of edges. When
a new edge e appears between vertex a and b, this edge’s initial
Aa(e) is set to be the size of N(a) N N(b), while edge A\a(a,n)
and Ao (b, n) increase by 1 if they share neighbor vertex n before
new edge comes. After the process of adjusting A, (e) values for
dynamically affected edges, we then iterate on the new set of trian-
gles following the same way as in algorithm in Figure 1.

8.9.1 Complexity of Dynamic DN-Graph Mining

Denoting the total number of edges of a dynamic graph G as
|E™|. Followed previous discussion, we only process each edge
once when it first appears or its neighborhood information changes.
If the graph is a sparse graph, the neighborhood size of any vertex
is a constant. Thus in sparse graph, the complexity for dynamic
D N-graph mining is of O(k|E™|) where k is the number of iter-
ations. The space complexity is O(E™) as we need to store DN
information for each edge appeared.

68

8.10 More Semantic Findings

YLR192C

YMR268C
(b) Protein Complex snRNP
Figure 16: Additional Interesting Subgraphs

Figure 16(a) and figure 16(b) show two additional DN graphs
identified by our mining algorithm. Figure 16(a) is an exact 9-
protein complex matched by our algorithm from PPI dataset. Be-
sides identifying known protein complex, D N-graph mining re-
sults can also predict unknown proteins’ functionality. These pro-
teins are not included in the existing protein complexes benchmark
due to systematic experimental constraints. However, by construct-
ing the PPI across different experimental sources, this unknown
protein may be included into a synergetic DN graph. In figure
16(b), protein YJL124C was predicted to have the same function-
ality as the rest inside the graph. We could not find supporting evi-
dence in known snRNP protein complex benchmark. However, by
checking with domain experts, we confirmed the correctness of our
finding. Note that certain protein (such as YMR268C) could not be
detected due to low connectivity with other members in the com-
plex. With the observation of high connectivity among the rest of
the proteins, we strongly urge biologists to experimentally search
for the “missing*“‘connections between missed proteins and the rest
of the protein members. (For clarity, matches are marked red; miss-
ing proteins are marked as blue points. Proteins that are not present
in known benchmark pattern but discovered as members of an DN -
Graph are marked as yellow.)

