
Figure 1.  Comparison of the number of matches. 
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ABSTRACT 
Text data is prevalent in life. Some of this data is uncertain and is 
best modeled by probability distributions. Examples include bio-
logical sequence data and automatic ECG annotations, among 
others. Approximate substring matching over uncertain texts is 
largely an unexplored problem in data management. In this paper, 
we study this intriguing question. We propose a semantics called 
(k, τ)-matching queries and argue that it is more suitable in this 
context than a related semantics that has been proposed previous-
ly. Since uncertainty incurs considerable overhead on indexing as 
well as the final verification for a match, we devise techniques for 
both. For indexing, we propose a multilevel filtering technique 
based on measuring signature distance; for verification, we design 
two algorithms that give upper and lower bounds and significantly 
reduce the costs. We validate our algorithms with a systematic 
evaluation on two real-world datasets and some synthetic datasets. 

1. INTRODUCTION 
Text data is prevalent in life. Approximate substring matching 

over deterministic data is well studied in computer science. It has 
many applications, including computational biology, signal 
processing, and text retrieval. There is an excellent survey by 
Navarro [10] on the algorithms and applications of this topic. As 
the amount of text data increases in an unprecedented rate due to 
factors such as large genomic projects (e.g., [1]) and the growth of 
the Internet, managing the sheer amount of (often noisy) text data 
has become more challenging than ever. Specifically, as a conse-
quence of the burgeoning growth of data and the cost/technology 
constraints against producing completely clean data, there is much 
uncertainty in the data itself. 

In the Holter monitor application, for example, sensors attached 
to heart-disease patients send out ECG signals continuously to a 
computer through a wireless network [3]. For each heartbeat, the 
annotation software gives a symbol such as N (Normal beat), L 
(Left bundle branch block beat), and R, etc. However, quite often, 
the ECG signal of each beat may have ambiguity, and a probabili-
ty distribution on a few possibilities can be given [3]. A doctor 
might be interested in locating a pattern such as “NNAV” indicat-
ing two normal beats followed by an atrial premature beat and 
then a premature ventricular contraction, in order to verify a spe-
cific diagnosis. 

As another example, a single DNA sequence can be a few mil-
lion to a few hundred million characters (DNA can be seen as 
texts over an alphabet of size 4 − {A, C, G, T}). It has uncertainty 
due to a number of factors in the high-throughput sequencing 

technologies [8, 15, 4]. Indeed, the NC-IUB committee standar-
dized incompletely specified bases in DNA [13] to address this 
common presence of uncertainty, by adding to the alphabet the 
letters ‘R’ for A or G, and ‘Y’ for T or C, among others. 

While approximate substring matching itself (e.g., through the 
edit distance metric [10, 16]) addresses the uncertainty issue to 
some degree, it is still necessary to model the uncertainty as prob-
ability distributions. This is because we do have partial knowledge 
about the uncertain characters. For example, from high throughput 
sequencing technologies, we usually can narrow down an uncer-
tain character to two or three alternatives, and can assign probabil-
ities to them based on their frequencies of occurrence in sequenc-
ing runs [17]. In essence, we differentiate between complete mis-
matches and probable matches with some uncertainty, in order to 
make the best informed decisions. 

Related Work.  Previous work on managing large-scale sequence 
data includes [14] by Tata et al. who proposed a declarative que-
rying framework for biological sequences, and [7] by Kandhan et 
al. who studied the multi-pattern matching problem. 

In addition, there is some work on deterministic string joins, 
e.g., [2, 5, 9], where the applications include data cleaning, data 
integration, and fuzzy keyword search. Recently, it is extended 
into the probabilistic setting [6]. The matching there is at the 
whole string level on both sides. Thus, it is only applicable to 
finding similar strings (that are of similar lengths). Our work, 
however, targets many applications in which text strings can be of 
arbitrary length (often very long) and are uncertain in places; we 
need to search for some patterns within them, i.e., substring 
matches over uncertain texts. 

Other closely related work (e.g., indexing) will be cited inline 
as appropriate. 

Our Contributions.  Jestes et al. [6] propose the notion of ex-
pected edit distance (EED) over all possible worlds of two uncer-
tain strings. We show that EED is inappropriate for our problem. 
Instead, with our newly proposed (k, τ)-matching query, we can 
easily extend previous query processing techniques. More impor-
tantly, we can find matches without having too many false posi-
tives. This is illustrated in Figure 1, an experimental result on a 
real dataset – the E. coli 536 DNA sequence [17] (details will be 
described in Section 6). The figure shows that, in order to catch a 
true match, EED must use a big distance threshold which will 
incur significantly (about three orders of magnitude) more false 
positives than our (k, τ)-queries. 
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We then study how to efficiently answer a (k, τ)- query. An ef-
ficient indexing method is needed to speed up the search on long 
texts. The problem becomes more crucial with uncertain texts. We 
propose a novel technique called multilevel signature filtering for 
indexing. Our index is highly selective, saving both I/O (random 
seeking) and CPU costs. After the index scan, the final step is to 
verify whether each position in text given by the index actually 
contains a real match. We devise two efficient bounding algo-
rithms, one based on CDF and the other on local perturbations. To 
summarize, the contributions of this work include: 
 Proposing the semantics of (k, τ)-matching queries (Sec. 3). 
 Devising techniques for indexing uncertain texts (Sec. 4). 
 Devising efficient verification algorithms (Sec. 5). 
 Systematic evaluation on real and synthetic datasets (Sec. 6). 

2. PRELIMINARIES 
Terminology and Notations.  A string ݏ contains a sequence of 
characters chosen from a finite alphabet Σ. Thus, the domain of a 
string is often written as Σ∗. The length of a string ݏ, denoted as 
 The edit distance of two .ݏ is the number of characters in ,|ݏ|
strings ݏଵ and ݏଶ, denoted as ݀ሺݏଵ,  ଶሻ, is the minimal number ofݏ
character insertions, deletions, or substitutions (called edit opera-
tions) transforming one string into the other. 

Deterministic Substring Matching Problem. Given as input a 
pattern string p, a set of text strings {xi | 1 ≤ i ≤ r}, and an edit 
distance threshold k, the problem is to find all substrings s of xi’s 
such that d(p, s) ≤ k. These r text strings might correspond to a 
string column of a table that has r records. For instance, the col-
umn could be the whole human genome and each record is a gene 
[14]. When we only consider one text string (at a time), we often 
drop the subscript and simply use x to denote a text string. 

Indexing.  [10] is a good survey of online algorithms for this 
problem. When the texts are very large, indexing is needed, which 
includes suffix-tree approaches and q-gram based approaches as 
the most popular ones [11, 12]. The most frequently used indexing 
method for approximate matching is the q-gram indexes (and their 
variations, e.g., the q-sample indexes) [11]. In such an index, for 
each q-gram (i.e., substring of length q), all its positions in the 
texts (called occurrences) are stored in increasing text order. 

There are variations on how to use the index to search for ap-
proximate matches of a pattern p. But most of them use the idea of 
partitioning p [12]. We can partition p into ݇ ൅ 1 pieces, where ݇ 
is the edit distance threshold. Since the number of errors is no 
more than k, it must be true that at least one piece must have an 
exact match in the text. We thus search for each of the ݇ ൅ 1 piec-
es in the q-grams of an index. For each match, we go over its as-
sociated position list, and verify the areas in the text for an ap-
proximate match. There are additional details on handling pieces 
that are longer or shorter than q, which we omit here (see, e.g., 
[11]). For verification, any online algorithm will do [10]; many of 
them are based on an approach as follows. 

Verification Algorithm.  We need to verify the two substrings in 
p on both sides of the matching piece (which we call g). We can 
use two runs of a variant of the well-known dynamic program-
ming (DP) algorithm for computing an edit distance. In run 1, we 
find a best match of the substring to the left of g in p with the 
corresponding substring to the left of g in the text. Likewise, in 
run 2, we find a best match of the substring to the right of g. Let 
the best match in run 1 have an edit distance ݀௟ and the best match 
in run 2 have a distance ݀௥. Then clearly we require ݀௟ ൅ ݀௥ ൑ ݇. 
Note that in run 1, we actually reverse the substring (to the left of 

g), so that it starts from a known, fixed position in the text (i.e., 
immediately to the left of g), but may end at any position in a 
range (depending on which one gives the minimum edit distance). 
The DP algorithm to compute an edit distance is based on: 

[ , ] min{ [ , 1] 1,

[ 1, ] 1,

[ 1, 1] ( [ ], [ ])}

d i j d i j

d i j

d i j c p i x j

  
 
  

                     (1) 

where 

 0, [ ] [ ]
( [ ], [ ])

1, [ ] [ ]

if p i x j
c p i x j

if p i x j


   .

 

This essentially fills in a two-dimensional table, which we call a 
DP table. We say that one dimension is the pattern dimension and 
the other is the text dimension. Note that we use a longer text sub-
string |x| = |p| + k, and the best match is the minimum value 
amongst the 2k cells at the text dimension index from |p| − k + 1 to 
|p| + k and the pattern dimension index |p| (i.e., the shaded region 
in the last row in Figure 5(a)). 

Moreover, the DP algorithm always gives us a “path” on how to 
reach the minimum distance value. Whenever a cell of the DP 
table is filled in a value using (1), we also record which of the 
three neighbors (i.e., d[i, j−1], d[i−1, j], or d[i−1, j−1]) is used 
(i.e., selected by the min in (1)). Thus, in the end, when tracing 
back, we get a path, which we call an optimal path. 

3. QUERY SEMANTICS 
3.1 (k, τ)-Matching Semantics 

We now look at the matching problem over uncertain texts. 
With minor changes, our algorithms can also apply to uncertain 
patterns. But it is more common that only texts are uncertain in 
the applications that we are aware of. 

Uncertainty Model.  In recent work [6], Jestes et al. proposed 
two models of uncertain strings, namely the string-level model 
and the character-level model. A string-level model enumerates 
all possible worlds and their probabilities at the whole-string lev-
el, while a character-level model describes distributions for each 
uncertain character. We focus on the character-level model, since 
this model is both realistic and concise in representing the uncer-
tainty in long text strings, whereas the string-level model is unne-
cessary for our applications and is prohibitively expensive for 
long strings. For example, the high sequencing technology for 
DNA gives uncertainty at the nucleotide (i.e., character) level [8, 
15]. In a character-level model, a string is a random variable X = 
X[1]…X[n], where X[i] (1 ≤ i ≤ n) in general is a random variable 
with a discrete distribution over Σ. We have the following new 
semantics for pattern matching queries over uncertain texts. 

Definition 1. A (k, τ)-matching query is based on a pattern 
string p, a set of uncertain text strings {Xi} (1 ≤ i ≤ r), and thre-
shold parameters k, τ, and asks for all substrings X of Xi’s such 
that Pr[d(p, X) ≤ k] > τ. 

The parameter k here is based on specific domain knowledge. 
For example, in a DNA sequence, if we allow at most two muta-
tions, we can set k = 2. The parameter τ is chosen to exclude (low 
probability) random matches by chance. For instance, for a pattern 
of length 5, we may set τ = (1/2)5, requiring that, on average, each 
character has a probability of at least 1/2 leading to a match 
(which is higher than pure chance). 

3.2 Comparison with EED 
Jestes et al. [6] propose the notion of EED for comparing uncer-

tain strings, which is the expected edit distance. One can imagine 
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Figure 2.  Illustrating the left and right signatures of a string. 

that EED could also be used in our problem by retrieving all sub-
strings X such that EED(p, X) ≤ k. However, there are two major 
reasons why EED is not suitable in this context. 

Reason 1.  EED does not implement the possible-world semantics 
completely at the query level. As a result, many algorithms devel-
oped for the deterministic case are inapplicable. The deterministic 
counterpart of our predicate is d(p, X) ≤ k. Following the possible 
world semantics, it should be that, in each possible world ω, we 
use exactly the same predicate d(p, x) ≤ k, where ܺ ൌ  in ω. In ݔ
the end, we get some aggregate property over all worlds, e.g., 
Prሾ݀ሺ݌, ܺሻ ൑ ݇ሿ. A (k, τ)-query is based on this. 

By contrast, EED averages the distance between p and X over 
all (weighted) possible worlds in the first place, and then impose a 
threshold on this average. That is, it summarizes the possible 
worlds early and changes the predicate to have a threshold on the 
EED. This makes existing algorithms that work for the determi-
nistic case no longer applicable to the possible worlds. 

An example is the indexing work in Section 2, where, by parti-
tioning p into ݇ ൅ 1 pieces, we know that at least one of the pieces 
must have an exact match. We can still use this mechanism with 
(k, τ)-queries since only those worlds with d(p, x) ≤ k will be rele-
vant. With EED, however, we cannot cleanly use this method 
because a relevant world potentially could have an arbitrary edit 
distance, although the average of all worlds is within a threshold. 

Reason 2.  The second and more important reason is that EED 
may either miss real matches or have an unduly big threshold so 
that many false positives may mix in. Let us look at an example. 

Example 1.  In the DNA sequence of E. coli that has a few million 
characters, suppose we look for close matches of a pattern p of 
length 20. Consider two substrings X1 and X2 in the DNA, both of 
length 20. X1 is a perfect match (i.e., edit distance 0), but we have 
some uncertainty in it: 9 characters are uncertain, each with 
probability 1/3 being the correct one. Thus, it can be shown (from 
the linearity of expectation) that when the 9 characters are about 
evenly spaced in X1, EED(p, X1) is about 9 × (2/3) = 6. On the 
other hand, X2 contains 2 uncertain characters, each with proba-
bility 0.5 being the correct one; but it also contains 5 mismatched 
characters. Suppose that purely from the life science, an interest-
ing match requires an edit distance of no more than 2 (say, allow-
ing mutations at two places at most), which will clearly exclude 
X2. However, when the mismatched and uncertain characters are 
evenly spaced, it can be shown that EED(p, X2) is about 5+2×0.5 
= 6, which is the same as EED(p, X1). Therefore, the threshold of 
an EED predicate needs to be at least 6 in order to include the 
real match X1, in which case many false positives such as X2 also 
qualify the predicate. We will further verify this point in our expe-
riments on real datasets, Fig. 1 and Sec. 6. 

The root cause here is that EED does not distinguish between 
true errors and uncertainty. A big EED threshold in order to ac-
commodate uncertainty could also mix in a large amount of noise, 
i.e., strings with many true errors. A (k, τ)-query, on the other 
hand, sets the allowed errors (parameter k) and the uncertainty 
threshold (parameter τ) separately. A (2, 0)-matching query, for 
example, will select X1, but not X2 in Example 1. 

Reflecting back, the edit distance of uncertain strings is essen-
tially a distribution. Some strings (such as X1) produce long-tailed 
distributions while others (such as X2) produce short-tailed ones. 
EED only looks at the expectations. However, we do care about 
certain long tails at the small distance end; the probability there, 
albeit small, can still be significant compared to mere chance. 
Thus, a (k, τ)-query can select real matches with little noise mixed 

into the results. The relatively low probability in this case is simp-
ly because of the accumulated uncertainty. Some additional 
(slightly more formal) analysis of this appears in Appendix A. 

It is well known that uncertainty in a DNA or protein sequence 
can be quite uneven [1]. Specifically, the uncertain character ratio 
has a significant variance in the DNA/protein sequence of our real 
datasets, and we can easily spot places in the strings where uncer-
tainty is well above average. However, in spite of the uncertainty, 
we should be able to discern true patterns. 

4. INDEXING UNCERTAIN STRINGS 
We generalize a q-gram index. The basic idea is that for each q-

gram in the index, each position in the list becomes a probabilistic 
occurrence of the pattern. Since one position in the text can possi-
bly produce multiple q-grams (with total probability summing to 
1), a position could appear multiple times in the index and the 
index would be bigger than the deterministic case. 

The key reason for using a q-gram based index (rather than, 
say, a suffix tree based index) is that q is a system parameter and 
is usually small [11], which entails that the increase in size of an 
index due to uncertainty can be small and tunable. More precisely, 
let the fraction of uncertain characters in the strings be θ, and let 
the average number of alternatives of an uncertain character be α. 
Then the uncertain index is approximately ሺߠߙ ൅ 1 െ  ሻ௤ timesߠ
the size of a deterministic one. In all practical applications, θ and 
α are typically small. Specifically, suppose the ratio of uncertain 
characters is about 10%, and α is close to 2 on average. If we use 
q = 4, then the index size is about 1.46 times the deterministic 
one, an acceptable storage cost for handling uncertainty. 

4.1 Improved Indexing for Uncertain Strings 
Let us tackle the problem of a longer position list due to uncer-

tainty. Note that we cannot simply increase q to scale up. This is 
because as q increases, the number of q-grams that we need to 
store grows exponentially. Moreover, recall that, during index 
search, we first partition the pattern p into ݇ ൅ 1 pieces and use 
each piece to probe the index. Clearly, |p| is well bounded and as q 
increases, each piece of p will become shorter than the q-grams. 
This implies that we have to scan many q-gram entries (that have 
the piece string as a prefix, since they are all potential matches) 
and their position lists. Thus, we still end up verifying many posi-
tions. Another reason for not increasing q is that for uncertain 
strings, as discussed earlier, an increase of q causes an exponential 
growth of the index size, and we may need to verify more posi-
tions. Therefore, we need a different solution. 

4.1.1 Multilevel Signature Filtering in an Index 
We use concise signatures to further filter candidate positions. 

A signature is formed by left or right extensions of the q-gram at a 
candidate position. We first look at the data structure of our index 
for deterministic strings. 
Definition 2 (signatures).  Consider a string x from Σ* and an 
occurrence of a q-gram g at position ݏ݋݌ in x. Suppose there is a 
hash function ݄: Σ → ሾ0, 2௕ െ 1ሿ that maps a character from Σ to 
a b-bit value. Then, the bit sequence h(x[pos−1])• h(x[pos−2])• 
…•h(x[pos−l]) is called a left signature of length l of the occur-
rence of g. Similarly, the bit sequence h(x[pos+q])• 
h(x[pos+q+1])• …•h(x[pos+q+l−1]) is called a right signature of 
length l. Here, • denotes the bit sequence concatenation. 
 

 RATGS

pos pos+q

q-gram
left signature right signature

string x

774



 

Figure 3.  Illustrating multilevel signature filtering structure. 

Figure 4.  Illustrating best matching prefix and prefix distance. 

A signature of length l has b·l bits. In this paper, unless other-
wise specified, we use b = 2. The hash function h maps a charac-
ter in Σ to a two-bit value. Figure 2 illustrates the concept. 

We now discuss how we use this signature for indexing. Recall 
that a q-gram index contains a position list for each q-gram. We 
further organize these candidate positions according to their signa-
tures. Unless specified otherwise, we use a left signature of length 
8 (i.e., 16 bits) and a right signature of length 8 (i.e., 16 bits), 
totaling 32 bits. We call this 32-bit value a tag. We store a table of 
<tag, pointer> entries, where a pointer either points to a list of 
positions having that tag value (if the list is short, say, no more 
than three positions) or points to a next level of directory (if the 
list is long). This is illustrated in Figure 3. 
 

 

 

 

 

 

 

 
The next level directory has the same structure, except that a tag 

consists of left and right signatures that are the continuations of 
the previous level (i.e., the next 8 characters on both sides); thus 
the tag is again 4 bytes. Recursively, this directory structure can 
continue to deeper levels, forming a tree. 

Note that the signature tree structure is very compact. Most 
practical datasets do not require many levels. Moreover, most 
search queries use relatively short patterns, where deep levels will 
not be helpful. Therefore, we can keep the maximum number of 
levels small (e.g., 3) and allow the position list at the deepest level 
to be of any length. A long position list at the deepest level im-
plies that there is a long and very common pattern in the text; if a 
search ever gets there, it would probably need to access those 
positions anyway, since there are many true matches. A final re-
mark is that this technique can be applied to any q-gram based 
indexing scheme; for simplicity, we illustrate it with the most 
basic q-gram index. 

4.1.2 Using the Index 
We first discuss how to use the signatures in an index for filter-

ing. The intuition is as follows. The indexing mechanism (Section 
2) partitions ݌ into ݇ ൅ 1 pieces and at least one of the pieces ݃ is 
required to have an exact match in the text ݔ (called an occur-
rence). We can do a quick verification by examining ݃’s left and 
right signatures in ݔ (as found in the index). These signatures 
should not differ much from ݃’s left and right signatures in ݌; 
otherwise, ݀ሺ݌, ሻݔ ൑ ݇ would be violated. The precise require-
ment is described in Theorem 1 that follows. We start with some 
definitions and lemmas. 

Definition 3 (prefix distance).  A best matching prefix (BMP) of 
a string x for a string p is a prefix ݔ଴ of x such that the edit dis-
tance between p and ݔ଴ is minimum (among all prefixes of x). We 
say that ݀ሺ݌,  .଴ሻ is string x’s prefix distance from pݔ

BMP and prefix distance can be computed through the same 
dynamic programming between p and x. The only extra step is 
that, in the end, we pick the smallest distance value from the row 
(or column) corresponding to the last character of p in the DP 

table. Note that the verification algorithm in Section 2 essentially 
computes prefix distances. Let us look at an example. 
Example 2. The last row of the DP table in Figure 4 shows that 
“1” is the smallest. Hence, 1 is x’s prefix distance from p, and 
GGAP is the best matching prefix of x for p. 

 
 

 

 

 

Definition 4 (edit distance of signatures).  We treat a signature 
in Definition 2 as a string with each b-bit hash value as a charac-
ter. That is, the alphabet of the string is ሾ0, 2௕ െ 1ሿ. The edit dis-
tance of two signatures ߪଵ and ߪଶ is their edit distance when we 
treat them as two such strings. 

Lemma 1. The edit distance of two signatures (Definition 4) is no 
more than the edit distance of their original strings. 

The proofs of all lemmas and theorems in the paper appear in 
Appendix B. 

It is a simple extension to handle uncertain characters. We reserve 
a hash value (in the signature function), e.g., 0, for all uncertain 
characters. Let us call it a universal value. A universal value can 
match any characters in a DP algorithm for edit distance. Note 
that this is a conservative decision; but the signature is still very 
selective since the uncertain ratio is not too high in practice. We 
will verify this in the experiments. Moreover, what we gain from 
this simple treatment is that we can keep the index very concise, 
without listing out all alternatives of an uncertain character or the 
probabilities. This makes it efficient when scanning the index. 

Lemma 2.  Consider the dynamic programming algorithm that is 
used to compute the edit distance, as shown in Equation (1). It 
must be true that: 

d[i][j−1] − 1 ≤ d[i][j] ≤ d[i][j−1] + 1                          (2) 
d[i−1][j] − 1 ≤ d[i][j] ≤ d[i−1][j] + 1                          (3) 
d[i−1][j−1] ≤ d[i][j].                                                   (4) 

Intuitively, Inequalities (2) and (3) say that the difference be-
tween two horizontal or vertical neighbor cells of a DP table can 
only be െ1, 0, or 1, while Inequality (4) says that values on each 
diagonal form a nondecreasing sequence. Lemma 2 is based on 
Lemmas 1 and 2 in [16]. The following theorem establishes the 
correctness of our index search algorithm. 

Theorem 1.  Suppose a q-gram ݃ of the pattern ݌ has an occur-
rence in the text ݔ (which we try to verify with the signatures in an 
index). At this occurrence, suppose ݃ has a left signature ݔ௟ that 
has length ݈ଵ, and a right signature ݔ௥ that has length ݈ଶ. Accor-
dingly in p, we compute ݃’s left (right) signature ݌௟ (݌௥) that has 
length ݈ଵ ൅ ݇ (݈ଶ ൅ ݇), where ݇ is the distance threshold. Let ݀௟ be 
 ௥’s prefix distance from݌ ௟ and ݀௥ beݔ ௟’s prefix distance from݌
௥. Then, the verification requires ݀௟ݔ ൅ ݀௥ ൑ ݇. 

Example 3. Fig. 5(a) shows a DP table, where the shaded region 
in the bottom row may correspond to the last three cells of the last 
row of the DP table in Figure 4 (i.e., values 2, 1, 2). As we project 
these three cells diagonal-wise, they can map to the first three 
cells in the third column (i.e., values 2, 1, 1), which correspond 
back to the vertical shaded region in Figure 5(a). Due to Lemma 
2, the second set of three values cannot be bigger than the first 
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Figure 5.  Dynamic programming verification and signatures. 

set. For a signature of length ݈, the minimum value in the vertical 
shaded region is the prefix distance ݀௟ or ݀௥ in Theorem 1. 

       

 
We now discuss the index search. The initial part of breaking a 

pattern into ݇ ൅ 1 pieces and performing an exact match on each 
piece is the same as before. After we use one of the pieces to 
reach a directory tree T as shown in Figure 3, we have the follow-
ing algorithm PUSH-POP-SIGNATURE-CHECK. 

Algorithm PUSH-POP-SIGNATURE-CHECK ሺ݌, ݇, ܶሻ 

Input: Pattern string p, distance threshold k, signature directory 
tree T corresponding to a q-gram g. 

Output: A set of positions in the text strings to verify. 

1: Do a depth-first traversal (DFT) of T, with the following 
extra steps during the DFT. 

2: Initialize 2 DP tables ܦ ௟ܲ and ܦ ௥ܲ (for left/right verifica-
tions) to be empty and they grow and shrink as follows. 

3: Upon reaching ൏ ,ݐ ܿ ൐, where ݐ is a tag in a node of T that 
leads to a child node ܿ: 

4:         Before following ݐ to ܿ in the DFT: (PUSH steps) 
5: Extend the text dimension of ܦ ௟ܲ (and ܦ ௥ܲ) with 

the left (right) signature in ݐ. 

6: Extend the pattern dimension of ܦ ௟ܲ (ܦ ௥ܲ) (using 
the signature of p) to make it k characters longer 
than the text dimension. 

7:                   Populate the new cells in ܦ ௟ܲ and ܦ ௥ܲ. 

8: Let ݀௟ (݀௥) be the prefix distance of the pattern 
from the text in ܦ ௟ܲ (ܦ ௥ܲ). 

9: if ݀௟ ൅ ݀௥ ൐ ݇ then skip the whole subtree rooted 
at ܿ and continue the DFT  end if 

10: Upon finishing the subtree rooted at ܿ and back-
tracking: (POP steps) 

11: Truncate text and pattern dimensions to the length 
before the extensions in lines 5 and 6. 

12: Upon reaching a leaf node (a position list) during DFT, add 
the list to the set of positions to be returned. 

Doing PUSH/POP’s on a DP table enables efficient signature 
checking. For clarity of presentation, in line 6, we omit the details 
on the case in which p is exhausted during the extension (i.e., 
݈ ൐ ݉ᇱ െ ݇ in Fig 5b, where ݉′ is pattern length); this is dis-
cussed in Appendix C. The correctness of the algorithm directly 
follows from Theorem 1. We now look at a simplified example. 
Example 4. Suppose p contains a q-gram “BEST”, and this q-
gram has an occurrence in a string x: 

x: ……[DC][CB][BEST][RO][DO]…… 
p:        [DC][AB][BEST][NR][OB] 

As shown above, the index locates an occurrence of the q-gram 
in the middle of x (surrounded by brackets). Suppose a tag con-
tains two characters of the left and right signatures each. Then, 
tag t1 in the root node contains the signatures of BC (left signa-
ture, in reverse order) and RO, while tag t2 in a child c of the root 
contains the signatures of CD (left) and DO (right). We also show 
the signatures at corresponding positions in p. From now on, we 
drop the phrase “the signatures of” for brevity. 

Let k = 2. The algorithm starts with empty ܦ ௟ܲ and DPr. It first 
pushes BC (RO, respectively) into the text dimension of ܦ ௟ܲ 
ܦ) ௥ܲ). That is, ݈ଵ ൌ ݈ଶ ൌ 2 in Theorem 1. It also extends ܦ ௟ܲ 
ܦ) ௥ܲ)’s pattern dimension to be BACD (NROB), i.e., k characters 
longer than the text (݈ଵ ൅ ݇ ൌ ݈ଶ ൅ ݇ ൌ 4 in Theorem 1). The 
prefix distances of these patterns from the text strings are both 1 
in ܦ ௟ܲ and ܦ ௥ܲ, with a total of 2, which is ≤ k. Note that if we did 
not extend the pattern dimension of ܦ ௥ܲ with the extra k charac-
ters (but it only has NR), then the distance in ܦ ௥ܲ would be 2, 
causing a violation of the total distance constraint. Similarly, we 
go to the child node c (PUSH) and continue the checking. 

5. VERIFICATION ALGORITHMS 
The goal of verification is to conclude whether a candidate po-

sition selected by an index is a true match. A straightforward solu-
tion is: (1) For each possible world, calculate the smallest edit 
distance using the verification algorithm (Sec. 2); (2) Sum up the 
probabilities of all worlds in which ݀ሺ݌, ሻݔ ൑ ݇, and compare the 
sum with τ. This clearly can be very costly. An efficient exact 
algorithm is extremely difficult to obtain (we conjecture that this 
problem is #P-complete). We present two algorithms, each of 
which gives an upper and a lower bound of the probability. By 
comparing them with τ, we can either early accept (if a lower 
bound is > τ) or early reject (if an upper bound is < τ) a candidate 
position. Only when we can do neither, do we resort to the (slow) 
exact verification. 

5.1 Bounds Based on CDF 
The basic verification (Sec. 2) consists of two symmetric runs 

of a DP algorithm. We describe how we change such a DP algo-
rithm to accommodate uncertain characters. For each cell of the 
DP table, ideally we wish to get a distribution ሼ݌ሾ݆ሿ| 0 ൑ ݆ ൑ ݇,
ሾ݆ሿ݌ ൌ Prሺܦ ൌ ݆ሻሽ, where D is the edit distance at the cell. It is 
truncated to 0 ൑ ݆ ൑ ݇ because once ܦ ൐ ݇, we do not need the 
exact probability to answer a ሺ݇, ߬ሻ-matching query. This would 
give an exact algorithm. Unfortunately, this distribution is ex-
tremely hard to get because neighboring cells’ distributions are 
correlated. 

Instead, our key idea is to compute (at most) ݇ ൅ 1 pairs of val-
ues in each cell, i.e., ሼሺܨ௟ሾ݆ሿ, ௨ሾ݆ሿሻ | 0ܨ ൑ ݆ ൑ ݇ሽ, where ܨ௟ሾ݆ሿ and 
ܦ௨ሾ݆ሿ are the lower and upper bounds of Pr ሾܨ ൑ ݆ሿ at the cell, 
respectively. That is, we bound the cumulative distribution func-
tions (CDF). Then for a ሺ݇, ߬ሻ-query, we check the bounds 
ሺܨ௟ሾ݇ሿ,  .௨ሾ݇ሿሻܨ

To fill in the DP table, we only need to consider a basic step, 
i.e., how to get the cumulative probability bounds of a cell D from 
those of its three neighbor cells D1 (upper left), D2 (upper), and D3 
(left). This is shown in the ELEMENTARY-STEP algorithm be-
low. The intuition is that, at cell D, when the text character C 
matches the pattern character c (with probability ݌ଵ), it is always 
optimal to take the distribution from the diagonal upper left 
neighbor D1 (Theorem 2), and thus we can take the whole distri-
bution from there with weight ݌ଵ. When there is a mismatch at D, 
we need some relaxation. 

x’[l]

x’[m’+k]
p’[m’]

x’[m’]

x’[m’−k]

p’[l]

p’[l−k]

p’[l+k]

x’[1]
p’[1]

p’[m’]
x’[m’−k] x’[m’+k]

(a) (b)

x’[l]
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Figure 6  Computing bounds based on CDF. 

Algorithm ELEMENTARY-STEP ሺܦଵ, ,ଶܦ ,ଷܦ ܿ,  ሻܥ

Input: ܦ௜ ൌ ሼሺܨ௟
ሺ௜ሻሾ݆ሿ, ௨ܨ

ሺ௜ሻሾ݆ሿሻ | 0 ൑ ݆ ൑ ݇ሽ, 1 ݎ݋݂ ൑ ݅ ൑ 3, 

            pattern character c, text character random variable C 
Output: ܦ ൌ ሼሺܨ௟ሾ݆ሿ, ௨ሾ݆ሿሻ | 0ܨ ൑ ݆ ൑ ݇ሽ 

ଵ݌ :1 ← Prሾܥ ൌ ܿሿ        // probability of a match at cell D 
ଶ݌ :2 ← 1 െ  ଵ݌

        // calculate the ሺܨ௟ሾ݆ሿ,  ௨ሾ݆ሿሻ pairs at cell Dܨ

3: for each ݆ ←  do ݇ ݋ݐ 0

௟ሾ݆ሿܨ         :4 ← ௟ܨଵ݌
ሺଵሻሾ݆ሿ ൅ ௟ܨଶ݌

ሺ௔௥௚௠௜௡೔ ஽೔ሻሾ݆ െ 1ሿ 

௨ሾ݆ሿܨ         :5 ← ௨ܨଵ݌
ሺଵሻሾ݆ሿ ൅ ∑ଶminሺ݌ ݑܨ

ሺ݅ሻሾ݆ െ 1ሿ3
݅ൌ1 , 1ሻ 

6: end for 

In line 4, ܽ݊݅݉݃ݎ௜ ܦ௜ returns the index value i that minimizes 
Di; the minimization is defined as the Di (1 ≤ i ≤ 3) that has the 

greatest ܨ௟
ሺ௜ሻ
ሾ0ሿ; a tie is broken by selecting the greatest ܨ௟

ሺ௜ሻ
ሾ1ሿ 

(and then ܨ௟
ሺ௜ሻ
ሾ2ሿ, etc., i.e., the one with highest probability of 

being small). In lines 4 and 5, ܨ௟
ሺ௜ሻሾെ1ሿ ൌ ௨ܨ

ሺ௜ሻሾെ1ሿ ൌ 0. The 
complexity of the whole algorithm is O(k2|p|). We omit the de-
tailed analysis; the main point is that we do not fill in the whole 
table, but only cells with distance ൑ ݇. Theorem 2 shows our 
result on the bounds, followed by an example on the algorithm. 

Theorem 2.  At each cell of the DP table, ܨ௟ሾ݆ሿ ൑ Pr ሾܦ ൑ ݆ሿ ൑
௨ሾ݆ሿ, for 0ܨ ൑ ݆ ൑ ݇, where ܦ denotes the edit distance. 

             

 
 
Example 5.  Consider p = “CAT” and X is “C” followed by four 
characters, each of which has the same distribution G.1A.4T.5, 
denoting that it is G (A, T) with probability 0.1 (0.4, 0.5). The DP 
table that computes the bounds is shown in Figure 6 (k =2). The 
three empty cells have distances above 2. The j’th pair in a cell is 
(Fl[j], Fu[j]), for 0 ≤ j ≤ 2. When there are fewer than three pairs 
in a cell, the omitted ones are (1, 1). For a deterministic distance 
value ݀ in a cell (e.g., any cell in the 1st row or 1st column), as a 
CDF, we have ݀ pairs of (0, 0) followed by a (1, 1) as our bounds. 
E.g., the 3rd cell in the 1st row has a deterministic distance 2. 

Take the cell at the 3rd row and the 4th column as an example. It 
corresponds to T in p and G.1A.4T.5 in X. The probability that these 
two characters match is 0.5 (p1 = p2 = 0.5 in ELEMENTARY-
STEP). First consider Fl[j]. The argmaxi Di is 3 because its left 
neighbor (D3) has the highest Fl[0] (i.e., 0.2). Therefore, Fl[j] is a 
mixture of the lower bounds in D1 and those in D3 (0.5 weight 
each), giving 0, 0.42, 0.85 as the first values of the three pairs. We 
omit the details on Fu[j]. Then based on Theorem 2, the lower and 
upper bounds of the edit distance at this cell being no more than 
0, 1, and 2 are (0, 0), (0.42, 0.42) and (0.85, 1), respectively. 

5.2 Bounds Based on Local Perturbation 
We present a different approach for finding the bounds. 

Definition 5 (adjacent and remote possible worlds).  Given a (k, 
τ)-matching query on a pattern p and an uncertain text X, we say 
that a possible world w of X, in which X has a value x, is adjacent 
to p if d(p, x) ≤ k. We say that w is remote to p if d(p, x) > k. Final-
ly, we say that w is the closest (farthest, respectively) if d(p, x) is a 
minimum (maximum) one amongst all possible worlds. 

Key Idea.  Definition 5 implies that answering a (k, τ)-matching 
query is equivalent to determining if the probability sum of all 
adjacent worlds is greater than τ. Suppose we start from one adja-
cent world, which has a particular set of bindings for all uncertain 
characters. A binding is a commitment of an uncertain character 
to a fixed value in a possible world. We then apply various local 
perturbations, which are defined as changing a subset of the exist-
ing bindings on uncertain characters. After these perturbations, if 
the resulting possible worlds are still adjacent to p, the sum of 
their probabilities is a lower bound of Pr[d(p, X) ≤ k]. In the same 
vein, if we start from a remote possible world, we can get a prob-
ability sum pr (of remote worlds). Then, 1−pr is an upper bound of 
Pr[d(p, X) ≤ k]. Let us first consider how to get an initial adjacent 
and a remote world to bootstrap the bounds. 

Lemma 3.  In Equation (1) in Section 2, when 

 ܿሺ݌ሾ݅ሿ, ܺሾ݆ሿሻ ൌ ൜
0,   ݂݅ Prሺܺሾ݆ሿ ൌ ሾ݅ሿሻ݌ ൐ 0

1,   ݂݅ Prሺܺሾ݆ሿ ൌ ሾ݅ሿሻ݌ ൌ 0
 

is used in the DP algorithm, we get a distance value of the closest 
possible world. For each cell in the optimal path, we bind ܺሾ݆ሿ to 
ሾ݅ሿ if Prሺܺሾ݆ሿ݌ ൌ ሾ݅ሿሻ݌ ൐ 0; otherwise we bind ܺሾ݆ሿ arbitrarily. 
This binding gives us a closest possible world. 

Obtaining an initial remote world.  Lemma 3 gives us a closest 
world, which is certainly an adjacent world (if there is one). We 
now discuss how to get a remote world. This can be done through 
a randomized algorithm. We bind each uncertain character ran-
domly based on its distribution, and then compute the edit dis-
tance. This is repeated until we get a remote world. If we do not 
get any remote world after it is repeated ݐ times (a parameter dis-
cussed below), we return ݌௨ ൌ 1 as the probability upper bound. 

Let ݌଴ be the true probability that the distance is no more than 
k. With probability ሺ݌଴ሻ

௧, we do not find any remote world and 
return ݌௨ ൌ 1, which is 1 െ  .଴ higher than the true probability݌
When ݌଴ is close to 1, 1 െ  ଴, the݌ ଴ is small; as we decrease݌
probability ሺ݌଴ሻ

௧ drops exponentially and quickly diminishes. For 
example, if ݐ ൌ 10 and ݌଴ ൌ 0.6, ሺ݌଴ሻ

௧ is only about 0.006. In 
other words, if ݌଴ is very close to 1, returning ݌௨ ൌ 1 is accepta-
ble any way; otherwise, with a high probability, 1 െ ሺ݌଴ሻ

௧, we can 
reach a remote world within a small number (ݐ) of trials. 

The following definition and theorems lead to the bounds. 

Definition 7 (crucial variables). In a DP table of a possible 
world w, consider a cell D that is on an optimal path (to the min-
imum distance). If the path goes from D’s upper-left neighbor cell 
D1 to D and the two cells contain the same distance value, then 
the uncertain text character that D corresponds to is called a 
crucial variable of w. 

Theorem 3.  Let δ (≥ 0) be the difference between k and the edit 
distance in an adjacent world, which has c crucial variables. Let 
௟݌ ൌ Prሺܽݐݏ݈ܽ݁ ݐ ܿ െ  crucial variables have the same values as ߜ
in the optimal path). Then ܲݎሾ݀ሺ݌, ܺሻ ൑ ݇ሿ ൒  .௟݌

Theorem 4.  Consider a remote world that has a distance k’ > k 
and let δ = k’ − k − 1. If there are ݑ uncertain characters in X, 
and ݌௥ ൌ Prሺܽݑ ݐݏ݈ܽ݁ ݐ െ  uncertain characters have the same ߜ
values as in the optimal path), then ܲݎሾ݀ሺ݌, ܺሻ ൑ ݇ሿ ൑ 1 െ  .௥݌

p
x

C

A

T

C G.1A.4T.5 G.1A.4T.5 G.1A.4T.5 G.1A.4T.5

(0, 0)
(.7, .7)
(1, 1)

(0, 0)
(.64, .64)

(1, 1)

(.2, .2)
(.7, .7)
(1, 1)

(0, 0)
(0, 0)

(.784, .784)

(0, 0)
(.42, .42)
(.85, 1)

(0, 0)
(0, 0)

(.602, .602)

(.4, .4)
(1, 1)

(1, 1)

(0, 0)
(1, 1)

(0, 0)
(0, 0)
(1, 1)

(0, 0)
(1, 1)

(0, 0)
(0, 0)
(1, 1)
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We can further improve the bounds obtained by Theorems 3 
and 4 using randomly chosen many initial adjacent and remote 
worlds; this is presented in Appendix D. 

Obtaining ࢒࢖ and ࢘࢖ in Theorems 3 and 4.  We observe that 
computing these two probabilities boils down to the following 
problem: Suppose there are ݎ events ܧ௜ ሺ݅ ൌ 1,… ,  ሻ, and we areݎ
given Prሾܧ௜ሿ ൌ  events ݏ ௜. What is the probability that at least݌
(among those ݎ events) happen? 

Our solution is as follows. Let ܲሺ݅, ݆ሻ denote the probability 
that, within the last ݅ events, at least ݆ of them happen. Our goal is 
thus ܲሺݎ,  :ሻ. We then have the following recursive equationݏ

ܲሺ݅, ݆ሻ ൌ ௥ି௜ାଵ݌ ∙ ܲሺ݅ െ 1, ݆ െ 1ሻ ൅ ሺ1 െ ௥ି௜ାଵሻ݌ ∙ ܲሺ݅ െ 1, ݆ሻ 

This recursion gives us an efficient (dynamic programming) al-
gorithm that can compute ܲሺݎ, ݎሻ in time ܱሺݏ ∙  .ሻݏ

Example 6.  Let us continue on Example 5. Consider matching p 
with the first four characters of X and k = 2 (the cell at the 3rd row 
and the 4th column in Fig. 6). A chameleon binding CATT gives a 
distance 1, and there are c = 2 crucial variables. Applying Theo-
rem 3, we get a lower bound ݌௟ ൌ 0.7. For an upper bound, we 
first get an initial remote world using our randomized algorithm, 
say, CTGA, which has a distance 3. Applying Theorem 4, we get 
an upper bound ݌௨ ൌ 0.98. Comparing with the bounds we get in 
Example 5, ݌௟ is looser while ݌௨ is tighter. 

6. EXPERIMENTS 
We use two real datasets and some synthetic datasets, which are 
described in Appendix E, along with our experimental setup. By 
default, we use: |p| = 18, k = 2, and τ = (1/2)|p|. 

6.1 Query Semantics 
We compare (k, τ) queries with EED in [6]. As discussed in 

Section 3.2, it is well known that the uncertainty ratio has a large 
variance in biological sequences; we can easily spot places in our 
datasets where uncertainty is well above average. For the DNA 
dataset, we arbitrarily pick three patterns of length 15, where the 
occurrence in the text has 6 uncertain characters. Then we com-
pare a (k, τ) and an EED query in finding these three patterns. In 
Fig. 1 of Section 1, we have shown the average number of 
matches for the three patterns over the whole text string (about 
7MB) and its prefixes of various sizes. For the (k, τ)-query, we use 
k = 1. As expected, the (k, τ)-query finds the corresponding pat-
tern. For the EED query, we find that we need the distance thre-
shold to be at least 4 to pick up the pattern in the text. With this 
threshold 4, we report the average number of matches of EED (for 
the three patterns). From Fig. 1 we see that EED selects about 
three orders of magnitude more false positives than the (k, τ) 
query. This is because EED has to use a large threshold in order to 
overcome the uncertainty and catch the real pattern. We observe 
similar result with the protein dataset, as shown in Appendix F. 

6.2 Signatures and Verification Bounds 
We verify the effectiveness of our signature filtering and verifi-

cation bounds by comparing a few approaches: (1) the base me-
thod without using our work, (2) a method that does not use signa-
tures, but uses verification bounds based on CDF, (3) no signa-
tures, but verification bounds based on local perturbation (denoted 
as “bounds 2” in the figures), (4) a method that only uses signa-
tures, but not bounds, and finally (5) a method that uses both sig-
natures and bounds based on CDF. 

Fig. 7 shows the result over the whole DNA string and its vari-
ous prefixes. We can clearly see the differences among various 
methods. Using signature filtering can improve the performance 

by about four times, while the effect of using verification bounds 
is more dramatic − almost 30 times of an improvement. Using 
signatures saves by doing fast filtering as the index is scanned; we 
end up with significantly fewer positions to retrieve from the text 
string and perform the verification. Indeed, we show in Fig. 11 the 
number of positions in the text strings that remain to be verified 
before and after the signature filtering is applied, and before and 
after the verification bounds are applied. 

For the bounds based on local perturbation, we try different 
numbers of repeated random instances to get initial possible 
worlds. We find that using about t = 11 initial worlds gives the 
best result. Using more worlds only marginally improves the 
bounds due to the overlaps of variable settings between two poss-
ible worlds (details in Appendix D). We always incrementally 
find a good t value to use (until a bigger t does not improve the 
bounds significantly). Moreover, Fig 7 indicates that using CDF 
based bounds and using perturbation based bounds result in simi-
lar performance improvements (with the CDF based bounds being 
slightly better). Thus, in the sequel, with the exception of Fig. 8, 
we only show the results of CDF based bounds. Our additional 
experiments on the protein data are reported in Appendix F. 

We then observe the behaviors as we vary θ, the ratio of uncer-
tain characters. In the original dataset, θ is about 0.16. Starting 
from the original data, we synthetically add or reduce uncertainty 
by converting random deterministic characters to probabilistic 
ones or the other way around. We show the results in Fig. 8 for 
different θ (using the same legend as Fig. 7). First, we notice that 
perturbation based bounds get better than the CDF based bounds 
as θ increases. This is because as the number of uncertain charac-
ters increases, variance increases, and we are more likely to get a 
better-quality initial possible world (i.e., with an edit distance far 
from k), which results in better bounds. Thus, perturbation based 
bounds should be used when the uncertainty level is high. 

Furthermore, with all methods, we see an increase of execution 
time as θ gets bigger due to the extra cost of handling uncertain 
characters. In particular, the increase is more dramatic when we 
do not use verification bounds. This is because the verification has 
to go through all possible worlds, the number of which increases 
exponentially with the number of uncertain characters. In these 
experiments, the base methods (no signatures, no bounds) are very 
expensive, with running time up to an hour. 

In the next experiment, we synthetically generate larger text 
files (up to 6 GB) by extending the original DNA dataset with 
deterministic and uncertain characters that follow the same distri-
butions. For this experiment, we only compare the running times 
of the two methods that use verification bounds (with and without 
using signatures), as the methods that do not use bounds take a 
very long time. By comparing these two methods, we can see the 
effects of signature filtering in terms of I/O and CPU costs. Fig 9 
shows the elapsed times of both methods, and we provide a 
breakdown of total costs into I/O and CPU costs in Fig. 10 for 2 
GB and 4 GB texts. Overall we see similar trends as the case with 
smaller text strings, and the CPU cost is close to the I/O cost as a 
result of handling uncertain characters. 

We then vary additional parameters. Using the real datasets, we 
search with patterns of different lengths (|p|) from 10 to 50. Fig 12 
shows the result for the DNA dataset and Fig 13 for the protein 
dataset (they share the legend in Fig 13). In Fig 12,  the execution 
times increase as |p| gets bigger because more uncertain characters 
in the text strings need to be verified. We have a sharper increase 
for the two methods that do not use bounds because they have to 
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iterate over all possible worlds, the number of which exponential-
ly increase with more uncertain characters. 

An interesting phenomenon in Fig 13 (protein) is that, while the 
growth of elapsed times grows slower than in the DNA dataset for 
the two methods that do not use bounds, the execution times ac-
tually decrease (as |p| increases) for the other two methods. The 
reason is as follows. Recall that we break p into k + 1 pieces and 
uses each piece to first find an exact match. As |p| increases, each 
piece also increases, which can filter out some more positions (but 
after retrieving the substrings in the text at corresponding occur-
rences). This indeed somewhat offsets the increased costs due to 
more uncertain characters to verify in the text. For the protein 
dataset, this extra filtering effect is more significant due to its 
larger alphabet size (i.e., more selective per character). As a re-
sult, it actually becomes faster with a bigger |p|. Additionally, by 
comparing Figures 13 and 12, we see that the searches are in gen-
eral faster with the protein dataset for the same reason. 

Finally, we vary k, the edit distance threshold, whose results are 
shown in Fig 14 for the DNA dataset, using the same legend as 
Fig 13 (similar trend appears in the result of proteins in Fig A.5 of 
Appendix). We see that all methods run slower with bigger k val-
ues. This is because, as k increases, the matching is more relaxed 
and we need to examine more positions and uncertain characters. 
One might wonder why the execution time also increases (al-
though less dramatically) with the base method, i.e., the case of no 
signatures and no bounds. Don’t we have to iterate through all 
possible worlds regardless of k values? The reason for the increase 
is that, as k grows, each of the k + 1 pieces (that we use to first 
perform an exact match) becomes shorter. Consequently, more 
positions in the text string will need to be examined. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we study a real and unsolved problem of approx-

imate pattern matching over uncertain texts. We propose a novel 
semantics and demonstrate its advantages over an alternative one 
introduced by previous work. To answer such a query, we en-
hance q-gram based indexing to handle uncertain texts and pro-
pose efficient verification algorithms. As future work, we plan to 

study the matching problem under correlated uncertainty to ad-
dress a wider range of applications. 
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  Fig. 7 Running time for various settings.            Fig. 8  Varying ࣂ.         Fig. 9  Using larger synthetic data. Fig. 10 Breakdown of I/O & CPU costs. 

           
         Fig. 11  # of positions to be verified.      Fig. 12 Varying |࢖| (DNA).    Fig. 13 Varying |࢖| (protein).     Fig. 14 Varying threshold ࢑. 
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APPENDIX 
A.  ADDITIONAL COMPARISON BE-
TWEEN ሺ࢑,  ሻ AND EED࣎

Define a random variable ܦ as the edit distance between a pat-
tern ݌ and a target substring ܺ in text, i.e., ܦ ൌ ݀ሺ݌, ܺሻ. Suppose 
that ܺ’s value in the true possible world (i.e., without uncertainty) 
is ݔ, and that ݔ is an approximate match that the user is interested 
in, i.e., ݀ሺ݌, ሻݔ ൌ ݇, for a small ݇. Let Prሺܦ ൌ ݇ሻ ൌ  Then, for .ߙ
any 0 ൏ ߬ ൏ ,a ሺ݇ ,ߙ ߬ሻ-matching query will find ܺ. On the other 
hand, the expectation ܧሾܦሿ could be very large (certainly much 
larger than ݇), for an arbitrary distribution of ܦ. This can be seen 
from Example 1 in Section 3. 

However, conversely, if ܧሾܦሿ ൏ for a small 0 ,|݌|ଵߜ ൏ ଵߜ ൏ 1, 
we show that a ሺ݇, ߬ሻ-matching query will always catch the match, 

where ݇ ൌ ଶߜ ,|݌|ଶߜ ൌ ൤1 ൅ 1
ሺ2|௣| െ 1ሻൗ ൨ ߬ ଵ, andߜ ൌ 2ି|௣|. 

Recall that, for |Σ| ൐ 2, such a ߬ value is greater than pure chance. 
For a practical |݌| value, we have ߜଶ ൎ  ଵ. For instance, ifߜ
|݌| ൌ 10, then ߜଶ ൏ -ଵ. To prove this, from Markov’s inߜ1.001
equality, we have: 

 Prሾܦ ൐ ሿ|݌|ଶߜ ൏
ாሾ஽ሿ

ఋమ|௣|
൏

ఋభ|௣|

ఋమ|௣|
ൌ

ఋభ

ఋమ
 

Hence: 

 Prሾܦ ൑ ሿ|݌|ଶߜ ൐ 1 െ
ఋభ

ఋమ
 

Letting ݇ ൌ ߬ and |݌|ଶߜ ൌ 2ି|௣|, we have that, for ߜଶ ൌ

൤1 ൅ 1
ሺ2|௣| െ 1ሻൗ ൨ ,ଵ, a ሺ݇ߜ ߬ሻ-matching query must be satisfied. 

B.  PROOFS OF LEMMAS AND THEO-
REMS 
Proof of Lemma 1:  Let two strings be s1 and s2, and their signa-
tures be σ1 and σ2. Let d(s1, s2) = d. By definition, using d edit 
operations, we can transform s1 to s2. If characters c1 and c2 are 
equal in the original alphabet, then h(c1) = h(c2), where h is the 
hash function used for signatures. Therefore, using the same se-
quence of edit operations (that transform s1 to s2) on σ1, except 
that all characters in the original alphabet are replaced by the cor-
responding hash values, we get σ2. This implies that d(σ1, σ2) ≤ d. 
□ 

Proof of Theorem 1:  Recall that the verification of an occur-
rence in x consists of two symmetric runs of DP; it suffices to 
only consider one of them. Suppose one run tries to match sub-
string p’ from p with substring x’ from x where |x’| = |p’| + k. We 
are interested in a best matching prefix of x’ for p’. The DP 
proceeds as shown in Figure 5(a), where we denote |p’| as m’. For 
verification, we need the minimum distance value within the 
shaded region at the bottom row of Figure 5(a), i.e., the cells at 
the row for p’[m’] and between the columns for x’[m’−k] and 
x’[m’+k]. Let the minimum value in this region be d1 for run 1 and 
d2 for run 2. Clearly, the verification requires d1 + d2 ≤ k. 

Now, Inequality (4) of Lemma 2 states that moving up in the 
diagonal direction (as illustrated by the dashed lines in Figure 
5(a)) cannot increase a distance value. Thus, there exists a value 
that is no more than d1 (or d2 for run 2) in the shaded region at the 
column for x'[l], between the rows for p'[l−k] and p'[l+k] in Figure 
5(a). Moreover, Lemma 1 indicates that the distances cannot get 
greater with signatures. Therefore, replacing l by l1 for run 1 and 
by l2 for run 2, the success of verification implies dl + dr ≤ k.   □ 

Proof of Theorem 2.  First consider a possible world ω1 in which 
C = c. Let the distance values at cells D and Di (1 ≤ i ≤ 3) be ݒ 
and ݒ௜, respectively. We claim that ݒ ൌ -ଵ. This is because Lemݒ
ma 2 shows that ݒଶ, ଷݒ ൒ ଵݒ െ 1; thus, ݒ ൌ minሺݒଵ, ଶݒ ൅ 1, ଷݒ ൅
1ሻ ൌ  ଵ. Next, consider a possible world ω2 in which C ≠ c. Fromݒ
Equation (1), v = mini(vi) + 1. In line 4 of the algorithm, by using 
argmini Di, we essentially pick one fixed neighbor cell (i.e., the 
one that has a small distance value with the highest probability) to 
use for all possible worlds in which C ≠ c; and hence the true v 
value could be smaller than this one in some possible worlds. 
Thus, the ܨ௟ሾ݆ሿ in line 4 is a lower bound of Pr ሾܦ ൑ ݆ሿ (i.e., we 
may have a smaller distance with a higher probability). 

For ܨ௨ሾ݆ሿ, in line 5, first consider the possible worlds in which 
C ≠ c. By Equation (1), D should be the minimum of the three 
neighbors’ distances plus one. Thus, Prሾܦ ൑ ݆ሿ is the probability 
that at least one of its three neighbors has distance no more than 

݆ െ 1. Then from union bound, this is at most ∑ ௨ܨ
ሺ௜ሻሾ݆ െ 1ሿଷ

௜ୀଵ . 
For the case of C = c, the reasoning is the same as in ܨ௟ሾ݆ሿ. There-
fore, ܨ௨ሾ݆ሿ in line 5 gives an upper bound of ܲݎሺܦ ൑ ݆ሻ.         □ 

Proof of Lemma 3.  The binding described in Lemma 3 is 
equivalent to the following: we bind ܺሾ݆ሿ to ݌ሾ݅ሿ whenever one of 
its alternatives is ݌ሾ݅ሿ; otherwise we bind ܺሾ݆ሿ arbitrarily. We call 
it a chameleon binding. We say it is an inverse chameleon binding 
if we bind ܺሾ݆ሿ to any value other than ݌ሾ݅ሿ whenever possible. 

In addition to the result in this lemma, we also prove that an in-
verse chameleon binding, however, merely gives an upper bound 
of the distance in the farthest world at each cell of the DP table. 

First, we can prove that a chameleon binding (inverse chamele-
on binding) gives a lower (upper) bound for the distance value at 
each cell of the DP table in a closest (farthest) possible world by 
induction, similar to the proof of Theorem 5 in [6]. Thus we omit 
the details. We next show that a chameleon binding actually gives 
the exact values of a closest world. For this, we only need to show 
that for any given cell of the DP table, there exists a consistent 
binding (i.e., binding each uncertain character to only one value) 
that produces the value for that cell. 

We prove this by induction. We show that if the optimal paths 
to a cell D’s three neighbors D1 (upper left), D2 (upper), and D3 
(left) are all consistent, so is the optimal path to D (the starting 
boundary condition is trivially true). There are two cases: (1) If 
the text and pattern character at D have a non-zero probability of a 
match, we bind the uncertain text character C to that pattern cha-
racter (according to chameleon binding) and mark the path going 
from D1 to D. This is valid because of Lemma 2, and the argu-
ment is the same as that in the proof of Theorem 2. The path to D 
is a consistent binding because C has not been bound to anything 
in the path to D1. (2) If the text character C and the pattern charac-
ter have no chance to match at D, C is free and can be bound to 
anything in its distribution. This clearly also produces a consistent 
path to D.                                                                      □ 

Proof of Theorem 3.  Consider the optimal path ߨ in the DP ta-
ble. ߨ encodes a sequence of edit operations that transforms one 
string to the other. Changing the value of one crucial variable V 
increases the cost of ߨ by one (by changing a match of cost 0 to a 
substitution of cost 1). As a result, changing δ crucial variables 
increases the cost of ߨ by δ. Moreover, changing a non-crucial 
variable does not change the cost of ߨ. Therefore, if at least c − δ 
crucial variables maintain their values in the crucial path, the cost 
of ߨ stays within k. Since there is at least one path (namely, ߨ) 
that has a cost within k, the edit distance must be within k. Thus, 
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Figure A.1  Illustrating chameleon bindings. 

aggregating the probabilities of such possible worlds gives a low-
er bound.                                                                      □ 

Example A.1.  Figure A.1(a) shows chameleon binding (the first 
values in each cell) and inverse chameleon binding (the second 
values) using the same strings as Example 5. The chameleon bind-
ing gives values in the closest world while the inverse chameleon 
binding only gives upper bounds on the distances of the farthest 
world. Observe that the results here are consistent with the 
bounds in Example 5 (Figure 6). While the bounds given by the 
inverse chameleon binding are achievable in Figure A.1(a), this 
is not always the case. A counterexample is given in Figure 
A.1(b). The final value, 3 (in the solid circle), is not achievable. 
The value 3 is derived based on the condition that the uncertain 
character C in X is bound to “T”. However, when C is bound to 
“T”, the value in the cell above (2 in the dashed circle) can only 
be 1, due to a match, which in turn makes the final value 2. It can 
be easily verified that the farthest world only has distance 2. 

 

 

 

 

 

 

 
 
Proof of Theorem 4.  We first prove the following lemma: 
Changing the binding of one character in string X can at most 
change its edit distance from p by one. Let the two instances of X 
be x1 and x2 that only differ in one character. Let d(p, x1) = d. 
Without loss of generality, suppose d(p, x2) ≥ d + 2. By definition, 
we can use d edit operations to transform p to x1. However, this 
implies that we can use d + 1 edit operations to transform p to x2 
by first transforming p to x1, and then with an extra substitution to 
further transform it to x2. Thus, d(p, x2) ≤ d + 1, a contradiction. 

From the above lemma, after changing the values of δ uncertain 
characters, the edit distance is still above k. Thus, ݌௥ is a lower 
bound of the probability of all remote worlds and 1 െ  ௥ is an݌
upper bound of the probability of an approximate match.        □ 

C.  ADDITIONAL DETAILS ON PATTERN 
EXHAUSTION 

As shown in Figure 5(b), when the text signature length l ex-
tends beyond m’−k (where m’ is the pattern length), we cannot 
extend the pattern dimension to be k characters longer. Instead, as 
indicated by the dark region in Figure 5(b), we check the prefix 
distance of the text from the pattern (d1) and the prefix distance of 
the pattern from the text (d2), and use min(d1, d2) as dl (dr) in line 
8 of the PUSH-POP-SIGNATURE-CHECK algorithm. We stop 
extending the text when l reaches m’+k. 

D.  ADDITIONAL IMPROVEMENT ON 
PERTURBATION BASED BOUNDS 

We can further improve the bounds by perturbing a different in-
itial world (either adjacent or remote), and by summing up the 
probabilities of any new worlds discovered this way. 

Imagine that we run multiple instances of the procedure de-
scribed in Theorems 3 and 4, except that we start from a different 

world for each instance. This can be achieved by simply binding 
each uncertain character randomly based on its distribution, and 
putting it either in a set of adjacent worlds W1 or a set of remote 
worlds W2 based on its distance. Repeating this w times and using 
a probabilistic argument similar to the one in Section 5.2, it is 
unlikely for W1 or W2 to be empty unless the actual probability is 
really close to 0 or 1, in which case our bounds are already very 
tight. 

After having W1 and W2, we bootstrap the worlds around them, 
as in Theorems 3 and 4. However, we cannot simply add up the 
probabilities produced by each instance in W1 (or W2) because the 
possible worlds generated from two instances may have an over-
lap. We now solve this problem. 

Theorems 3 and 4 can both be abstracted to the following 
common stochastic model, which we call M1: 

(1)  We start with a set of random variables {Ci} (1 ≤ i ≤ r); 
(2) Each random variable Ci has probability pi to be a chosen 

value vi (1 ≤ i ≤ r); 
(3) At most δ of the random variables can be free variables, 

while the rest must be their corresponding vi’s as in (2). 
We are interested in the probability of the event in (3). Consider 

that we start from two initial worlds and get two instances I1 and 
I2, both of which follow model M1. We thus have two sets of ran-
dom variables in (1). When each of those variables (Ci) has value 
vi as in (2), let d be the number of common random variables that 
have different values in I1 and I2. Let I1 (I2) have the parameter 
value δ1 (δ2) in step (3) of M1. Clearly, if δ1 < d and δ2 < d, there 
must be at least one random variable that has different values 
between any possible world that I1 generates and any one that I2 
generates. Therefore, when this condition is met, the two sets of 
possible worlds must be distinct, and we can simply add up their 
probabilities of event (3) towards the final bounds. 

Example A.2. Continuing on Example 6, for the upper bound, 
suppose we start another instance from an initial world CGGA, 
which also has a distance of 3 from p. Recall that the first in-
stance in Example 6 is CTGA. Thus, the aforementioned parame-
ter d = 1 and δ1 = δ2 = 0 < d. Therefore, we can add up the prob-
abilities from the two instances and get an improved upper bound 
0.976. 

We can further generalize this idea across more than two in-
stances. We iterate over them one by one and accumulate a set of 
mutually exclusive instances. We check if the above condition 
(i.e., δ1 < d and δ2 < d) is satisfied between the current instance 
and each one already in the set. If so, we add the current instance 
to the set. In the end, we add up the probabilities of all instances 
in the set and get the lower/upper bound. 

E.  DATASETS AND SETUP OF EXPERI-
MENT 

We implement all algorithms described in the paper, as well as 
the EED bounding algorithms and the basic EED algorithm pre-
sented in [6] for comparisons. The experiments are performed on 
a machine with an Intel Core 2 Duo 1.66Ghz processor and a 1GB 
RAM. All experiments start with a cold buffer cache. We use two 
real datasets and a few synthetic datasets as described below. 

The DNA dataset.  We download the raw datasets of sequencing 
runs of Escherichia coli 536 from the NCBI SRA (Sequence Read 
Archive) database [17]. Then we use Bowtie [20] to align the 
short DNA sequences with the complete Escherichia coli genome 
reference, which is downloaded from the NCBI Genome database 
[21]. The mapping reports output by Bowtie show positions with-
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in the DNA that have more than one possible value. As studied in 
[19], the nucleotide variation observed in the sequencing reads 
comes from errors introduced by sequencing procedures. From the 
Bowtie reports, we naturally model uncertain characters with a 
discrete distribution based on the frequencies of alternative values 
among the sequencing runs. 

The protein dataset.  The protein dataset is a collection of pro-
tein sequences downloaded from Uniprot [22]. Like DNA, protein 
data has a great deal of uncertainty [18]. Uniprot provides descrip-
tions of uncertain characters in the proteins, from which we can 
learn the alternative values of an uncertain character and their 
frequencies. For example, at [23], the “Amino acid modifications” 
and “Natural variations” sections contain the uncertainty informa-
tion for one particular protein, Insulin. We incorporate such un-
certainty information into the strings. 

Synthetic datasets.  We also generate a few synthetic datasets 
based on the two real datasets above. The reason for using syn-
thetic datasets is that, in some experiments, we would like to vary 
the parameter values of data (such as the uncertainty ratio θ) or 
the size of the data. We will describe how we generate specific 
datasets when we describe the specific experiments. 

In addition, unless otherwise specified, we examine the beha-
viors of a (k, τ)-pattern matching query using a pattern string p, 
with the following default parameter values: |p| = 18, k = 2, and τ 
= (1/2)|p|. As each internal node of an index tree is an array with 
fixed size entries, we dense-pack the internal nodes in level order. 
All the leaf nodes are stored contiguously. The overhead of incor-
porating signatures and uncertain characters when building an 
index for text strings is proportional to the increase in index size, 
as discussed in Section 4. However, this is a one-time cost, as 
indexes in these applications are designed to be built once and 
queried many times; thus query performance is of primary con-
cern. Typically these large text datasets are rarely updated. 

F.  ADDITIONAL EXPERIMENTS 
Comparison of false positives between ࡰࡱࡱ and ሺ࢑,  .ሻ-queries࣎
In Fig. A.2, we also show the result of this comparison from the 
protein dataset. We use three patterns of length 9, each having 3 
uncertain characters in the text. We report the average number of 

matches of a (k, τ) query and an EED query over the text strings of 
various sizes. We need the distance threshold of EED to be at 
least 3 in order to recognize the three patterns. Fig. A.2 again 
shows that EED selects about three orders of magnitude more 
false positives than the number of matches of the (k, τ) query. 

As an aside, comparing the two experiments (Figures 1 and 
A.2), we notice that, to get roughly the same number of matches 
from EED, we need a shorter pattern (and a smaller threshold) for 
the protein dataset. This is because the protein strings have a larg-
er alphabet size (20) than DNA strings (4), which makes a pattern 
more selective. 

Experiments with different settings on protein dataset. Using 
the same parameters as on DNA, we experiment on the protein 
dataset, the result of which is shown in Fig. A.3. We can see that, 
while the trend is about the same as the DNA dataset (Fig. 7), the 
execution times are on a smaller scale (about an order of magni-
tude faster). This is because proteins have a larger alphabet size. 
As a result, patterns with the same length (and with the same k 
parameter − the distance threshold) are more selective, which 
leaves fewer positions to be verified. We show the numbers of 
positions to be verified for various methods on the protein dataset 
in Fig. A.4, which are considerably fewer than in the DNA dataset 
− Fig. 11. 

Executions times when varying parameter ࢑ on proteins. The 
experimental results are shown in Figure A.5. Compared to the 
results on DNA dataset in Figure 14, we observe that the running 
time increase as k grows becomes more pronounced with the pro-
tein dataset due to its larger alphabet size. 
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