
PALM: Parallel Architecture-Friendly Latch-Free
Modifications to B+ Trees on Many-Core Processors

Jason Sewall Jatin Chhugani Changkyu Kim Nadathur Satish Pradeep Dubey
Parallel Computing Lab

Intel Corporation
Contact: jason.sewall@intel.com

ABSTRACT
Concurrency control on B+ trees is primarily achieved with latches,
but serialization and contention can hinder scalability. As core
counts on current processors increase, it is imperative to develop
scalable latch-free techniques for concurrency control.

We present PALM, a novel technique for performing multiple
concurrent queries on in-memory B+ trees. PALM is based on
the Bulk Synchronous Parallel model, which guarantees freedom
from deadlocks and race conditions. Input queries are grouped
and processed in atomic batches, and work proceeds in stages that
preclude contention. Transitions between stages are accomplished
with scalable point-to-point communication. PALM exploits data-
and thread-level parallelism on modern many-core architectures,
and performs 40M1 updates/second on trees with 128M keys, and
128M updates/second on trees with 512K keys on the latest CPU
architectures. Our throughput is 2.3X–19X that of state-of-the-
art concurrent update algorithms on in-memory B+ trees. PALM
obtains close to peak throughput at very low response times of
less than 350µs, even for large trees. We also evaluate PALM on
the Intel R© Many Integrated Core (Intel R© MIC) architecture, and
demonstrate a speedup of 1.5–2.1X for out-of-cache tree sizes on
an Intel R© Knights Ferry over a pair of Intel R© Xeon R© processors
DP X5680 (Westmere-EP) in a dual-socket configuration.

1. INTRODUCTION
The B+ tree is one of the most widely-used data structures in

databases [12], and there has been a great deal of work towards
achieving the best possible performance with them. A large portion
of this work deals concurrency control to enable parallel computa-
tion [3, 4, 23, 33, 18, 24, 11].

Much work in this area focuses on disk-based databases; the per-
formance of these systems is generally limited by disk I/O band-
width. However, as memory capacity has increased dramatically,
many database tables and their corresponding index structures now
reside completely in main memory — eliminating disk I/O oper-
ations. Systems exist now with more than 1TB of memory; this

1The suffix ‘K’ indicates ‘thousand’, the suffix ‘M’ indicates ‘million’, and the suffix
‘B’ indicates ‘billion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

is projected to further increase in next-generation systems [26].
Furthermore, modern processors have increased compute power
tremendously by integrating multiple cores on a single chip with
widening Single Instruction, Multiple Data (SIMD) units in each
core. For the foreseeable future, most gains in computation power
will come from expanding amounts of parallelism; scalable parallel
algorithms are essential.

Previous work on concurrent traversal and updates to B+ trees
has relied on the use of latches2 to avoid race-conditions and in-
consistencies [6]. However, their use forces serialization of some
queries and can result in poor scaling, particularly in the pres-
ence of skewed input. To skirt these penalties, the use of several
distinct classes of latches, along with versioning schemes, have
been proposed [6]. Frequently, demanding scalability from latch-
based schemes results in complicated code that is difficult to verify
and maintain; robust schemes must preclude deadlocks and race-
conditions, and considerable effort must be expended to do so.

The acquisition and mere inspection of latches can introduce sig-
nificant overhead as communication costs — to do so, the memory
hierarchy found in many-core architectures must fetch the memory
associated with a latch into the cache of the processor the thread is
running on, which in turn may require that it be flushed from other
caches. Latches that are frequently modified and/or read will ‘ping-
pong’ between caches, incurring latency and bandwidth costs [21].

These complications suggest a need for latch-free algorithms
for efficient use of architectural resources (compute/memory band-
width). In this paper, we present PALM, a novel technique for
performing multiple read/modify queries on an in-memory B+ tree
in a bulk synchronous fashion, without the use of latches. Bulk
Synchronous Parallel (BSP) algorithms proceed in a sequence of
steps, each with a local computation, communication and barrier
synchronization phase [34].

In our scheme, we apply the BSP model to concurrent queries
on B+-trees. Input queries are grouped and executed in atomic
batches; the work in a batch is divided among threads. All read
queries occur before modifications to the tree are allowed. We op-
timize the traditional BSP model for fine-grained queries on many-
core processors — in particular, we minimize the use of expensive
all-to-all barriers and instead use more efficient point-to-point syn-
chronization between pairs of threads in order to between the stages
of the algorithm. Dependencies between queries within a batch are
resolved robustly and efficiently. This model ensures that PALM is
inherently free of deadlocks and data race conditions, making the
code easier to debug and maintain.

2Following Graefe [11], we make a distinction between locks and latches; the former
is a concept related to the semantics of database transactions, while the latter is used
to control updates to in-memory data at a thread-level — these are the ‘locks’ referred
to outside the database community

795

PALM is readily parallelizable, scalable, and is asymptotically
superior to sequential B+ tree modification techniques. Unlike
asynchronous techniques using latches, our technique scales on
skewed input on even large numbers of cores.
Contributions
• Latch-free batched B+ tree queries.
• Many-core-friendly — scalable, SIMD- and cache-aware.
• Fastest performance for 512K–1B.

– 40M updates/second on trees with 128M keys, 128M
updates/second on trees with 512K keys on CPUs.

– 100%-update performance within 1.6X of 100% search.
• Obtain close to peak throughput at quick response times, typ-

ically between 60–350µs.
• 2.3X–19X the state of the art on skewed distributions.
• Further 1.5–2.1X on Intel R© Knights Ferry.
• Straightforward to test and maintain.

We propose PALM as the algorithm of choice for maintaining mod-
ifiable indexes on current and future many-core architectures.

2. RELATED WORK
B-trees [2] were designed to accelerate search queries on disk-

based databases while supporting modifications. The importance
of performing updates concurrently with searches was recognized
early on, and there is a large body of work dealing with concurrency
control on B-trees. A number of early papers focused on latch cou-
pling, using read-latches and update-latches to support concurrency
and remain free of deadlocks. Bayer and McCreight [3] proposed a
number of latching schemes that relied on predicting splits; Bern-
stein et al. [4] covered a number of protocols for tree latching.

B-link trees, proposed by Lehman and Yao [23], relax the struc-
ture of B-trees to allow nodes to expand using high fence keys and
pointers to split successors. Srinivasan et al. [33] and Johnson et
al. [18] compare various concurrency control schemes for B-trees;
both concluded that B-link trees were superior. Follow-up work
proposed techniques for B-link node deletion [24], and other modi-
fications to lock coupling and B-link trees have been proposed; the
reader is referred to Graefe’s comprehensive survey [11].

These techniques rely on latching schemes, which can have high
overhead and can limit concurrency in update and search queries
— this motivates us to develop a latch-free scheme that efficiently
supports a large number of concurrent searches and updates.

As main memory sizes have grown, in-memory databases have
become a growing topic of interest. Cache-sensitive search (CSS)
trees [28], and cache-sensitive B+ trees (CSB+-trees) [27] were
proposed to take advantage of processor caches. Trees that buffer
queries have also been proposed [36]. However, concurrency was
not a consideration in these papers.

Cha et al. [6] propose a variation on B-link trees to handle con-
current queries on in-memory databases. Their scheme maintains
multiple versions of nodes, and may require multiple retries for re-
trieval queries to account for nodes that are updated during search.
Latches are used to handle concurrent updates.

In recent years, the use of many-core processors for database
queries has grown; larger main memories have reduced the im-
pact of I/O bottlenecks and, with the increasing on-die cores, ex-
panded the potential for high-performance databases. A number
of recent publications that have revisited various classic database
problems from the perspective of many-core computations; aggre-
gation [9], and sorting [30]. Fast architecture-sensitive search trees
(FAST), recently proposed by Kim et al. [20] deals exclusively with
searches on contemporary highly parallel architectures, and Hari-
zopoulos and Ailamaki [16] proposed the ‘Staged Database’ con-

cept, where functionally distinct modules of a database are parti-
tioned among multiprocessing resources to improve manageability
and performance.

PALM shares an underlying structure with the Bulk Synchronous
Parallel (BSP) [34]. The BSP model is popular in many fields, such
as graph analytics [25], graphics [17] and high-performance com-
puting [35]. However, traditional BSP programs typically ran on
clusters and must do sufficient work to amortize high network com-
munication costs. This results in coarse-grained queries, resulting
in unacceptable response times in the context of concurrent B+-tree
queries. Given the advent of many-core processors, we can now ex-
ploit fine-grained parallelism due to lower communication costs —
resulting in low response times. In this work, we show that we can
achieve high throughput with very low response times using a BSP
model tuned for many-core processors.

PALM operates on queries in batches; each batch can have up-
date and search queries. Buffered inserts was previously proposed
by Arge et al. [1] and analyzed by Graefe [10]. These works were
motivated by the desire to avoid disk I/O bottlenecks — our tech-
nique focuses on avoiding the penalties of latches in in-memory
databases. Chip multiprocessors operate differently from conven-
tional multiprocessor systems, in that inter-thread communication
can be done efficiently with on-chip caches [15]. We exploit this
property to help threads coordinate stages of the algorithm with
a specialized low-overhead point-to-point synchronization mecha-
nism that helps our algorithm to scale with increasing core count.

3. PARALLEL BATCHED TREE QUERIES

3.1 Motivation
PALM operates on in-memory B+ trees that index a column of

a database D by keys from a totally-ordered set K; the tree stores
pairs (k, r∗k). The pointer r∗k refers to a secondary structure rk that
enumerates the ids of tuples with key k in D — this indirection is
typical of databases supporting multiple tuples with the same key.

For a tree TD indexing a database D, PALM supports three
queries with the following semantics:

RETRIEVE (TD, k): Return rk, or ∅ if k /∈ TD .
INSERT (TD, (k, e)): If k ∈ TD , append e to rk; otherwise, add a

new rk = {e}, and add the new pair (k, r∗k) to TD .
DELETE (TD, (k, e)): If k ∈ TD , remove e from rk, then if |rk| =

0, remove (k, r∗k) from TD . If k /∈ TD , do nothing.

RETRIEVE is strictly a read query and returns results, while INSERT
and DELETE are read/write (modify) queries returning nothing.

Furthermore, no RETRIEVE query has effect upon another RE-
TRIEVE’s result, and INSERT and DELETE affect each other’s re-
sults (and the results of RETRIEVE) only when they use same key.
These properties allow O to reordered (see Sec. 3.2.5).

3.1.1 Asynchronous tree queries
It can be difficult to effectively operate on data structures across

multiple threads. Individual queries often are too little work to ben-
efit from thread-level parallelism — the more common approach to
utilizing threads in database indexes is to have each thread process
a single query asynchronously.

Validity Assuring that such structures may be read and written by
multiple threads properly and efficiently is challenging. By
‘properly’ we mean those qualities that are concerns for par-
allel algorithms:

Correctness: Write queries must not interact in such a way
as to leave the tree invalid/incorrect.

796

Serializability: A sequence of queries must return the same
results and result in the same D as if run sequentially.

Robustness: The method should preclude deadlock and live-
lock, or at least detect and address them.

Performance Some asynchronous methods use latches for read
and update queries; others need them only for update queries.
Such latches always incur performance penalties.
The problem of latch contention — when a thread tries to
acquire a latch but cannot, and must wait — is the most eas-
ily recognized performance issue with latch. This typically
depends on the types of queries, the size of the tree, and the
number of threads. As a rule, contention increases with the
number of modify queries, and with the number of threads
working on the tree. These problems worsen as the number
of threads (and concurrent queries) increases, which can hin-
der the scalability of latch-based methods, particularly when
considering multi-socket machines.

Complexity For correctness and performance, asynchronous tech-
niques for tree queries often modify the tree structure to in-
clude latches (sometimes several per node) and additional
pointers are added to reduce contention. Sophisticated proto-
cols ensure serializability and avoid race conditions/deadlock.

3.1.2 Synchronous tree queries
The difficulties associated with asynchronous, latch-based tree

structures — their complexity and performance — suggests that, if
possible, latches should be avoided.

Rather than have multiple threads each perform an query on a
tree independently and relying on latches to handle communication
and correctness, one can imagine a scheme where threads oper-
ate cooperatively to perform a series of queries. By using a syn-
chronous approach to managing threads working on the tree, we
eliminate contention — each tree node that needs to be modified
will be implicitly ‘owned’ by a single thread, and all threads will
automatically avoid reading nodes that are being modified.

PALM uses these concepts to execute scalable and robust queries
on in-memory B+ trees; details follow.

3.2 Algorithm

Algorithm 1 Our algorithm for batch queries
PALM (O, TD, i, t)

// O are queries, TD is the tree
// i is the thread-id, and t is the # of threads

1 Oi = PARTITION-INPUT (O, i, t)
2 Li = SEARCH (Oi, TD)
3 SYNC (i, t)
4 L′i = REDISTRIBUTE-WORK (L0, . . . , Lt−1, i)
5 Ri, O

′
L′i

= RESOLVE-HAZARDS
`
L′i, O,D

´
6 for (Oλ, λ) in (O′

L′i
, L′i)

7 M1
i = M1

i ∪MODIFY-NODE (Oλ, λ)
8 SYNC (i, t)
9 for d = 1 to depth (TD)− 1

10 Md′
i = REDISTRIBUTE-WORK

`
Md

0 , . . . ,M
d
t−1, i

´
11 for (Λ, η) in Md′

i

12 Md+1
i = Md+1

i ∪MODIFY-NODE (Λ, η)
13 SYNC (i, t)
14 if i = = 0

15 HANDLE-ROOT
“S

Md+1
i , TD

”
16 return R0, . . . , Rt−1

Our algorithm takes as input an ordered sequence (batch) O =
(o0, o1, . . . , oK−1) of K queries from Sec. 3.1 and performs them

simultaneously on an in-memory B+-tree TD . It returns the results
of any RETRIEVE queries given in O, and TD is updated by the
effects of any modification queries therein. O may be the buffered
input from a single source of queries or the aggregated results of
multiple sources — these are collected by a single thread in serial
before the PALM algorithm begins.

The work is performed cooperatively by t threads, and care is
taken to guarantee that (a), the resulting modifications to the tree
and underlying database, as well as the results of any RETRIEVE
queries in the input, are consistent (in the sense of serializability,
see Sec. 3.1.1) with the order inO, and (b), that the resulting (mod-
ified) tree T

′
D is a valid B+-tree.

PALM avoids latches and contention through two invariants: that
the tree is not modified until all reads (searches) have completed,
and that each node’s modifications are the responsibility of just a
single thread. From a high level, the algorithm is as follows:

1. Divide tree queries in O among threads.
2. Independently search for leaves for each query.

–
Stage 1

3. Redistribute work to ensure no modification con-
tention, and ensure ordering of queries.
4. Modify leaves independently.

#
Stage 2

5. Proceed in ‘lock-step’ up the tree, modifying inter-
nal nodes and redistributing work, up to the root.

–
Stage 3

6. A single thread modifies the root, (if necessary),
potentially changing the depth of the tree.

–
Stage 4

It is convenient to think of the algorithm in terms of these concep-
tual ‘stages’; at any point all threads occupy the same stage, and in
so doing, avoid contention issues. See Fig. 1 for a visual descrip-
tion of our technique.

Tree nodes are modified using a generalization of the standard
B+-tree insertion and deletion algorithms; because there are many
queries in a batch, it is sometimes necessary to insert or delete mul-
tiple items (keys or children) from a tree node. In particular, this
can cause nodes to split more than once. Rather than propagate
the results of node splits or underflows to parents immediately, the
information about nodes to be added or removed is kept in mod-
ification lists — these are then coalesced at each node when the
algorithm proceeds to updating the next level. We describe the de-
tails of generalized node modifications in Sec 3.2.3.

See Alg. 1 for a precise description of the overall algorithm; be-
low, we discuss individual sub-procedures:

PARTITION-INPUT This function simply divides the list of queries
O among the t threads evenly; any partitioning is suitable,
but see Sec. 3.2.5, where we modify the order of O.

SEARCH Since our data structure is a standard B+-tree, our search
procedure is no different from the usual one, except that there
are multiple items Oi to search for; we simply iteratively
search for each and collect resulting leaf nodes in Li. We are
assured that the results reflect the state of the tree when each
query was dispatched, because no modifications to the tree
have occurred yet. Search in PALM is able to take advantage
of the multiplicity of queries, resulting in gains in perfor-
mance via architecture-aware optimizations; see Sec. 4.1.

SYNC As presented here, this is a barrier that stops threads from
proceeding until all have arrived. In fact, a less stringent level
of synchronization can serve that requires less inter-thread
communication; see Sec. 3.2.6.

797

In
pu

t

thread 0 thread 1 thread 2 thread 3
R(2) R(19) R(17) R(12) D(18) I(3) R(29) I(35)

2
r2

4
r4

5
r5

16
r16

17
r17

18
r18

19
r19

21
r21

22
r22

29
r29

30
r30

40
r40

6 12 24 29

19 49 53

(a) Divide queries among threads

R(2) I(3) R(17)D(18) R(19)R(22) R(29)I(35)

2
r2

4
r4

5
r5

16
r16

17
r17

18
r18

19
r19

21
r21

22
r22

29
r29

30
r30

40
r40

6 12 24 29

19 49 53

(b) Search leaves; retrieve results

R
et

ur
ne

d
re

su
lts R(2) R(17)R(19)R(22)R(29)

I(3) D(18) I(35)

2
r2

4
r4

5
r5

16
r16

17
r17

18
r18

19
r19

21
r21

22
r22

29
r29

30
r30

40
r40

6 12 24 29

19 49 53

(c) Redistribute and ensure order of ops

R
et

ur
ne

d
re

su
lts R(2) R(17)R(19)R(22)R(29)

2
r2

3
r3

4
r4

5
r5

16
r16

17
r17

19
r19

21
r21

22
r22

29
r29

30
r30

35
r35

40
r40

6 12 24 29

19 49 53

(d) Modify leaves

R
et

ur
ne

d
re

su
lts R(2) R(17)R(19)R(22)R(29)

2
r2

3
r3

4
r4

5
r5

16
r16

17
r17

19
r19

21
r21

22
r22

29
r29

30
r30

35
r35

40
r40

4 12 24 29

19 49 53

(e) Modify internal nodes; redistribute

R
et

ur
ne

d
re

su
lts R(2) R(17)R(19)R(22)R(29)

2
r2

3
r3

4
r4

5
r5

16
r16

17
r17

19
r19

21
r21

22
r22

29
r29

30
r30

35
r35

40
r40

4 12 24 29

6 19 49 53

(f) Modify the root

Figure 1: A visual depiction of the PALM algorithm; four threads (their work identified by color here) cooperate to execute 8 queries on a B+-tree.
This shows only some nodes in a given tree.

3.2.1 Cooperation in REDISTRIBUTE-WORK

In REDISTRIBUTE-WORK, threads re-partition the work at the
current level based on the tree nodes to be modified; this ensures
that each node is modified by exactly one thread. Each query and
modification list affects a single node — the work is implicitly di-
vided based on threads’ ‘ownership’ of tree nodes in each stage.

Each thread i determines which subset L′i of the leaf nodes in Li
it will operate on. The protocol for determining L′i for thread i is
given by the following:

L′i = {λ ∈ Li|λ /∈ Lj , ∀ 0 ≤ j < i} (1)

that is, L′i for a thread i is all leaves that are in Li that are not in Lj
for threads j with index less than i. The procedure to re-partition
the work done on internal nodes Md into Md′ during the inter-
nal modification steps is the same as that given in Eq. (1); simply
substituteMd′ for L′ andMd for L. Eq. (1) gives lower-numbered
threads priority when multiple threads have updates that must occur
on a single node; in general, as tree sizes grow and queries become
more uniformly distributed, the likelihood of load imbalance due to
this protocol diminishes; see Sec. 3.3.

The key observation here is that there is no explicit communi-
cation; threads do not message one another about work they are
discarding or stealing — each thread determines its own work by
inspecting others’ and following an implicit protocol. We are as-
sured that the process is immune to race conditions by virtue of
synchronization points. In Sec. 3.2.5, we describe how this process
can be improved to further minimize communication.

3.2.2 Ensuring correctness with RESOLVE-HAZARDS

It is important that any parallel tree scheme obey the serializ-
ability rule; the results of any RETRIEVE queries returned by our
technique, as well as the final, updated database state, must be iden-
tical to the results of serially inserting each query in the input.

First, queries on distinct keys are independent of one another
with respect to the state of the database D; it is sufficient to ex-
amine queries affecting each key independently. Furthermore, all
queries on a given key are tied to a single leaf node, and this leaf

node will be modified by only a single thread by virtue of the
REDISTRIBUTE-WORK function.

Then each leaf λ resolves serializability concerns independently;
for each unique key k belonging to λ, we visit the sequence of
queries Ok = (oj (k, ·) , oj+1 (k, ·) , . . .) that reference k in the
order they appear in O and perform the query described; adding
tuples for each INSERT, removing tuples for each DELETE, and,
for each RETRIEVE, recording the state of the record in thread i’s
retrieval buffer Ri (see line 5 of Alg. 1).

The net result is that k may have been added to or removed from
D; the TD must be modified to reflect this — we mark k for inser-
tion (or deletion) to (from) λ inOλ. After all threads have finished,S
Ri will contain responses to all RETRIEVE queries in O.

3.2.3 Bulk node modification with MODIFY-NODE

PALM updates tree nodes using MODIFY-NODE; this can be
viewed as a generalization of the standard B+-tree algorithms for
key insertion (and deletion) in two aspects. First, that n ∈ N in-
sertions to (deletions from) a node can be handled at once, rather
than one, and second, that insertion and deletion queries to a sin-
gle node may be performed together. In particular, any number of
splits are permitted to accommodate inserted items and to satisfy
the tree conditions, but changes are not immediately inserted into
the relevant parent node.

There are three distinct outcomes from this function:

Split(s) The node experienced a net gain of elements, and its de-
gree now exceeds MAX-DEGREE; the node is split into two
or more nodes, each of which satisfies the MIN-DEGREE re-
quirement. A modification m is returned containing new
nodes and indicating the parent node to be updated.

Underflow The node experienced a net loss of elements that put
it under MIN-DEGREE; the node will be removed. A modi-
fication η is returned that indicates the node to be removed,
which parent it should be removed from, and all keys found
in descendants of η — these will be re-inserted in the tree
after PALM completes.

798

No external change The node did not change enough to make its
degree invalid. No modification is returned.

Algorithm 2 Our algorithm for updating nodes with multiple simul-
taneous modifications
MODIFY-NODE (Λ, η)

// Λ is sequence of modifications to node η.
// If η is internal, Λ is a modification list.
// If η is a leaf, Λ is a series of INSERT and DELETE queries.

1 E = items (η)
2 K = ∅
3 for m in Λ
4 K = K ∪ orphaned-keys (m)
5 if class (m) = = +
6 E = E ∪ items (m)
7 elseif class (m) = = −
8 E = E \ items (m)
9 if |E| > MAX-DEGREE

10 η, η′, η′′, . . . = BIG-SPLIT(E)
11 return {+,parent (η) , η′, η′′, . . . ,K}
12 elseif |E| < MIN-DEGREE
13 return {−,parent (η) , η,K ∪ descendant-keys (E)}
14 else
15 child-ranges (η) = E
16 return {∅,K}

MODIFY-NODE returns information about how update each nodes’
parent (if at all) in a modification list; as PALM traverses up the
tree, modification lists from the previous level are coalesced at each
node used in the next step. This function modifies leaf nodes with
pairs of key/record-pointers (k, rk), and modifies internal nodes
with modification lists returned from the previous level; see Alg. 2.

The helper function BIG-SPLIT creates one or more new nodes
and divides the node items E between the original node and new
ones, ensuring that each is consistent with MIN- and MAX-DEGREE.

After processing the highest depth in the tree, there may be out-
standing modifications — the root may have split, or may be have
been marked for removal. HANDLE-ROOT resolves these queries.

In the case of outstanding splits in the last modification lists, we
create a new root node and set its children to be the former root
node and the nodes from these splits.

If there are outstanding deletions (i.e., the root node is marked
for removal), we proceed based on the root’s degree; if it is one, we
delete it and promote its single child to the root position, decreasing
the depth of the tree. If it is zero, the tree is empty.

3.2.4 Deletions
DELETE queries can remove keys from leaf nodes, and modifi-

cation lists can remove children from internal nodes. The result is
that nodes can underflow; we mark these for removal in successive
modification lists. However, when deleting these nodes, we must
account for any keys remaining in the node’s descendants; we ag-
gregate these in lines 4 and 13 of MODIFY-NODE (Alg. 2) and pass
them up the tree through modification lists. After we have finished
PALM where O contained DELETE queries, we re-run PALM to
INSERT these orphaned keys.

3.2.5 Reducing communication costs
If the batch of queries O is sorted by the keys k before partition-

ing work, we may reduce the effort to determine threads’ work.
When O is sorted, the leaves Li =

˘
λi0, λ

i
1, . . .

¯
collected in

search will also ordered (from left to right in the tree): within each
Li such that λil < λil+1, and also across threads:

λi ≤ λj ∀λi ∈ Li, λj ∈ Lj , i < j (2)

Threads still follow the protocol defined in Eq. (1): each node
belongs to the lowest-numbered thread that encountered it during
search. However, now each thread inspects adjacent threads in or-
der, potentially terminating early.

The Li of each thread i contains zero or more distinct, ordered
nodes

˘
λi0, λ

i
1, . . .

¯
; thread i must determine if some other thread

h < i has λi0 — if so, λi0 is discarded from Li. Then, if any
λiLi−1 ∈ Li remains (the last ordered element, if |Li| > 0), i must
search j > i for any λjl = λiLi−1, and collect that work. Each
of these searches has the potential to terminate early — as soon as
some λhk 6= λil is encountered for the h < i search, and as soon as
λjl 6= λiLi−1 is encountered in the j > i search.

The procedure is the same for modifications to internal nodes η
in stage 3; by following the above process, these will already be
ordered — we need only enforce Eq. (1) to ensure that a single
thread is responsible for updating any given η.

In general, sorting O has many practical benefits and can im-
prove performance overall. We discuss these benefits and how sort-
ing may be performed efficiently in Sec. 4.2.2.

3.2.6 Point-to-point synchronization
The SYNC function is used to ensure that threads execute each

stage together. With sorted O, we use a synchronization protocol
to eliminate all but one global barrier; this is accomplished with
repeated point-to-point synchronizations. Each thread i communi-
cates only with threads i− 1 and i+ 1 to determine its work. This
is a significant improvement over barriers. See App. A for details.

3.2.7 Transactions
Database systems typically use transactions to achieve meaning-

ful reliability and consistency with users’ requests. This often takes
the form of satisfying ACID (Haerder et al. [14]). PALM deals with
trees that index databases, rather than databases themselves, and as
such does not directly handle transactions; rather, it complements
their implementation in a different layer. The result of a RETRIEVE
query is a list of tuple ids that refer to database entries; the con-
sumer of this information is now free to access the database itself.
In a transactional setting, this may involve consulting and obtaining
locks. Similarly, INSERT and DELETE queries will add or remove
entries from the index tree, respectively. Ghost records [11] can be
used to support transaction and locking.

3.3 Load balancing
PALM initially divides work by evenly partitioning theO queries

among the t threads. The work in the read-only SEARCH in stage 1
is therefore well balanced between threads.

The node ownership protocol described by Eq. (1) requires that
threads redistribute work before updating leaf or internal nodes in
stages 2 and 3; here the balance of work between threads depends
on the distribution of input O and the size of TD . Highly skewed
input may touch only a few leaves; a pathological example is when
all ki ∈ O are greater than the largest key kj in TD — all of O
belongs to a single leaf node.

The contention avoidance scheme described above prevents mul-
tiple threads from cooperating on such input, but MODIFY-NODE
is inherently more efficient for these inputs. Furthermore, PALM
is still able scale on highly skewed by having threads cooperate to
update a single node.

3.3.1 Skewed input to MODIFY-NODE

In BIG-SPLIT, the node’s original items (Iλ) and the new items
(Inew) are spread among the new leaves; ifO is sorted, as suggested
in Sec. 3.2.5, these can be merged in O (|Iλ|+ |Inew|) time.

799

The efficiency of MODIFY-NODE improves with the number of
elements W to be inserted to a single leaf at once; with sorted
leaves, theW inserts will takeO(W+|Iλ|) time, as will BIG-SPLIT
(should one occur). When a batch of size K inserts go to L leaves,
the total cost is O(K+L|Iλ|): as L decreases, less computation is
required to insert K keys.

Highly skewed input is characterized by highK/L ratios; PALM
is capable of handling such data sets efficiently. More details, in-
cluding analysis for unsorted leaves, can be found in App. C.

3.3.2 Scaling with highly skewed inputs
For highly skewed input, PALM achieves high performance by

having all threads cooperatively assist ongoing BIG-SPLITs; the
merge process therein can efficiently be done in parallel [8].

4. IMPLEMENTATION
Modern processors use caches to reduce latency; these operate

with a certain granularity and fetch fixed-size sequences of mem-
ory. It is important to consider the size of cache lines when imple-
menting data structures to avoid wasting bandwidth. Nodes in B+

trees should be allocated in memory to fit in a integral number of
cache lines, and the choice of degree for the tree should be guided
by cache line size; other details about node representation can be
found in App. B.

4.1 Hiding latency in SEARCH

When traversing a B+-tree, the lowest levels will generally not
be cache-resident, and the latency cost of fetching nodes from main
memory to proceed can seriously hinder performance. The batched
approach espoused by PALM allows us to use a latency-hiding
technique to improve throughput.

From the group of Oi queries assigned to a thread i, a subset Q
of them are performed at once — at each level of the tree, each one
of Q inspects the current node it is visiting and determines which
child it will need to visit next. Rather than proceed to the child
directly, a series of prefetch instructions are issued to bring that
node into cache. While node is being fetched, i has next search in
Q inspect its current node and prefetch the appropriate child, and
so on. By the time each of Q has determined the next node to visit,
the next node for the first search in Q will be in cache.

Ideally, Q is chosen such that the computation time to find the
next child node for all Q is at least as much as the latency of fetch-
ing a node from main memory.

A further benefit of sorting the input queries O is that the groups
of keys assigned to each thread will generally follow a coherent
search path through the tree, reducing demand for bandwidth.

4.2 Utilizing SIMD
PALM uses SIMD instructions available in modern CPUs to im-

prove performance in several substeps:

4.2.1 Sorted and unsorted searches
We search the ranges stored in internal nodes to determine which

child node to proceed to next, and these ranges are stored in increas-
ing order. Binary search seems a logical choice from an asymptotic
perspective, but it underperforms linear search for small arrays due
to branch misprediction.

We accelerate individual searches by comparing a search key k
with multiple ranges loaded with SIMD; the results of the compar-
ison are translated through a lookup table and summed to produce
the index of the child node that k belongs in. While the (key, rid)
pairs in leaf nodes are stored unsorted, a similar SIMD comparison

0.
5M 1M 2M 4M 8M 16

M

32
M

64
M

12
8M

25
6M

51
2M 1B

Tree size (in keys)

0
20
40
60
80

100
120
140
160
180

M
qu

er
ie

s/
se

c

Compute Bound Memory BW Bound

100% Search
100% Update

Figure 2: Performance of search and update queries for varying tree
sizes (4-byte keys drawn from uniform distributions used.)

technique (with a different lookup table) can be used to accelerate
each individual leaf search as well.

4.2.2 Sorting and merging
In Sec. 3.2.5, we propose sorting the input queriesO to minimize

communication and improve performance, and in Sec. 3.3.2, we
discuss how node splits require a sort followed by a merge; these
portions of PALM depend on efficient sorting. We use recently
proposed SIMD techniques for sorting [30] to handle these sorting
and merging problems efficiently.

4.3 Performance model
We have built an accurate analytical model to characterize the

performance of PALM. The model computes the number of exe-
cuted instructions and memory bandwidth for each step, and closely
matches the actual run-times (within 5%); this is useful for project-
ing performance on current and future many-core architectures. For
more details, refer to App. C.

5. RESULTS
We have evaluated PALM on the Intel R© Xeon R© processor DP

X5680 (Westmere-EP). Our test platform has 2 sockets (a total of
12 cores running at 3.33 GHz), 96 GB RAM, and runs SusE Enter-
prise Edition Linux 11. The peak CPU compute power per socket
is 150 Gops (300 Gops on 2 sockets) and achievable bandwidth of
44 GBps on 2 sockets.

We initialize our trees (minimum degree 16) by inserting (key,
rid) tuples with 4-byte, 8-byte or 16-byte keys, and 8-byte rids, and
draw (key, rid) queries from various input distributions — we vary
the initial number of tuples in the tree from 512K to 1B. We vary
the update ratio of the queries from 0% (corresponding to all search
queries) to 100% (corresponding to all updates). We measure per-
formance in millions of queries per second (higher numbers are
better); we measure performance on a number of queries 10% of
the tree size, which are performed in batches of 8192 queries each.

5.1 Performance evaluation
Fig. 2 shows the performance of search and update queries with

varying tree sizes. The tree sizes in the figure show the initial num-
ber of tuples in the tree before any queries are handled; the keys
used here are 4 bytes long and uniformly distributed; we present
the performance of PALM with varying key sizes in App. D.2.

We first note that our search and update performance are within
1.6X of each other for the entire tree size range. Since update
queries require searching for the key to find the leaf node to update,
the gap between search and update performance reflects the over-
heads of redistributing work to threads and synchronizing threads
in addition to modifying leaf and internal nodes. Fig. 2 shows that

800

0.0
0.3
0.6
0.9
1.2
1.5
1.8

Pe
rf

.v
sU

ni
fo

rm

Small

(512K Keys)

Medium

(8M Keys)

Large

(128M Keys)

Uniform
Gaussian
Sorted
Self-Similar
Zipf

Figure 3: Performance of 100% update queries on small, medium, and
large trees of 4-byte keys drawn from various distributions as com-
pared to keys from a uniform distribution.

1c
(1t)

1c
(2t)

4c 6c 8c 12c 1c
(1t)

1c
(2t)

4c 6c 8c 12c
0
2
4
6
8

10
12

Sp
ee

du
p

ov
er

Se
ri

al

(a) Small (512K Keys) (b) Large (128M Keys)
of Cores

Uniform
Gaussian
Sorted

Self-Similar
Zipf

Figure 4: Performance scaling on different input distributions with a
query mix consisting of 75% searches and 25% updates into (a) a small
tree (512K tuples), and (b) a large tree (128M tuples) (4-byte keys)

our update algorithm has very low overheads in work distribution,
synchronization, as well as low costs of modifying the tree nodes.
The gap between search and update performance further decreases
for larger tree sizes because the depth of the tree increase sand con-
sequently, search takes more time, while the overhead and costs for
updates remain nearly constant (modifications to internal nodes are
very infrequent). For more on the performance breakdown of our
algorithm, refer to App. D.

Both our search and update performance in Fig. 2 are compute
bound for small trees (512K tuples) since the entire tree fits in
the last level cache on the processor. As the number of tuples in
the tree increases, the performance becomes gradually bound by
memory bandwidth — progressively smaller portions of the tree
are cache-resident. For large trees with 128M tuples (requiring up-
wards of 2GB of storage), the performance is bandwidth bound.
We also compare the throughput of our algorithm to the analytical
model developed in Sec. 4.3. Our results match within 1–5% of the
predicted values (App. C). For such bandwidth-bound tree sizes,
performance will generally be characterized by the depth of search
required for each query.

In terms of absolute performance, the search performance of
PALM is only 2X lower than the performance of a state-of-the-
art read-optimized FAST tree [20]. Note that the FAST tree does
not support update queries. In order to compare with trees that
support updates, we implemented B-link trees [23] using latches
and versioning [6] to support search queries. We further introduced
SIMD and latency hiding schemes into the implementation for a
fair comparison of concurrent performance. The update perfor-
mance on PALM is 2.3-19.1X better than the improved B-link
algorithm. We present more details regarding the implementation
and results in Sec. 5.3.

5.1.1 Impact of skewed data
We have evaluated PALM with several input distributions, de-

fined in App. D: uniform, Gaussian, sorted, self-similar, and Zipf.
Fig. 3 shows the results of our evaluation when the algorithm is

run using update queries with 24 threads (12 cores, 2-way Simulta-
neous Multi-Threading (SMT) core) for small, medium, and large

35% 10% 0.1%
Update Ratio

0
20
40
60
80

100
120

M
qu

er
ie

s/
se

c

1 x Intel® X5680
2 x Intel® X5680
Intel® Knights Ferry

Figure 5: Comparison of query throughput on a 20M key tree for 1–
and 2–socket configurations of Intel R© Xeon R© processors DP X5680
(Westmere-EP) and Intel R© Knights Ferry for a variety of update ratios,
for 4-byte keys drawn from a uniform distribution,

trees. The baseline for the graph is the performance of uniformly
distributed queries. The performance of our algorithm is stable with
respect to input variations, and our overall performance on differ-
ent distributions is within a factor of 1.6X from the uniform
distribution. A data becomes more skewed, queries repeatedly ac-
cess the same portions of the tree — this results in smaller working
sets and improved performance as cache behavior improves. In
particular, the performance of queries from the sorted and Zipf dis-
tributions are not bound by memory bandwidth even for large trees.
The performance of our scheme improves with skewed data.

5.1.2 Performance scaling
Fig. 4 shows our performance scaling from 1 to 12 cores of our

dual-socket system for small and large trees. For 1 core, we show
the effect of SMT through the ratio of performance on 1 thread to
that on 2 threads running on the same core. The performance results
for all other number of cores are with SMT turned on. For small
trees, Fig. 4(a) shows that we obtain 10X–11.6X scaling from 1
core to 12 cores. Scaling is uniformly good across different dis-
tributions; load imbalance and synchronization costs are low.

For large trees, we obtain 6.5–10.5X scaling on various dis-
tributions. The performance on large trees is determined by the
available memory bandwidth, since the working set does not fit in
cache — applications generally do not scale once bandwidth has
been saturated. Our tests using queries from the sorted and Zipf
distributions only visit relatively small portions of the tree, as de-
scribed earlier — PALM is not bandwidth-bound in these cases,
and we achieve scaling of 10.5X and 9.3X for the sorted and Zipf
distributions, respectively.

For both small and large trees with various distributions, we find
that SMT only gives us a 10–25% benefit; SMT generally benefits
the algorithms bound by memory latency and instruction depen-
dencies. PALM efficiently utilizes data-level parallelism to achieve
2.8X on the 4-wide SIMD found on our test platform.

5.2 Comparison with Intel R© MIC
We have implemented PALM for the Intel R© MIC architecture3,

and analyzed the performance in a variety of scenarios.
Fig. 5 shows that our Intel R© Knights Ferry implementation is

1.5X faster than our dual-socket CPU implementation for modest
tree sizes (20M keys) for frequently updated trees and 2.1X faster
for nearly pure search queries. This 20M key tree occupies over
360MB of memory; Intel R© Knights Ferry’s wide SIMD and higher
bandwidth help it outperform the dual-socket CPU.

3The Intel R© MIC architecture is an Aubrey Isle-based [31] silicon platform and
Intel R© Knights Ferry [32] is its first implementation with 32 cores running at 1.2GHz.
It is an x86-based many-core processor architecture; each core has a scalar unit as well
as a vector unit that supports 16 32-bit operations per clock. Intel R© Knights Ferry has
an 8MB globally-coherent L2 cache that is partitioned among the cores. Our imple-
mentation of PALM on Intel R© Knights Ferry differs from the CPU implementation
only in the addition of code to use the 16-wide SIMD capabilities and an increase of
the input batch size to give a larger portion of queries to each of the 128 threads used.

801

0

1

2

3

4

5

6

7
Sp

ee
du

p
ov

er
B

-L
in

k

Small
512K

Medium
8M

Large
128M

(a) Update ratio 25%

Small
512K

Medium
8M

Large
128M

(b) Update ratio 75%

15.4 13.3 12.5 17.5 16.7 19.1

Uniform
Gaussian
Sorted
Self-Similar
Zipf

Figure 6: Relative performance of PALM as compared to B-link Trees
for small, medium and large trees of 4-byte keys on different distribu-
tions and update ratios of (a) 25% and (b) 75%. PALM is 2.3X – 19.1X
faster than B-link Trees.

The update/search ratios chosen for these experiments are based
on those found in the Transaction Processing Performance Council
(TPC)’s standard benchmarks; namely TPC-E, TPC-C, and TPC-
H, which were determined by Chen et al. [7] and Kavalanekar et
al. [19] to have update ratios of 35%, 10%, and 0.01%, respectively.

5.3 Latency and PALM vs other algorithms
Previous work [36] indicates that buffering methods do not guar-

antee fast response times, and therefore they force a flush every
0.5–1 seconds. In contrast, our scheme allows for very low re-
sponse times of less than 350µs even without explicit interrupting
the update process. Please see App. D.3 for a detailed analysis of
throughput and latency in PALM.

We compare PALM to the best known technique for concur-
rent inserts — the B-link tree [23]. This uses latches and version-
ing [6] to support asynchronous search queries while inserts require
latches on leaf nodes. PALM is 2.3X – 19.1X faster than B-link
trees for a variety of tree sizes and input distributions; see Fig. 6,
and see App.D.4 a detailed description of our comparison.

6. DISCUSSION AND CONCLUSION
This work describes a scheme for parallel queries on modifiable

trees on many-core processors. Future hardware trends are towards
increasing numbers of cores and increasing bandwidth, and our al-
gorithm efficiently uses both these resources. Contention for locks
will become an increasing source of overhead for many technique
as cores increase in number; this can result in poor scaling — even
the cost of obtaining locks without contention will increase due
to growing costs of cross-core/cross-socket communication. Addi-
tionally, the cost of barrier synchronization increases with the num-
ber of cores [29]. It will become critical to use lock-free algorithms
without all-to-all barriers. PALM uses point-to-point communica-
tion rather than all-to-all barriers and effectively utilizes widening
SIMD resources, making it a good choice for current and upcoming
many-core hardware.

PALM is simple to debug and maintain. The use of a Bulk Syn-
chronous Parallel model avoids the problems of race conditions and
deadlocks that traditional lock-based algorithms face. It is also pos-
sible to avoid these issues using transactional memory [22]. How-
ever, transactional memory does not solve the performance prob-
lems associated with contention, and may require multiple roll-
backs if contention is high. In contrast, our algorithm can complete
without any rollbacks and therefore guarantees low response times.

As part of future work, we intend to extend our implementation
to handle variable-length keys. We will also extend our techniques
to larger data sets that reside on disk, especially given recent trends
towards high-bandwidth SSDs.

7. REFERENCES
[1] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations

on dynamic R-trees. Algorithmica, 33(1):104–128, 2002.
[2] B. Bayer and E. M. McCreight. Organization and maintenance of large ordered

indices. Acta Inform., 1:173–189, 1972.
[3] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta

Inform., 9:1–21, 1977.
[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems. 1987.
[5] L. Breslau, P. Cue, P. Cao, L. Fan, et al. Web caching and zipf-like distributions:

Evidence and implications. In INFOCOM, pages 126–134, 1999.
[6] S. Cha, S. Hwang, K. Kim, and K. Kwon. Cache-conscious concurrency control

of main-memory indexes on shared-memory multiprocessor systems. In VLDB,
pages 181–190, 2001.

[7] S. Chen, A. Ailamaki, M. Athanassoulis, P. Gibbons, R. Johnson, I. Pandis, and
R. Stoica. Tpc-e vs. tpc-c: characterizing the new tpc-e benchmark via an i/o
comparison study. ACM SIGMOD Record, 39(3):5–10, 2011.

[8] J. Chhugani, A. Nguyen, V. Lee, et al. Efficient implementation of sorting on
multi-core SIMD CPU architecture. VLDB, 1(2):1313–1324, 2008.

[9] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip multiprocessors. In
VLDB, pages 339–350, 2007.

[10] G. Graefe. B-tree indexes for high update rates. SIGMOD, 35(1):39–44, 2006.
[11] G. Graefe. A survey of B-tree locking techniques. ACM Trans. Database Syst.,

35:16:1–16:26, July 2010.
[12] J. Gray and A. Reuter. Transaction processing: Concepts and techniques. 1993.
[13] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly

generating billion-record databases. In SIGMOD, pages 243–252, 1994.
[14] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.

ACM Comput. Surv., 15:287–317, December 1983.
[15] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and

B. Falsafi. Database servers on chip multiprocessors: Limitations and
opportunities. In CIDR, pages 79–87, 2007.

[16] S. Harizopoulos and A. Ailamaki. A case for staged db systems. In CIDR, 2003.
[17] Q. Hou, K. Zhou, and B. Guo. BSGP: bulk-synchronous GPU programming.

ACM Trans. Graph., 27(3), 2008.
[18] T. Johnson and D. Sasha. The performance of current B-tree algorithms. ACM

Trans. Database Syst., 18:51–101, March 1993.
[19] S. Kavalanekar, D. Narayanan, S. Sankar, E. Thereska, K. Vaid, and

B. Worthington. Measuring database performance in online services: a
trace-based approach. Performance Evaluation and Benchmarking, pages
132–145, 2009.

[20] C. Kim, J. Chhugani, N. Satish, et al. FAST: fast architecture sensitive tree
search on modern CPUs and GPUs. In SIGMOD, pages 339–350, 2010.

[21] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, C. J. Hughes, C. Kim, et al.
Atomic vector operations on cmps. In ISCA, pages 441–452, 2008.

[22] J. R. Larus and R. Rajwar. Transactional Memory. Synthesis Lectures on
Computer Architecture. Morgan and Claypool Publishers, 2006.

[23] P. Lehman and S. Yao. Efficient locking for concurrent operations on B-trees.
ACM Transactions on Database Systems (TODS), 6(4):650–670, 1981.

[24] D. Lomet. Simple, robust and highly concurrent B-trees with node deletion. In
Data Engineering, pages 18–27, 2004.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[26] H. Plattner. A common database approach for OLTP and OLAP using an
in-memory column database. In SIGMOD, pages 1–2, 2009.

[27] J. Rao and K. Ross. Making B+-trees cache conscious in main memory. ACM
SIGMOD Record, 29(2):475–486, 2000.

[28] J. Rao and K. A. Ross. Cache conscious indexing for decision support in main
memory. In VLDB, pages 78–89, 1999.

[29] J. Sampson, R. Gonzalez, J.-F. Collard, N. P. Jouppi, et al. Exploiting
fine-grained data parallelism with cmps and fast barriers. In MICRO, pages
235–246, 2006.

[30] N. Satish, C. Kim, J. Chhugani, et al. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In SIGMOD, pages 351–362, 2010.

[31] L. Seiler et al. Larrabee: A Many-Core x86 Architecture for Visual Computing.
SIGGRAPH, 27(3), 2008.

[32] K. B. Skaugen. Keynote at International Supercomputing Conference, 2010.
[33] V. Srinivasan and M. Carey. Performance of B+ tree concurrency control

algorithms. VLDB, 2(4):406, 1993.
[34] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,

33:103–111, 1990.
[35] L. T. Yang and H.-X. Lin. Parallel performance analysis of the improved

quasi-minimal residual method on bulk synchronous parallel architectures. The
Journal of Supercomputing, 13(2):191–210, 1999.

[36] J. Zhou and K. Ross. Buffering accesses to memory-resident index structures.
In VLDB, pages 405–416, 2003.

802

APPENDIX
A. POINT-TO-POINT SYNCHRONIZATION

Global all-to-all barriers are conceptually convenient, but can
carry performance penalties by stiffly penalizing thread divergence
and by incurring communication costs; these costs grow increas-
ingly severe when dealing with a large number of threads. It is
possible to relax the need for such barriers in PALM trees through
a synchronization protocol. In Sec. 3.2.5, we show that a sorted
O makes it simple to determine how to re-divide work between
threads; this is because it precisely limits each threads’ domain of
dependence between queries. In order to proceed from stage 1 to
stage 2, from stage 2 to stage 3, or to climb the tree successively
in stage 3, each thread needs to have all its work defined and in
accordance with Eq. (1).

Each threads’ communication is limited to its ‘neighbor’ threads
i− 1 and i+ 1 in PALM’s point-to-point synchronization scheme.
For REDISTRIBUTE-WORK to be correct, a thread i must know if
it must discard its first node λi0 and if it must collect work from
a higher-numbered thread. In most cases, threads need only wait
for their immediate neighbors to be finished with a stage to find
this information; however, it is possible that immediate neighbors
are unable to immediately provide it. Threads that have no items
in Li have no useful information to convey to their neighbors; our
scheme uses these as relays to convey information about work be-
ing done by adjacent threads. Alg. 3 shows our scheme for syn-
chronization with minimal communication. Note that the boundary
threads 0 and t − 1 must be handled specially — they have no
sent-first and sent-last , respectively.

B. NODE REPRESENTATION
Internal nodes in B+ trees with key byte length B have space

for MAX-DEGREE 4-byte child references — each represents the
cache line offset of the child (this allows us to address 256GB of
memory for nodes). They also store (MAX-DEGREE − 1) B-byte
keys that indicate the ranges of the keys in each child’s descendants,
and a nchildren value with enough bits to represent numbers in
[0,MAX-DEGREE] that indicates how many children are referenced
by the node at any time.

Leaf nodes store MAX-DEGREE B-byte keys and 8-byte pointers
representing each r∗, and a nkeys value long enough to represent
the available sizes.

B.1 Parent pointers
Tree queries begin with a downward traversal of the tree using

child references, but it is also necessary to walk up the tree — e.g.,
when a node splits and its parent needs to be updated. Because
these upward walks always ensue downward ones, B+-tree tech-
niques simply keep track of nodes visited during the descent to use
if split or underflow occurs. This is conceptually sound for PALM
trees, but then a path must be recorded for each query in a batch.
It is more practical to have each node store a reference to its parent
that is properly maintained during modification queries. The neces-
sary 4 bytes for this reference are typically available in the padding
added to nodes to ensure they fill cache lines.

B.2 Unsorted leaves
While the (child, range) information kept in internal nodes is

always kept in sorted order, PALM trees do not keys in leaf nodes
are not. The practical benefit of keeping internal nodes in order is to
allow for quick child lookups, and the expense of maintaining this
order is mitigated by the low frequency of splits at higher levels in
the tree.

Leaf nodes are much more frequently updated — the cost of
moving keys and pointers to maintain this order would be more
frequently paid. We simply append inserted (key, rid) pairs to the
items in each leaf, and replace deleted ones with pairs from the
end the list. When a node must be split, we sort the (at most)
MAX-DEGREE keys before merging — this a small part of the cost
of the overall work done in a split.

C. PERFORMANCE MODELING
In this section, we build a simple yet representative analytical

model that characterizes the performance of PALM. This model
also helps in comparing the results projected by the analytical model
to those achieved by our implementation. We focus on the inser-
tion cost in this section, while the retrieval and deletion costs can
be modeled in a similar fashion.

We compute the number of executed instructions (CIbatch), and
also the bandwidth required (CBbatch, in bytes) for each step of the
insertion. We provide a rough sketch of the costs of various com-
ponents of the insertion process due to lack of space. We introduce
the following notations:
K : Number of queries in the batch.
E : Key size (in bytes).
C : Last Level Cache Size (in bytes).
L : Cache line size (in bytes) (equals 64B for CPUs).
T : Minimum Degree of a Node. Max. Degree = (2T -1)
N : Number of keys (all unique) in the B+-tree.
K : SIMD width (in bytes).
P : Number of executing threads.

Algorithm 3 Our algorithm for synchronizing threads
using point-to-point communication

SYNC (i, d)

// i is thread id, d the tree depth we wish to proceed to
1 sent-first , sent-last = FALSE
2 their -first , their -last = ∅
3 if |Md

i | > 1
4 my-first = λd0
5 my-last = λd|Md

i |−1

6 elseif |Md
i | = = 0

7 my-first = ∅
8 my-last = λd|Md

i |−1

9 else
10 my-first ,my-last = ∅
11 while ¬

V
{their -first , their -last , sent-first , sent-last}

12 if my-first ∧ ¬sent-first
13 SEND-FIRST (i− 1, d,my-first)
14 sent-first = TRUE
15 if my-last ∧ ¬sent-last
16 SEND-LAST (i+ 1, d,my-last)
17 sent-last = TRUE
18 if ¬their -first
19 their -first = TRY-RECV-FIRST (i+ 1, d)
20 if their -first ∧ ¬my-first
21 my-first = their -first
22 if ¬their -last
23 their -last = TRY-RECV-LAST (i− 1, d)
24 if their -last ∧ ¬my-last
25 my-last = their -last

803

ρ : Depth of the Tree.
β : Average Occupancy of the Nodes in the B+-tree.
κ : Number of times the split routine is called for a given batch. κ
is dependent on both the buffer size (K), and the input distribution.
µ : Average number of keys in a node, equal to 2βT .
SNL : Non-Leaf Node Size (in Bytes) =L d((4+E)(2T -1) + 4)/L)e.
SL : Leaf Node Size (in Bytes) = L d((8+E)(2T -1) + 4)/L)e.

C.1 Single-thread performance
The time spent for insertion of a batch into the tree can be di-

vided into the following three categories:

1. Sorting the batch of K queries: CIsort = C0K log(K),
where C0 is the number of executed instructions per element
for every iteration of the mergesort algorithm (logK itera-
tions in total). We use a SIMD friendly mergesort implemen-
tation [8]. Since we sort tuples consisting of keys and index,
the total size of each tuple is (E+4) bytes. CBsort = (E+4)K.

2. Searching a key from the root to the leaf: The depth of
the tree (ρ) = d logµN e. Average number of keys in a node
(µ) = 2βT . We use a SIMD-based comparison algorithm,
and compute the number of set bits in the comparison mask.
Since the algorithm works on a SIMD group ofK/E elements
simultaneously, Hence, number of such groups in a node = d
((µE)/K) e. Therefore, CIsearch = ρC1dµE /Ke, where C1
equals the cost of performing the SIMD search on a SIMD-
wide register of keys.

As far as the total bandwidth required is concerned, it is pos-
sible that only a few levels of the tree can fit in cache (true
for medium and large size trees). Say ρ′ levels of the tree
fit in cache. Hence ρ-ρ′) levels need to be fetched from the
main memory, which would include one leaf node, and the
remaining ones would be non-leaf-nodes.
Hence total bandwidth required = Max(0,(ρ-ρ′-1)SNL) + SL.

3. Cost of Actual Insertion: Having identified the node of the
tree where the list of (key,rid) pairs need to be inserted, the ac-
tual process can lead to the following two scenarios: (1) The
pairs can simply be inserted into the leaf node without caus-
ing any splits. (2) Insertion would cause a split, and hence the
keys in the leaf need to be rearranged to obtain a valid B+ tree.
In case of no splitting, the cost of insertion of an element is
simply an insertion cost (copying of key, rid) and increment-
ing some counter. Since this also includes some book keeping
cost (copying keys from various buffers), we denote the total
sum of this as CI insert one.
In the case of splits, we need to perform sorting of the (key,rid)
pairs already present in the leaf node, followed by the merg-
ing of the query (key,rid) pairs. We use a SIMDfied merge-
sort implementation, followed by the SIMD friendly merge
operation. The total cost of split (CIsplit) equals C0µ log(µ).
The cost of merging is already accounted for in CI insert one.
Note that our batched insert scheme ensures that we split a
node into multiple nodes by sorting the already existing keys
in the node only once, as opposed to using single inserts, that
would cause as many splits as the number of new leaf nodes
created.
Note that when a non-leaf-node is split, we do not need to sort
the exising keys, and hence only a merge is required. In addi-
tion, since non-leaf-node splits occur µ times less frequently,
the impact of non-leaf-nodes has a negligible impact on the
run-time (for T ≥ 8).

As far as memory bandwidth is concerned, CBsplit = SL. Note
that SL will be replaced by SNL in case we are dealing with split-
ting of non-leaf nodes. Also, note that new nodes are created dur-
ing this process, but one can allocate this memory in batches during
some compute-bound phase of the algorithm, and potentially hide
the bandwidth associated with it.

Another important factor that dictates the total run-time is the
number of splits (κ). For uniformly random data, we expect the
input queries to be uniformly spread across the leaf nodes, and as
such, the number of simultaneous splits for any node may be one
(asymptotically κ = (K/µ). In case of skewed data, we expect the
number of nodes being split to reduce substantially. Consider a
completely sorted sequence of input queries, such the minimum
key of the batch being inserted is greater than the maximum key in
the tree. Now all the queries will will go to the right most leaf node
of the tree. Although K/T nodes will be created, the split routine
will only be called once, and hence κ = 1.

Total cost for a batch. As far as the number of instructions is
concerned, CIbatch 4 = CIsort + KCIsearch + KCI insert one +
κCIsplit.

The bandwidth cost can be formulated in a similar way from the
description above. Now lets consider two examples to compute
the cost, and compare it with the obtained run-times. We will then
compare the run-times of the parallel implementation with the val-
ues predicted by the model.

Consider a tree with 512K unique keys, with keysize (E) = 4B.
Assume the keys are arriving in a uniformly random fashion, and
hence β = 0.7 [11]. We chose T = 16 for our implementation,
since it provides the right balance between the tree depth and the
frequency of splits (for various input distributions). Hence, µ =
2(0.7)(16) = 22.4, and ρ = 5. As far as costs C0 and C1 are con-
cerned, C0 = 5 [8], and C1 = 6 (computed from our code by inspect-
ing the assembly instructions generated). Furthere, CI insert one =
20 ops. Say the batch size (K) equals 8192. Furthermore, κ =
8192/22.4 = 365. The cache size (C = 24MB), and hence the tree
completely fits in the last level cache. Hence we focus on the exe-
cuted instructions to predict the run-time.

Putting it all together,
CIsort = (5)(8192log(8192)) = (8192)(65).
CIsearch = 8192(6)(16/4)d((22.4)(4)/16)e = 8192(180).
CI insert one = 8192(20).
CIsplit = (365)(5)(24)(5) = 365(600) = 8192(26.7).

Hence, total cost per key = 65 + 180 + 46.7 = 291.7 cycles (as-
suming IPC=1). Our implementation reports 294.2 cycles on 1-
core, which is within 1% of the predicted performance.

For a larger input set, say with 128M keys in the tree, ρ = 7, and
only 5 levels (at an average) can be cache-resident (cache-size on
our machine is 24MB, while the dataset size is around 2GB). Hence
the search time for the first 5 levels is around 5(36) cycles, while
the remaining two levels need to be fetched from the main mem-
ory. One non-leaf node, with SNL = 256B, and one leaf node, with
SL = 384B. In general, since we are accessing multiple cache lines
together, the hardware pre-fetcher starts preemptively fetching ex-
tra cache lines. Although this number of extra cache-lines varies
between different hardwares, our separate benchmarks reveal that
around 2 extra cache-lines are also brought in (once we access more
than 2 cache-lines). Note that since the last two levels are fetched
4There also exist other costs like loop overhead, register spills/fills, etc. We choose the
degree of the tree in a way that such overheads are reduced to an insignificant portion
of the run-time. Choosing a small value of T exposes such overheads, and reduces the
efficiency of the code.

804

100% 75% 50% 25% 0%
Update Ratio

0
10
20
30
40
50
60

M
qu

er
ie

s/
se

c

4b 8b 16b

(a)

0 100 200 300 400
Response time (µs)

0
20
40
60
80

100
120
140

M
qu

er
ie

s/
se

c

Small (512K)
Large (128M)

(b)

Figure 7: (a) Performance of queries on large trees with varying
update ratios for 4-, 8- and 16-byte key sizes, drawn from uni-
form distributions. (b) Throughput vs response times for small
trees and large trees achieved by varying query batch sizes.

from main memory, the time to sort (for splits) can be interleaved
with cache line transfer, and the total time spent on the last two lev-
els of the tree would simply be the sum of times spent on fetching
these two levels. Since one core can utilize up to 50% of the peak
bandwidth of the socket, we expect to get around 3.5 bytes/cycle.
Hence total search time = 180 + (256+128+384+128)/3.5 = 436
cycles. Adding the time to sort the queries, the total time adds up
to around 501 cycles per input query. Our implementation reports
around 526.5 cycles, which is within 5% of the predicted perfor-
mance.

Now consider a distribution where input keys are all unique and
sorted. For sorted input distribution, β = 0.5 [11], and hence µ =
16. For input tree with 512K keys , the depth of the tree is still 5.
Hence the search time becomes 24*5 = 120 cycles per key. As far
as splitting cost is concerned, since κ in this case would be 1 for
the batch, the sorting cost per key is negligible, around 0.05 cycles.
Hence the cost of performing inserts is actually much faster than
the cost of insertion on trees with random distributions. The overall
run-time per key sums up to 65 + 120 + 20 = 205 cycles, while the
implementation reports around 204.2 cycles, which is within 1%
of the predicted performance.

As the tree size gets larger, since the input insert queries are all
greater than the maximum key in the tree, they all traverse down
the right-most node at each level, and hence the resultant imple-
mentation is expected to be compute bound. For a tree with 128M
keys, the total run-time would be 65 + (7)(24) + 20 = 253 cycles.
The implementation reports around 260.8 cycles, which is within
3% of the predicted performance.

C.2 Multi-thread performance
Our parallel algorithm performs all the above tasks in parallel,

with appropriate sync points. For trees that completely fit in cache,
CIsearch would scale linearly for part of the tree that fits in cache,
while the remaining levels would scale up to the bandwidth limita-
tions of the system. The cost of the barrier (denoted as Cbarrier)
on our system was around 5000 cycles (for 12-cores).

Consider the uniformly random distribution with 512K keys. As-
suming linear scaling (and negligible cost of communication), the
parallel time should be CIsort/P + CIsearch/P + CI insert one/P
+ CIsplit/P + Cbarrier = 65/12 + 180/12 + 46.7/12 + 5000/8192 =
24.9 cycles. In practice, we achieve around 25.7 cycles, which is
within 4% of the predicted values.

We can similarly project the performance for large trees and
other distributions.

Summary. Our analytical formulation models the compute and
bandwidth performance limits. Since our actual results match these

limits, we conclude that our implementation is either compute or
bandwidth limited, and is able to efficiently utilize the underlying
architectural resources.

D. RESULTS

D.1 Input distributions
We used a variety of input key distributions to evaluate PALM:

Uniform The queries are chosen from a uniform random distribu-
tion over the entire range of 4-byte, 8-byte or 16-byte values.

Gaussian The queries are chosen to follow a Gaussian distribution
with mean ofN/2, whereN is the number of tuples in the tree
and a standard deviation of 0.5% of the mean.

Sorted The set of queries is sorted in increasing order with respect
to the keys. This can occur when keys are sorted prior to tree
building. Since each successive query is larger than all pre-
ceding queries, all search and update queries will only access
and update the rightmost path and leaf node in the tree.

Self-similar The queries are chosen using a 80–20 rule as described
in [13]: 80% of the input tuples cover only 20% of the overall
cardinality of the keys.

Zipf The keys of the queries follow the Zipf distribution [13], which
generates a skewed distribution of keys. The Zipf distribution
is parameterized by the value of θ, and we use θ = 1. We use
this as a proxy of the actual query distribution in real world
data [5]. Queries following a Zipf distribution will access
some paths of the tree more often than others.

D.2 Impact of varying key sizes/update ratios
Fig. 7(a) shows the performance of a combination of search and

update queries with varying update ratios for tuples with 4-byte,
8-byte and 16-byte keys chosen from a uniformly random distribu-
tion. All queries were run on a large tree with 128M existing tuples.
The performance on 4-byte keys varies from 38M queries per sec-
ond for 100% updates to 56M queries per second for 0% updates.
For larger keys, the performance drops — we need to execute more
instructions and consume more memory bandwidth to sort, search
and update nodes. For 16-byte keys, the performance for 100% up-
dates is about 17M queries/second and 25M queries/second for 0%
updates.

D.3 Latency vs throughput
Fig. 7(b) shows the trade-off between response time (latency) to

a single query and throughput of query processing by varying the
batch size. The response time of a query is defined as the time that
taken to process all queries in the input batch.

Fig. 7(b) shows that for small trees, we obtain 80% of peak
throughput even at a very low response time of 60 microseconds.
We also get to 99% of the peak throughput with a response time
of 150 microseconds. For large trees with 128M tuples, we get to
80% and 99% of peak throughput at 100 and 350 microseconds
respectively. These response times are low enough to allow our
scheme to be used even in real-time databases. The main reason
for our low response times is that even for small buffer sizes of a
few thousand elements, we obtain close to peak throughput. We
advocate the use of buffering for updating index trees since it can
result in improved throughput as well as responsive systems.

D.4 Comparison to B-link
In order to perform a fair comparison, we have also incorpo-

rated our SIMD and latency hiding scheme into B-link, so that the

805

Tree Size Sorting Searching Modify
Small 20% 49% 31%
Medium 9% 67% 24%
Large 6% 69% 25%

Table 1: Performance Breakdown in terms of the percentage of
time spent in each step for a query mix consisting of 100% up-
date queries on small, medium and large size trees. Tuples are
drawn from a uniformly random distribution. All breakdowns
are for runs with 24 threads.

resultant numbers bring out the scaling of their algorithm5. The re-
sultant B-link numbers of our implementation on single-thread are
comparable (within 5%) of the performance numbers of PALM on
single-thread.

Fig. 6 shows the relative speedup of PALM with varying update
rates. The numbers for the various input distributions are shown. In
Fig. 6(a), for uniformly random distributions, PALM is 2.3X – 2.6X
faster than B-link trees for sizes; B-link suffers from the overhead
of communication of the latch data structure, which potentially is
touched by various cores on the same socket and across sockets,
increasing latency and reducing scaling.

As data skewness increases (Gaussian, self-similar and Zipf),
contention on latches increases, further reducing scaling of B-link.
The relative performance of PALM increases to 2.9X – 3.2X, even
on large trees. Sorted input reflects the worst case, where all the

threads compete to update nodes at each level of the tree; only one
thread can make progress. Fig. 6(b) shows further increase in rela-
tive performance for a larger quantity of updates.

To evaluate PALM’s single-thread performance, we evaluated
it against a reference scalar buffered CSB+ implementation [36].
PALM demonstrated 2.3X higher throughput for small and medium
trees and around 2.8X higher throughput on large trees (primarily
due to a combination of better SIMD utilization and latency hid-
ing).

D.5 Performance breakdown
Table 1 shows the percentage of time spent in sorting, searching

and tree modification for a query mix consisting entirely of update
queries. Results are shown for varying tree sizes (number of tuples
in the tree) with 24 threads. The table shows that about 50–70% of
the runtime in spent in searching for the leaf node in which to insert
the tuple. The time spent in the actual modification of tree nodes
is only around 30%. Moreover, the percentage of time spent in
search increases with tree size, since more levels must be traversed
in search. We also note that the time spent in sorting the queries
is only 10–20% of overall time. We find that sorting the queries
results in a net speedup in overall runtime.

5Performance numbers on much older hardware are given the original paper [6]; even
after normalizing for frequency, our performance on a single-thread is 2X theirs. They
reports data only for uniform distributions, while we focus on a wide-range of distri-
butions.

806

