
Generating Efficient Execution Plans for Vertically
Partitioned XML Databases

Patrick Kling, M. Tamer Özsu, Khuzaima Daudjee
Cheriton School of Computer Science, University of Waterloo
{pkling, tozsu, kdaudjee}@cs.uwaterloo.ca

ABSTRACT

Experience with relational systems has shown that distribution is
an effective way of improving the scalability of query evaluation.
In this paper, we show how distributed query evaluation can be per-
formed in a vertically partitioned XML database system. We pro-
pose a novel technique for constructing distributed execution plans
that is independent of local query evaluation strategies. We then
present a number of optimizations that allow us to further improve
the performance of distributed query execution. Finally, we pres-
ent a response time-based cost model that allows us to pick the best
execution plan for a given query and database instance. Based on
an implementation of our techniques within a native XML data-
base system, we verify that our execution plans take advantage of
the parallelism in a distributed system and that our cost model is
effective at identifying the most advantageous plans.

1. INTRODUCTION
Over the past decade, XML has become a commonly used for-

mat for storing and exchanging data in a wide variety of systems.
Due to this widespread use, the problem of effectively and effi-
ciently managing XML collections has attracted significant atten-
tion in both the research community and in commercial products.
One can claim that the centralized management and querying of
XML data (i.e., data residing on one system) is now a well under-
stood problem. Unfortunately, centralized techniques are limited
in their scalability when presented with large collections and heavy
query workloads.

In relational database systems, scalability challenges have been
successfully addressed by partitioning data collections and process-
ing queries in parallel in a distributed system [19]. Our work is
focused on similarly exploiting distribution in the context of XML.
While there are some similarities between the way relational data-
base systems can be distributed and the opportunities for distribut-
ing XML database systems, the significant differences in both data
and query models make it impossible to directly apply relational
techniques to XML. Therefore, new solutions need to be developed
to distribute XML database systems.

The complete problem of distributing an XML database is com-
plex and comprised of many different aspects: First, a distribu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 1
Copyright 2010 VLDB Endowment 2150­8097/10/10... $ 10.00.

tion model needs to be defined that is well suited to the demands
of XML. Due to XML’s tree structure, an XML collection can be
partitioned in a largely unconstrained fashion by cutting individ-
ual document edges (e.g., [1, 9, 11]). However, the concise frag-
mentation schema that can be obtained by fragmenting a collec-
tion based on characteristics of data or schema is a significant asset
during distributed query optimization [4, 7, 15, 16, 17]. For our
work, we have, therefore, chosen a distribution model that is based
on schema characteristics and query operators (similar to relational
distribution models): horizontal fragmentation based on selection,
vertical fragmentation based on projection, and hybrid fragmen-
tation based on a concatenation of both operators.

The second part of the problem is distributed query evaluation.
In order to perform distributed query evaluation (rather than straight-
forward data shipping), the query needs to be localized, yielding
local query plans that can be evaluated at the sites holding the rel-
evant data fragments. This process involves pruning unnecessary
fragments to eliminate unnecessary work [11, 15]. Finally, a dis-

tributed execution plan needs to be generated and optimized that
assembles the results of local query plans into the overall query
result.

Due to the magnitude of the problem, it is unrealistic to present a
complete solution to the entire problem in a single paper. Our focus
in this paper is on the particular problem of generating distributed
execution plans within the context of a vertically partitioned and
distributed XML database system. Execution plans for horizontal
and hybrid distribution will be the subject of a future paper.

Vertical partitioning allows us to store different types of data at
different sites in a distributed system. Figure 1 shows an exam-
ple of a vertically partitioned XML collection containing informa-
tion about authors and their publications. Ignoring the highlighted
nodes labeled P

i→j
k and RP

i→j
k for now, we can see that fragment

f1 contains the author and agent nodes of each document in the
collection, f2 contains the nodes pertaining to the names of authors
and agents (i.e., name, first and last along with their text con-
tent), f3 contains the element types pubs, book and article

and f4 contains the element types chapter and reference.
Consider, for example, the following query (q):
/author[name/last[.=’Shakespeare’]]//book//reference

In order to evaluate query q on the partitioned collection shown
in Figure 1, we perform query localization by decomposing the
query into local query plans, each of which corresponds to a sin-
gle fragment. The results of these local query plans need to be
joined to form the result for q. Exactly how this is done is spec-
ified in a distributed execution plan. As is well-known, there are
usually many different execution plans that all produce the correct
result, but whose performance varies widely. This makes choosing
a distributed execution plan that is suitable for a given query and

1



author

P 1→2

11
P 1→3

12

author

P 1→2

13
P 1→3

14

author

P 1→2

15
P 1→3

16
agent

P 1→2

17

(a) f1

RP 1→2

11

name

first

John

last

Adams

RP 1→2

13

name

first

Jane

last

Dean

RP 1→2

15

name

first

William

last

Shakespeare

RP 1→2

17

name

first

John

last

Shakespeare

(b) f2

RP 1→3

12

pubs

book

P 3→4

18

RP 1→3

14

pubs

article

P 3→4

19

RP 1→3

16

pubs

book

P 3→4

20

(c) f3

RP 3→4

18

chapter

reference

RP 3→4

19

chapter

reference

RP 3→4

20

chapter

reference

(d) f4

Figure 1: A vertically fragmented collection

database instance crucial for achieving good query performance.
The main contribution of this paper consists of several techniques
for choosing and optimizing such execution plans, allowing us to
significantly improve the performance and scalability of distributed
XML query evaluation.

Figure 2 shows an example of a distributed execution plan for
query q, with pi representing the local plan corresponding to frag-
ment fi. As can be seen, results from p1 and p2 are joined together
first, the results of this join are then combined with results from p3,
and finally with results from p4.

There is some existing work in the area of distributed query eval-
uation over XML collections. Some approaches focus primarily on
minimizing the number of accesses that need to be made to each
fragment of a collection [1, 11]. Another technique aims to central-
ize query evaluation by using a replicated index and only accessing
remote fragments for certain kinds of predicates [7]. The technique
presented in this paper, in contrast, is focused on finding execution
plans that minimize query response time. We achieve this goal by
enumerating the possible execution plans (specified within an al-
gebraic framework) and evaluating them using a distribution-aware
response time cost model.

The contributions of this paper can be summarized as follows:

• Based on our previous work on localization and local plan
generation [15], we propose a technique for generating dis-
tributed execution plans within the context of a vertically par-
titioned and distributed XML database system.

• We analyze the benefits and drawbacks of different types of
execution plans. 1P3→4

∗
.id=RP3→4

∗
.id

1P1→3
∗

.id=RP1→3
∗

.id

1P1→2
∗

.id=RP1→2
∗

.id

p1 p2

p3

p4

Figure 2: Distributed execution plan

• We propose a novel optimization technique that allows us
to prune irrelevant subtrees in a fragment by pushing cross-
fragment joins into local query plans. We ensure that this
optimization does not compromise parallelism.

• We propose a cost model based on response time in a dis-
tributed system. Our focus is on composing the costs of lo-
cal query plans while taking into account parallelism and the
optimization techniques presented in this paper.

2. BACKGROUND

2.1 Data Model
An XML collection can be described as a set of labeled, ordered

trees. While XML is a self-describing format that can be used with-
out a schema, in practice, the structure of document trees is usually
constrained by a schema that specifies how elements may be nested
and what the domain of their textual content is. A schema is usually
defined in a language such as DTD or XML Schema. In this paper,
we use a simple directed graph representation that covers only the
aspects of the schema that are important for our purposes. For ex-
ample, our representation ignores the distinction between XML el-
ements and attributes by treating both of them uniformly as nodes.
Similarly, we refer to element types and attribute names as node

types. Assuming that the original schema definition does not con-
tain unspecified portions (such as those defined using the DTD key-
word ANY), it is straightforward to extract the information captured
by our graph representation from a DTD1 or an XML Schema. Ex-
tracting schema information yields a schema graph that may be less
restrictive than the original schema, but because the schema graph
is never used for the validation of documents this does not pose a
problem [22].

Definition 2.1 An XML schema graph is defined as a 4-tuple 〈Σ, Ψ,

m, ρ〉 where Σ is an alphabet of node types, ρ is the root node type,

Ψ ⊆ Σ × Σ is a set of edges between node types and m : Σ →
{string}.

The semantics of this definition are as follows: An edge ψ =
(σ1, σ2) ∈ Ψ denotes that a node of type σ1 may contain a node
of type σ2. m(σ) denotes the domain of the text content of a node
of type σ, represented as the set of all strings that may occur inside
such a node. Note that the definition of m(σ) may include both the
direct content of a node of type σ as well as the content of node
types nested in σ. Ignoring the dashed outlines for now, Figure 3
shows an example of a schema graph (corresponding to the DTD
shown in Figure 7 in Appendix A).

2.2 Query Model
The query model used in this paper is a subset of XPath, which

we call XQ. XQ consists of absolute location paths consisting of
node tests with and without wildcards, child (/) and descendant
(//) axes and predicates. Predicates may consist of (i) a relative
location path with the same restrictions (with XPath’s existential
semantics); (ii) a textual constraint of the form “. θs s”, where s is a
string constant and θs is either = or !=; or (iii) a numeric constraint
of the form “. θn n”, where n is a numeric constant and θn is one
of <, <=, =, >, >=, or !=. As in XPath, XQ steps return nodes in
document order (since both axes we support are forward axes).

XQ queries are not only commonly used on their own, but they
also represent an important building block of more complex XQuery
queries [13, 18]. Therefore, solving the problem of evaluating XQ
queries in a distributed fashion is an important contribution to dis-
tributed XQuery evaluation.

1Note that a DTD does not explicitly specify the root element type
of a document. However, the root element type can be inferred from
the DOCTYPE declarations of documents conforming to a DTD.

2



author

agent

(a) f1

name

first

#text

last

#text

(b) f2

pubs

book article

(c) f3

chapter

reference

(d) f4

Figure 3: A vertical fragmentation schema

It is convenient to represent XQ queries as tree patterns [8, 23],
which we formalize as follows:

Definition 2.2 Let 〈Σ, Ψ, m, ρ〉 be the schema of the data collec-

tion. A tree pattern is a 7-tuple 〈N, E, r, ν, ǫ, T, c〉 where N is

a set of pattern nodes, E ⊆ N × N is a set of pattern edges

and 〈N, E, r〉 is a tree rooted at r ∈ N . For each n ∈ N ,

ν(n) ∈ Σ ∪ {∗} denotes a node test. For each e ∈ E, ǫ(e) ∈
{child,descendant} denotes the axis type. T ⊆ N denotes

the set of extraction points. For each n ∈ N , c(n) ⊆ m(ν(n)) de-

notes a value constraint on the text content of nodes of type ν(n).

In the following, we will refer to the tree pattern representation of
a query as a query tree pattern (QTP). It is interesting to note that,
in addition to XQ queries, QTPs can be used to express queries with
multiple extraction points. While this may be useful for supporting
a larger class of queries, this is beyond the scope of this paper.

The QTP depicted in Figure 4 is equivalent to query q. The
double-outlined node labeled with reference is an extraction
point and the edge labels “/” and “//” denote child and descendant
steps, respectively.

A match for a QTP assigns a node from the document to each
pattern node such that all node tests, value constraints, and struc-
tural constraints (expressed as axis relationships) are satisfied. While
all pattern nodes in the QTP have to be matched to nodes in a doc-
ument, only the nodes associated with pattern nodes that are desig-
nated as extraction points are returned as part of the result.

2.3 Vertical Fragmentation
A vertical fragmentation schema is defined by fragmenting the

schema graph of the collection into connected subgraphs:

Definition 2.3 Let 〈Σ, Ψ, m, ρ〉 be a schema graph. A vertical
fragmentation schema is defined by a partitioning FΣ of the set

of node types Σ such that for each fragment fΣ ∈ FΣ, the graph

with vertices fΣ and edges (Ψ ∪ fΣ) × fΣ is connected.

The dashed outlines in Figure 3 show how the node types in this
schema have been fragmented into four disjoint subgraphs. Frag-
ment f1 consists of the node types author and agent; frag-
ment f2 consists of the node types name, first and last along
with their text content; fragment f3 consists of pubs, book and
article; fragment f4 includes the node types chapter and
reference.

author

name

/

last

/

.=’Shakespeare’

book

//

reference

//

Figure 4: Query tree pattern (QTP) representation of query q

Since we require the schema graph to be connected, after frag-
mentation there will be graph edges that cross fragment boundaries.
Whenever the schema contains an edge from a fragment fi to an-
other fragment fj , we refer to fj as a child fragment of fi and to fi

as a parent fragment of fj . There is exactly one fragment fρ ∈ FΣ

that contains the root node type ρ. We refer to fρ as the root frag-

ment. While the schema graph may contain cycles, for performance
reasons, we require that the fragmentation schema be a DAG (i.e.,
each cycle has to be contained within a single fragment).

When a document collection is partitioned according to a verti-
cal fragmentation schema, there will be document edges that cross
fragment boundaries. We represent a document edge from frag-
ment fi to fragment fj by inserting a pair of artificial nodes P

i→j
k

and RP
i→j
k into fragments fi and fj , respectively. P

i→j
k denotes

a proxy node in fragment fi (the originating fragment) with ID k,
whereas RP

i→j
k denotes a root proxy node in fragment fj (the tar-

get fragment) with ID k. Since P
i→j
k and RP

i→j
k share the same

ID (k) and reference the same fragments (i → j), they correspond
to each other and together represent a single cross-fragment edge
in the collection.

The collection in Figure 1 has been fragmented according to the
fragmentation schema in Figure 3. The proxy pair consisting of
P 1→2

11 in fragment f1 and RP 1→2
11 in f2, for example, represents

an edge from an author node in f1 to a name node in f2.
Vertical fragments generally consist of multiple unconnected pie-

ces of XML data, which we refer to as document subtrees. In Figure
1, for example, fragment f1 contains three subtrees, each of which
consists of the author and agent nodes of one of the documents
in the collection.

2.4 Distributed Query Evaluation
In this section we describe how queries can be evaluated on a

vertically fragmented collection. We begin with a centralized QTP
that represents the fragmentation-unaware query. The first step of
distributed query evaluation is localization, in which the query dis-
patcher decomposes the centralized QTP into multiple local QTPs.
Each of the resulting local QTPs references node types that corre-
spond to a single fragment.

We then ship the local QTPs to the sites storing their correspond-
ing fragments, where they are transformed to local algebraic query
plans. The sites are free to use whatever local query evaluation
strategy they choose, including navigational approaches, structural
joins, and others.

After local query plans have been generated at each site, cost
estimates for each local plan are reported back to the dispatcher.
The dispatcher then uses these cost estimates to construct a dis-
tributed execution plan that determines how the local results are
combined to produce the overall query result. The construction of
such execution plans is the main contribution of this paper and will
be described in Section 3. For completeness, we briefly summarize
the other steps in Appendix B; they are discussed in more detail
elsewhere [15].

3. DISTRIBUTED EXECUTION PLANS
To obtain the overall query result, the results of local plans need

to be “combined” based on the IDs of their proxy and root proxy
nodes. A distributed execution plan specifies how exactly this is
done. In this section, we explore how distributed execution plans
can be constructed and what their properties are.

Definition 3.1 Let P = {p1, . . . , pn} be the set of local query

plans corresponding to a query q. For each pi ∈ P , let fi denote

the vertical fragment corresponding to pi. Further, let P ′ ⊆ P .

Then GP ′ is a distributed execution plan for P ′ iff

1. P ′ = {pi} and G′
P = pi, or

3



2. P ′ = P ′
a ∪ P ′

b , Pa ∩ Pb = ∅; pi ∈ Pa, pj ∈ Pb, pi =
parent(pj); GP ′

a
and GP ′

b
are distributed execution plans for

P ′
a and P ′

b , respectively; and GP ′

a
1

P
i→j
∗

.id=RP
i→j
∗

.id
GP ′

b

= GP ′ .

If GP is a distributed execution plan for P (the entire set of local

query plans), then Gq = GP is a distributed execution plan for q.

A distributed execution plan must contain all the local plans
corresponding to the query. As shown in the recursive definition
above, an execution plan for a single local plan is simply the local
plan itself (condition 1). For a set of multiple local plans P ′ we
assume that P ′

a and P ′
b are two non-overlapping subsets of P ′ such

that P ′
a ∪ P ′

b = P ′. We require that P ′
a contains the parent local

plan pi for some local plan pj in P ′
b . An execution plan for P ′ is

then defined by combining execution plans for P ′
a and P ′

b using a
join whose predicate compares the IDs of root proxy nodes derived
from pj to the IDs of corresponding proxy nodes derived from pi

(condition 2). We refer to this join as a cross-fragment join.
If G′

P consists of a single local plan pi, then the set of attributes
returned by G′

P (referred to as MG′

P
) is identical to the set of at-

tributes returned by pi . If GP ′ = GP ′

a
1

P
i→j
∗

.id=RP
i→j
∗

.id
GP ′

b
,

then MG′

P
= MGP ′

a
∪ MG

P ′

b

\ {P i→j
∗ , RP

i→j
∗ }.

Figure 10 in Appendix C shows some distributed execution plans
that combine the results of the local plans shown in Figure 9. In or-
der to answer query q, we could choose any one of them, although
their costs may vary. Figures 10(a) and (b) show left-deep execu-
tion plans, whereas Figure 10(c) shows a bushy execution plan. As
we will discuss in the next section, some optimizations can only
be performed on left-deep execution plans. Due to the parent-child
relationship between local plans, it is always possible to define a
left-deep execution plan.

4. OPTIMIZING DISTRIBUTED PLANS
When optimizing distributed execution plans, one area of interest

is the order in which joins are performed. This problem has been
studied extensively within the context of relational databases [19]
and is not the focus of this paper. Instead, we focus on optimization
opportunities that are unique to XML.

As discussed previously, our execution model is based on query
shipping, i.e., the local plan corresponding to a fragment is eval-
uated at the site where that fragment is stored. In all of the dis-
tributed execution plans considered in the previous section, local
plans occur only as leaves. Therefore, the evaluation of local plans
is unaffected by how their results are combined by the distributed
execution plan. This can lead to a scenario where a large num-
ber of local results are computed and subsequently discarded by a
cross-fragment join.

Consider, for example, the execution plan shown in Figure 2.
Evaluating p3 yields results for two of the document subtrees in f3

but the subsequent join with the local results of p1 and p2 discards
the result derived from the subtree that does not belong to the author
named Shakespeare. Similarly, p4 yields results for all subtrees in
f4, all but one of which are subsequently discarded.

In this section, we propose two distributed optimization tech-
niques that avoid computing unnecessary local results. As our ex-
periments show, these techniques can greatly reduce the cost of
evaluating local query plans as well as reducing the input sizes of
cross-fragment joins.

4.1 Pushing Cross­Fragment Joins
The first optimization technique is based on the idea of prun-

ing the document subtrees in a fragment by pushing cross-fragment
joins from the distributed execution plan into the corresponding lo-
cal query plan. We assume that each local plan (except for the

root local plan, i.e., the plan corresponding to the root fragment)
contains a scan of root proxy nodes in its corresponding fragment.
This is a realistic assumption because the local QTPs correspond-
ing to these plans contain a node matching these root proxy nodes
as an extraction point (which means that structural-join based ap-
proaches require this scan). The document subtrees in the fragment
are rooted at root proxy nodes (which means that a navigational
approach visiting all subtrees also has to rely on a scan of the root
proxy nodes).

By pushing a cross-fragment join to the root proxy scan, we can
filter out all but those root proxy nodes that match a proxy node
returned as part of the result of the parent plan. This allows us to
restrict local query evaluation to the document subtrees that contain
these root proxy nodes.

Since each non-root local plan pj contains a root proxy scan as
one of its leaves, we can define the remainder plan p′

j of pj by
removing the root proxy scan from pj . p′

j then consumes the output

of the root proxy scan: pj = p′
j(scan(RP

i→j
∗ ))

We further define the modified remainder plan pM
j by adding the

set of attributes M to each projection in p′
j . That is, if there is a

projection ΠMj in p′
j , then pM

j will contain the projection ΠMj∪M

in its place.
Based on the modified remainder plan, we can define the follow-

ing rewrite, which pushes a cross-fragment join into the local plan
on its right-hand side and modifies the local plan such that attributes
produced by the left-hand side are preserved (a graphical represen-
tation of this rewrite is shown in Figure 11 in the Appendix):

GP 1
P

i→j
∗

.id=RP
i→j
∗

.id
pj ≡

p
MGP
j

“

GP 1
P

i→j
∗

.id=RP
i→j
∗

.id
scan

“

RP
i→j
∗

””

Note that this rewrite relies on the fact that the right-hand side
of the join is a single local plan. This means that, while we can
rewrite all the joins in a left-deep plan, for other plan shapes, there
will be some joins that cannot be rewritten.

Figure 5 shows the result of applying the rewrite to all the joins in
Figure 2. Only those document subtrees in f2 are accessed whose
root proxies match a proxy in the result of p1. Similarly, the com-
bined results of p1 and p2 are used to determine the subtrees that
are accessed in f3, and the combined results of p1, p2 and p3 are
used to determine which subtrees are accessed in f4. In addition
to reducing the number of local results, this can also significantly
improve the response times of local plan evaluation.

For performance and autonomy reasons, we assume that the sites
holding individual fragments are completely independent in how
they generate local plans. Therefore, we do not generally have ac-
cess to local plans when optimizing a distributed execution plan.

p∅
4

1P 3→4
∗

.id=RP 3→4
∗

.id

p∅
3

1P 1→3
∗

.id=RP 1→3
∗

.id

p
{P 1→3

∗
}

2

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 scan(RP 1→2

∗ )

scan(RP 1→3

∗ )

scan(RP 3→4

∗ )

Figure 5: Plan after pushing cross-fragment joins

4



In order to be able to push cross-fragment joins in this scenario,
we require that the sites holding individual fragments implement
an API that allows

• specification of whether to generate a local plan with regular
(pi) or with modified semantics (pM

i ), and

• if modified semantics are chosen, specification of

– the set of attributes M that are to be passed through
pM

i ,

– the cross-fragment join that is to be inserted between
the root proxy scan and pM

i , and

– the fragment from which the left-hand side input of the
cross-fragment join will be pipelined.

Using this API, which can easily be implemented at each site, it
is possible to perform cross-fragment join pushing as described in
this section without having access to the individual local plans.

Pushing cross-fragment joins reduces the size of intermediate re-
sults that have to be shipped and combined with results from other
sites. In this respect, the effect of this technique is similar to that
of using a semi-join, as is frequently done in distributed relational
systems [19]. The way this reduction in intermediate result size is
accomplished, however, is quite different. Unlike semi-join tech-
niques, which require an additional inner join operation following
the semi-join, our technique relies on a single join operator. More
importantly, rather than incurring additional processing cost, our
technique reduces the cost of local query evaluation by removing
irrelevant parts of the fragment from consideration.

One reason why pushing cross-fragment joins works well in XML
database systems are the complex (and therefore expensive) struc-
tural constraints in the XML query model. In relational systems, it
is usually preferable to push selections past join operations in or-
der to reduce the cost of the join. Interestingly, here, the opposite
is true: it is beneficial to push a join past a collection of opera-
tors that evaluate part of a QTP (corresponding, semantically, to a
selection).

4.1.1 Maintaining Parallelism
Pushing cross-fragment join operators into local query plans in-

troduces dependencies between the local plan evaluation at differ-
ent sites. In this section, we describe how we can maintain a high
level of parallelism in the presence of these dependencies.

Whenever a local query plan contains a pushed cross-fragment
join, execution of this query plan has to be delayed until results
from query plans on the left-hand side of the pushed join have ar-
rived. Only then can the cross-fragment join be performed and the
local query plan be executed on relevant document subtrees. Wait-
ing for the entire result of the left-hand side of the join, however,
would effectively serialize the evaluation of local plans and elimi-
nate parallelism in distributed query execution.

We address this problem using pipelined execution, such that we
have to wait only for the first result tuple from the left-hand side
of the join before we can start identifying the first relevant sub-
tree. This greatly reduces the delay introduced by pushing cross-
fragment joins.

To enable pipelined execution, we have to use a physical join
operator that does not materialize the result of its left-hand side
input. If we assume that local query results are returned ordered
by their proxy IDs, we can use a simple join operator with full
pipelining on both inputs. If this is not the case, we can use a hash
join, which builds a hash table on its right-hand side input (i.e., the
root proxy nodes) and then probes this table for each tuple from the
left-hand side input. Using a hash join operator is not detrimental to
pipelining because the hash table on a fragment’s root proxy nodes
is not query-dependent, and can easily be built ahead of time.

1P 3→4
∗

.id=RP 3→4
∗

.id

1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

p3

p′
4

σRP 3→4
∗

.label∈{/author/pubs/book}

scan(RP 3→4

∗ )

Figure 6: Plan with label path filtering

4.2 Label Path Filtering
While pushing cross-fragment joins can lead to significantly im-

proved performance, it can only be fully applied to left-deep plans.
Furthermore, waiting for the first input tuple for each cross-fragment
join might result in a non-trivial reduction of parallelism in certain
cases2. In such cases, it may be better not to push certain cross-
fragment joins in the distributed execution plan. In this section, we
present a technique that potentially allows us to gain at least part of
the advantage of pushing cross-fragment joins with no constraints
on plan shapes and no impact on parallelism.

The idea behind this technique is based on the concept of la-
bel paths. The label path of a node is defined as the sequence of
node types encountered on a path from the root of a document to
that node. For this optimization, we assume that each proxy pair
in the collection is annotated with a label path from the root of
the document it belongs to (omitting proxy/root proxy nodes on
that path). P 3→4

18 and RP 3→4
18 in the collection shown in Fig-

ure 1, for example, would be assigned the label path /author

/pubs/book, whereas P 3→4
19 and RP 3→4

19 would be assigned the
label path /author/pubs/article. Label paths are useful
not only for optimizing distributed plans but also for certain opti-
mizations during query localization [15].

By unrolling descendant steps in the global QTP into child steps
and inserting path alternatives as necessary (using a procedure de-
scribed in [15]), we can obtain, for each fragment fj , the set of
label paths Lj from the root of a document to the root of a rele-
vant document subtree in fj . Based on this information, we can
rewrite a local query plan pj by inserting a selection between the
root proxy scan and the remainder plan (see Figure 12 in Appendix
D for a graphical representation):

pj≡p′j

“

σ
RP

i→j
∗

.label∈Lj

“

scan(RP
i→j
∗ )

””

Applying this rewrite ensures that only those document subtrees
are considered during local plan evaluation whose label paths are
compatible with the query. Figure 6 shows the result of applying
this rewrite to p4 in the execution plan from Figure 2. In this exam-
ple, the set of label paths for f4 that are compatible with the query
consists only of the single label path /author/pubs/book. The
root proxy node RP 3→4

19 , on the other hand, has the label path
/author /pubs/article. Therefore, the document subtree
rooted at RP 3→4

19 is not accessed during evaluation of p′
4.

5. COST ESTIMATION
In the previous sections, we described a number of alternatives

for constructing distributed execution plans. To choose the best
plan for a given query and collection, we need to be able to deter-
mine the cost of each candidate plan. In this section, we propose
a cost model that allows us to estimate the response time of a dis-
tributed execution plan (i.e., the time it takes to completely evaluate
the plan). We rely on the existence of cost models for centralized
XML query evaluation and present a method for composing a cost
estimate for a distributed execution plan from cost estimates for lo-

2Consider, for example, a case where the parent plan produces only
a single tuple. Before we can execute the child plan, we have to
wait for this tuple, which effectively serializes query execution.

5



cal plans. To determine the plan with the lowest estimated cost,
we need to enumerate the plan alternatives and estimate the cost of
each candidate plan. It is of course possible to reduce the size of
the search space using heuristics or pruning, but that is outside the
scope of this paper.

In a centralized environment, the costs of individual parts of
a plan may be composed by addition. The parallelism in a dis-
tributed system makes this composition significantly more compli-
cated. The overall response time cost of two operators that are
working independently of each other in parallel, for example, is
not determined by the sum of their costs but by the maximum of
their costs. If there are dependencies between these operators, de-
termining the overall cost has to take into account the time that one
operator spends waiting for the other.

5.1 Local Costs
We define the following cost metrics for each local plan pj :

• cost(pj), the response time of evaluating pj on its corre-
sponding fragment fj ,

• card(pj), the number of tuples returned by pj when evalu-
ated on the fragment fj ,

• snip(pj), the number of document subtrees accessed by pj .

In general, we do not have access to exact values for cost(pj)
and card(pj). We therefore rely on estimates of these values, which
can be obtained using various cost estimation techniques that have
been developed for the centralized processing of XML queries. For
convenience, our notation does not distinguish between estimated
cost metrics and their precise counterparts.

To determine snip(pj), we need to distinguish between two cases:
If pj is evaluated on fragment fj , and fj is the root fragment, then
snip(pj) = snip(fj), the number of document subtrees in fragment
fj . If fj is not the root fragment, snip(pj) only includes the sub-
trees in fj that correspond to an edge from the fragment of pj’s
parent plan. Therefore, if pj is rooted at a pattern node labeled
RP

i→j
∗ , snip(pj) is the number of root proxy nodes representing

an edge from fragment fi to fragment fj (RP
i→j
k for all k) in fj .

5.2 Distributed Execution Plans
Since distributed execution plans are binary trees, we need to

distinguish between two cases:

1. If the distributed execution plan Gp consists of a single local
plan pi, then the cost of Gp is simply the cost of that local
plan, and the cardinality of GP is the cardinality of the local
plan: cost(GP ) = cost(pi), card(GP ) = card(pi).

2. If GP = GPa 1
P

i→j
∗

.id=RP
i→j
∗

.id
GPb

, then cost(GP ) =

max{ cost(GPa), cost(GPb
)}. This is because GPa and GPb

can be evaluated in parallel and there are no dependencies
between them (recall that we are optimizing response time).

To estimate the cardinality of Gp, we define uniq(GPa , fj)
to be the number of root proxies in fj for which there is
a matching proxy node in the result of GPa . We observe

that
uniq(GPa

,fj)

snip(pj)
represents the fraction of root proxy nodes

RP
i→j
k in fj that contribute to the cross-fragment join on

j. Therefore, there are
uniq(GPa

,fj)

snip(pj)
card(GPb

) results from

GPb
that will contribute to this join. Also, assuming inde-

pendence, there are
card(GPa

)

uniq(GPa
,fj)

tuples in the result of GPa

for each root proxy node in fj that contributes to the join.

This allows us to estimate the cardinality of GP as follows:

card(GP ) =
card(GPa)

uniq(GPa , fj)

uniq(GPa , fj)

snip(pj)
card(GPb

)

=
card(GPa)

snip(pj)
card(GPb

)

For an example, see Appendix E.1.

5.3 Pushed Cross­Fragment Joins
If we push a cross-fragment join into a local plan, we intro-

duce a dependency that we have to account for when estimating
the cost of a distributed access plan. If we let GP = pM

j (GPa

1
P

i→j
∗

.id=RP
i→j
∗

.id
scan(RP

i→j
∗ )), then before we can start eval-

uating pM
j , we need to wait for the first tuple produced by GPa .

Assuming that GPa produces tuples at a steady rate, the first tu-

ple is produced after a delay of
cost(GPa

)

card(GPa
)
. We further assume that

the cost of pj is proportional to the number of document subtrees
considered. Thus, the cost of GP can be estimated as follows:

cost(GP ) = max



cost(GPa
),

cost(GPa
)

card(GPa
)

+

„

card(GPa
)

cost(pj)

snip(pj)

«ff

It is important to note that while pushing cross-fragment joins
reduces the cardinality of a local plan, it removes only those tuples
that would have been discarded during the subsequent join. The
overall cardinality of the execution plan is unaffected:

card(GP ) =
card(GPa

)

snip(pj)
card(pj)

For an example, see Appendix E.2.

5.4 Label Path Filtering
In order to estimate the cost of a local plan with label path fil-

tering lpj = p′
j

“

σRP i→i
∗

.label∈Lj

`

scan(RP
i→j
∗ )

´

”

, we define an

auxiliary plan lj := σ
RP

i→j
∗

.label∈Lj
(scan(RP

i→j
∗ )), which sim-

ply returns all root proxy nodes whose label path is in Lj . Based
on this, we can estimate the cost of lpj by scaling according to the
proportion of root proxies in fj that is returned by lj :

cost(lpj) = cost(pj)
card(lj)

snip(pj)

Similarly, we can estimate the cardinality of lpj :

card(lpj) = card(pj)
card(lj)

snip(pj)

Since we are removing document subtrees from consideration,
we also need to estimate the number of subtrees considered by lpj :

snip(lpj) = card(lj)

For an example, see Appendix E.3.

6. PERFORMANCE EVALUATION
We have enhanced the native XML database system NATIX [6]

with distributed capabilities and implemented our techniques within
this system. This allows us to validate our approach and to per-
form realistic experiments. We use collections of on-line auction
data generated by the XMark benchmark [21], which is a standard
benchmark for evaluating XML query performance.

Our experiments are conducted on virtualized Linux machines
within Amazon’s Elastic Compute Cloud. We use a separate in-
stance (providing 1.7 GB of memory, a single-core 32 bit CPU) for
each fragment, with an additional instance for dispatching queries.
All instances run in the same ‘availability zone”, ensuring low-
latency, high-throughput communication.

6



6.1 Effects of Optimizations
The first experiment we perform is based on a set of queries that

is designed to test a number of different cases that affect how our
optimization techniques can be applied (Q1-Q5 in Table 4 in Ap-
pendix F). We evaluate these queries on an XMark collection that
has been decomposed into small documents with an average size of
30 KB3. We scale the collection to 35 MB, 350 MB, and 3.5 GB,
and fragment it according to the fragmentation schema in Figure 14
in Appendix F.

For each query and collection size, we measure the response
time achieved by centralized query evaluation on a single instance
holding the entire collection (“Cent”), distributed query evalua-
tion based on a naı̈ve, left-deep execution plan (“Dist”), distributed
query evaluation with label path filtering (“Filt”) and distributed
query evaluation with cross-fragment join pushing (“Push”). For
the experiments using optimizations we choose the plan with the
lowest estimated cost. All measurements reported in this paper in-
clude the cost of result construction, shipping sub-query results be-
tween sites and shipping the overall query result to the dispatcher.

Col. Q Response time (s)
Cent Dist Filt Push

35MB Q1 0.85 0.68 N/A 0.70
Q2 2.74 1.62 N/A 0.90
Q3 2.71 4.76 N/A 1.00
Q4 2.85 3.69 3.65 1.07
Q5 0.72 2.31 1.88 0.90

350MB Q1 6.90 6.79 N/A 4.96
Q2 24.78 14.31 N/A 5.50
Q3 24.73 50.16 N/A 5.63
Q4 25.43 50.20 50.13 5.66
Q5 5.71 54.80 42.86 5.14

3.5GB Q1 289.47 66.93 N/A 47.21
Q2 332.91 142.90 N/A 51.19
Q3 331.65 522.10 N/A 51.24
Q4 336.35 518.92 519.39 51.21
Q5 288.56 431.42 343.99 47.55

Table 1: Performance results

The results are shown in Table 1. For queries Q1 and Q2, naı̈ve
distributed query execution (i.e., query execution without our op-
timizations) performs significantly better than centralized execu-
tion. This can be explained by the fact that distributed query ex-
ecution can evaluate different parts of the query in parallel. For
Q2, which references a larger fraction of the fragments in the sys-
tem, the advantage of distributed query execution is somewhat less
pronounced. This is because Q2 entails a higher overhead due to
cross-fragment joins. For queries Q3, Q4, and Q5, which access the
category fragment with its very large number of document sub-
trees, the overhead is so large that centralized execution performs
better than naı̈ve distributed execution. This illustrates that while
distribution is useful in some cases, without further optimization, it
is not a practical method for improving query performance.

With cross-fragment join pushing the picture is markedly dif-
ferent. For Q1 and Q2, this optimization further improves query
performance by a significant margin. Even for the more adversarial
queries Q3-Q5, join pushing yields a plan that outperforms cen-
tralized query execution by a factor of 6, illustrating that this is an
effective technique for optimizing distributed execution plans.

Our other optimization technique, label path filtering, can only
be applied to the queries Q4 and Q5 (with the other queries, there
is no opportunity for filtering based on label paths). For Q4, where
one fragment (shown in Figure 14(g) in Appendix F) benefits from
filtering, it does not lead to a significant improvement in overall

3We place each open auction element into its own document
along with its descendants and document subtrees referenced via
ID/IDREF, yielding small documents of regular structure.

performance. For Q5, however, where label path filtering can be
applied to two fragments (Figure 14(g) and (h)), we see a signif-
icant improvement when compared to naı̈ve distributed execution,
although the improvement is less pronounced than that of cross-
fragment join pushing. This supports our intuition that join push-
ing should be preferred unless other considerations prevent us from
using it (e.g., if we prefer a non-left-deep plan).

The overhead of using our cost model is small, even when ex-
haustively enumerating all plan alternatives. Choosing the best plan
never took more than 0.01 seconds for any of the queries shown.

6.2 XPathMark
For the second experiment, we use a subset of the queries in the

XPathMark benchmark (those that can be expressed in XQ, i.e.,
A1-A6 and B7, shown in Table 4 in Appendix F). Since these
queries are primarily designed to evaluate the performance of eval-
uating XPath axes, they contain few filtering predicates and each
return a large portion of the nodes in the collection as their result.
While this is an important use case, we also wanted to capture the
equally realistic scenario of queries that do have such filtering pred-
icates. Therefore, we added a value predicate to each query (result-
ing in the selective XPathMark queries A1S-A6S and B7S). We
evaluate both the original and the modified queries on a multiple-
document XMark collection consisting of documents with an aver-
age size of 60 MB. We scale the collection to 120 MB, 1.2 GB, and
12 GB and fragment it into 10 vertical fragments according to the
fragmentation schema shown in Figure 13 in Appendix F.

Col. Q Response time (s)
XPathMark Selective XPathMark

Cent Dist Push Cent Dist Push

120MB A1 0.96 4.96 2.94 1.29 5.13 0.80
A2 2.90 8.02 4.39 6.24 8.07 1.12
A3 1.34 7.95 4.38 1.28 7.89 0.91
A4 0.96 5.03 3.08 0.99 5.10 0.86
A5 1.04 4.48 2.85 1.19 4.59 0.88
A6 1.12 3.55 4.03 0.94 3.03 0.53
B7 6.42 4.51 4.39 6.06 3.71 1.02

1.2GB A1 8.78 46.50 26.71 12.01 45.39 6.24
A2 28.91 77.03 40.53 62.55 73.20 8.29
A3 12.64 76.53 39.90 11.93 72.19 6.49
A4 8.64 46.40 27.77 8.78 44.36 6.24
A5 9.52 42.29 25.58 10.39 39.43 6.34
A6 9.70 31.25 36.47 8.28 27.99 3.21
B7 63.50 40.83 40.14 59.36 31.96 8.03

12GB A1 803.04 462.72 266.17 823.24 415.48 61.03
A2 1021.82 763.55 402.56 1363.53 678.32 80.25
A3 837.17 760.53 403.16 826.80 679.24 61.07
A4 793.01 464.08 282.32 798.00 410.33 60.64
A5 811.47 419.60 263.91 812.55 362.83 60.48
A6 803.33 303.43 352.25 785.35 265.61 29.11
B7 1373.06 396.50 388.80 1329.25 300.06 77.36

Table 2: Performance results

Table 2 shows the results of this experiment. We can observe a
number of trends: Centralized query evaluation performs well for
the smallest collection size, but its performance deteriorates rapidly
as we reach the larger collection sizes.

Naı̈ve distributed execution starts off being significantly slower
than centralized execution (for the smallest collection). Once we
reach the largest collection size, however, it significantly outper-
forms centralized execution for all queries. The margin is partic-
ularly large for the selective queries, where distributed execution
benefits from smaller intermediate results and less cross-fragment
join overhead.

Applying join pushing leads to a further improvement in perfor-
mance and with this optimization we can achieve a speed-up factor
of more than 25 compared to centralized execution. Join pushing
is particularly effective for the more selective queries. This can

7



be explained by the fact that our cost model favours plans that ex-
ploit query selectivity on one fragment to significantly reduce the
amount of data accessed in other fragments. Queries that contain
highly selective predicates provide more opportunity for this and
for these queries optimized distributed execution outperforms cen-
tralized execution for all collection sizes.

Together, these observations confirm the main thesis of this pa-
per: with proper optimization, distribution is an effective technique
for scaling XML database systems.

7. RELATED WORK
There exist significant bodies of work on both querying XML

data in a centralized environment and distributed query evaluation
in relational systems. Due to space constraints, we will restrict our
discussion of related work to XML query evaluation in distributed
systems and to techniques that are directly related to our work.

Much of the existing work on distributed XML query process-
ing assumes a distribution model without an explicit fragmentation
specification [1, 2, 9, 11]. While there are certain optimizations
that can be performed in the absence of a fragmentation specifica-
tion and while the flexibility of this approach is certainly appeal-
ing, having a well-specified fragmentation is a significant asset for
effective distributed query optimization [4, 7, 15, 16, 17]. The rep-
resentation of cross-fragment edges as pairs of proxy nodes is a
technique that has been used successfully to fragment XML docu-
ment trees onto pages in the native XML database system NATIX,
albeit at a much smaller level of granularity than in this work [6].

A concise graph representation of the schema of an XML collec-
tion has been used to convert XML data to relational tuples [22].
As in our work, the authors capture only the relevant aspects of the
original DTD or XML Schema.

Query models similar to XQ and their connection to standard
XPath and XQuery have been considered in related work [13, 18].
The representation of such queries as tree patterns is also an estab-
lished technique [8, 23]. Another area of active research has been
query language extensions that include communication and distri-
bution primitives [12, 20, 24]. These approaches cater primarily to
a data integration scenario, but might be useful as a backend lan-
guage in a distributed database system.

The problem of centralized query processing on fragmented col-
lections of XML data has been studied within the context of streamed
XML data on devices with limited resources [5] and as a means to
implement publish/subscribe systems [10]. Fragmentation-aware
query evaluation techniques have also been used within the context
of a centralized XML DBMS [14].

Much of the existing work on distributed query evaluation fo-
cuses primarily on the number of accesses that need to be made to
each fragment of a collection [1, 11]. Other techniques aim to cen-
tralize query evaluation using a replicated index structure and only
access remote fragments for certain kinds of predicates [7].

Techniques for pruning the set of fragments that need to be vis-
ited to answer a given query are orthogonal to the techniques pre-
sented here and can be used to further improve performance [15].

The problem of ordering and executing distributed joins is or-
thogonal to the problem considered here and has been studied ex-
tensively in relational systems [19].

8. CONCLUSION
In this paper, we propose a number of plan alternatives and op-

timizations for the distributed processing of queries in a vertically
partitioned XML database system. Using a distribution-aware cost
model, we identify plans that yield a significant improvement in

response time, both when compared to centralized techniques and
to naı̈ve distributed approaches. Our experiments on a distributed
version of a native XML database system confirm this and show
that, with our optimizations, distribution is an effective technique
for improving the scalability of XML query processing.

9. REFERENCES
[1] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project:

an overview. VLDB Journal, 17(5):1019–1040, 2008.

[2] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo.
Dynamic XML documents with distribution and replication. In Proc.

of ACM SIGMOD, pages 527–538, 2003.

[3] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and
Y. Wu. Structural joins: A primitive for efficient XML query pattern
matching. In Proc. of ICDE, pages 141–152, 2002.

[4] A. Andrade, G. Ruberg, F. A. Baião, V. P. Braganholo, and
M. Mattoso. Efficiently processing XML queries over fragmented
repositories with PartiX. In Proc. of EDBT, pages 150–163, 2006.

[5] S. Bose and L. Fegaras. XFrag: A query processing framework for
fragmented XML data. In Proc. of WebDB, pages 97–102, 2005.

[6] M. Brantner, S. Helmer, C.-C. Kanne, and G. Moerkotte. Full-fledged
algebraic XPath processing in Natix. In Proc. of ICDE, pages
705–716, 2005.

[7] J.-M. Bremer and M. Gertz. On distributing XML repositories. In
Proc. of WebDB, pages 73–78, 2003.

[8] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal
XML pattern matching. In Proc. of ACM SIGMOD, pages 310–321,
2002.

[9] P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis. Using partial
evaluation in distributed query evaluation. In Proc. of VLDB, pages
211–222, 2006.

[10] C.-Y. Chan and Y. Ni. Content-based dissemination of fragmented
XML data. In Proc. of ICDCS, page 44, 2006.

[11] G. Cong, W. Fan, and A. Kementsietsidis. Distributed query
evaluation with performance guarantees. In Proc. of ACM SIGMOD,
pages 509–520, 2007.

[12] M. F. Fernàndez, T. Jim, K. Morton, N. Onose, and J. Siméon.
Highly distributed XQuery with DXQ. In Proc. of ACM SIGMOD,
pages 1159–1161, 2007.

[13] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML query engine for
network-bound data. VLDB Journal, 11(4):380–402, 2002.

[14] C.-C. Kanne, M. Brantner, and G. Moerkotte. Cost-sensitive
reordering of navigational primitives. In Proc. of ACM SIGMOD,
pages 742–753, 2005.

[15] P. Kling, M. T. Özsu, and K. Daudjee. Distributed XML query
processing: Fragmentation, localization and pruning. Technical
Report CS-2010-02, University of Waterloo, 2010.

[16] H. Ma and K.-D. Schewe. Fragmentation of XML documents. In
Proc. of SBBD, pages 200–214, 2003.

[17] H. Ma and K.-D. Schewe. Heuristic horizontal XML fragmentation.
In Proc. of CAiSE, pages 131–136, 2005.

[18] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. J. ACM, 51(1):2–45, 2004.

[19] M. T. Özsu and P. Valduriez. Principles of distributed database

systems (2nd ed.). Prentice Hall, 1999.

[20] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In
Workshop on Information Integration on the Web, pages 116–121,
2004.

[21] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark: a benchmark for XML data management. In Proc.

of VLDB, pages 974–985, 2002.

[22] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational databases for querying XML documents:
Limitations and opportunities. In Proc. of ICDE, pages 302–314,
1999.

[23] N. Zhang, V. Kacholia, and M. T. Özsu. A succinct physical storage
scheme for efficient evaluation of path queries in XML. In Proc. of

ICDE, pages 54–65, 2004.

[24] Y. Zhang and P. Boncz. XRPC: interoperable and efficient distributed
XQuery. In Proc. of VLDB, pages 99–110, 2007.

8



APPENDIX

A. DTD EXAMPLE
Figure 7 shows a simplified DTD corresponding to the schema

graph in Figure 3.

author(name, pubs, agent?)

pubs(book*, article*)

book(chapter*)

article(chapter*)

chapter(reference?)

reference(chapter)

agent(name)

name(first, last)

first(#text)

last(#text)

Figure 7: A schema

B. LOCALIZATION AND GENERATION OF

LOCAL PLANS

B.1 Localization
Localization is the process of determining which fragments are

relevant for a given query and decomposing the query into sub-
queries that can be evaluated on individual fragments.

QTPs provide a convenient abstraction for decomposing a global
query into sub-queries that are local to a single fragment. We have
therefore chosen to perform query decomposition at the QTP level
and then transform the resulting local QTPs into algebraic query
plans at the individual sites. While the details of decomposition are
described elsewhere [15], we note that each local QTP only refer-
ences node types from a single fragment. When wildcard nodes
are encountered in the QTP, they are replaced with a special choice

node, followed by a pattern node for each possible node type the
wild-card can correspond to.

Decomposing the global QTP q from Figure 4 with respect to the
fragmentation schema in Figure 3 yields the local QTPs shown in
Figure 8, with q1, q2, q3 and q4 corresponding to f1, f2, f3 and f4,
respectively.

author

P 1→2

∗

/

P 1→3

∗

//

(a) q1

RP 1→2

∗

name

/

last

/

.=’Shakespeare’

(b) q2

RP 1→3

∗

book

//

P 3→4

∗

//

(c) q3

RP 3→4

∗

reference

//

(d) q4

Figure 8: Local QTPs

Each cross-fragment edge in q is represented by a pair of pattern
nodes that match a proxy/root proxy pair. The edge from author

to name, for example, is replaced by the pattern node RP 1→2
∗ in

q2 and the pattern node P 1→2
∗ in q1. The pattern node RP 1→2

∗

matches all of the root proxy nodes RP 1→2
i in q2’s fragment f2.

The pattern node P 1→2
∗ matches the proxy nodes P 1→2

i in f2’s
parent fragment f1; these are the proxy nodes that correspond to
RP 1→2

i . Since the original pattern edge is a child edge, edges to
and from the generated pattern nodes are also child edges. In the
case where the original pattern edge is a descendant edge (such as
the edge between author and book, which is represented by the
pattern nodes labeled P 1→3

∗ and RP 1→3
∗ ), edges to and from the

generated pattern nodes are also descendant edges.
Whenever we decompose a global QTP q, there will be exactly

one local QTP that does not contain a pattern node that matches a

root proxy node. We refer to this local QTP as the root QTP. In our
example, q1 is the root QTP. All other local QTPs contain exactly
one pattern node that matches root proxy nodes in their fragments.
If local QTP qs contains a pattern node labeled RP

i→j
∗ and local

QTP qt contains the corresponding pattern node labeled P
i→j
∗ , then

we call qs a child QTP of qt and qt a parent QTP of qs.

B.2 Conversion of Local QTPs to Local Plans
Each local QTP qi is then transformed into a local query plan

pi. This is done at the site holding the fragment corresponding
to qi, using centralized XML query evaluation strategies (e.g., [6,
3]). The distributed execution techniques presented in this paper
are independent of the techniques used by local query plans. We
therefore omit a detailed description of local plan generation. For
the purpose of illustration, Figure 9 shows a set of local plans based
on structural joins (p1 through p4), which correspond to the local
QTPs q1 through q4, respectively.

If qi is a root QTP, then we call its corresponding local plan the
root local plan. Similarly, if qi is a child QTP of qj , then pi is a
child local plan of pj .

Each tuple returned by a local plan pi consists of one attribute
for each extraction point in qi and one attribute for each proxy/root
proxy node in qi. We refer to the set of attributes returned by pi as
Mi. In our example, M1 = {P 1→2

∗ , P 1→3
∗ }, M2 = {RP 1→2

∗ },
M3 = {RP 1→3

∗ , P 3→4
∗ } and M4 = {RP 3→4

∗ , reference}.

Π{P 1→3
∗

,P 1→2
∗

}

1author//P 1→3
∗

1author/P 1→2
∗

scan(author) scan(P 1→2

∗ )

scan(P 1→3

∗ )

(a) p1

Π{RP 1→2
∗

}

σlast=′Shakespeare′

1name/last

1RP 1→2
∗

/name

scan(RP 1→2

∗ ) scan(name)

scan(last)

(b) p2

Π{RP 1→3
∗

,P 3→4
∗

}

1book//P 3→4
∗

1RP 1→3
∗

//book

scan(RP 1→3

∗ ) scan(book)

scan(P 3→4

∗ )

(c) p3

Π{RP 3→4
∗

,reference}

1RP 3→4
∗

//reference

scan(RP 3→4

∗ ) scan(reference)
(d) p4

Figure 9: Local plans

9



C. DISTRIBUTED EXECUTION PLANS
Figure 10 shows several distributed execution plans.

1P 3→4
∗

.id=RP 3→4
∗

4.id

1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

p3

p4

(a)

1P 3→4
∗

.id=RP 3→4
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

1P 1→3
∗

.id=RP 1→3
∗

.id

p1 p3

p2

p4

(b)

1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

1P 3→4
∗

.id=RP 3→4
∗

.id

p3 p4

(c)
Figure 10: Distributed execution plans

D. GRAPHICAL REPRESENTATIONS OF

REWRITES
Figures 11 and 12 show graphical representations of the rewrites

presented in Sections 4.1 and 4.2, respectively.

. . .

1P i→j
∗ .id=RP i→j

∗ .id

GP pj

≡ . . .

p
MGP

j

1P i→j
∗ .id=RP i→j

∗ .id

GP scan(RP
i→j
∗ )

Figure 11: Cross-fragment join pushing rewrite

pj ≡ p′j

σRP i→j
∗ .label∈Lj

scan(RP
i→j
∗ )

Figure 12: Label path rewrite

E. COST MODEL EXAMPLES

E.1 Distributed Execution Plans

Plan cost card snip

p1 1 3 3

p2 2 2 4

p3 5 2 3

p4 10 3 3

Table 3: Local plan costs

If we assume, for example that the local plans in our example
have the estimated costs, cardinalities and subtree counts shown
in Table 3, then we can estimate the cost and cardinality of the
execution plan GP from Figure 10(a) as follows:

card(G{p1,p2}) =
card(p1)

snip(p2)
card(p2) =

3

4
2 =

3

2

card(G{p1,p2,p3}) =
card(G{p1,p2})

snip(p3)
card(p3) =

3
2

3
2 = 1

card(G{p1,p2,p3,p4}) =
card(G{p1,p2,p3})

snip(p4)
card(p4) =

1

3
3 = 1

cost(G{p1,p2}) = max{cost(p1), cost(p2)}

= max{1, 2} = 2

cost(G{p1,p2,p3}) = max{cost(G{p1,p2}), cost(p3)}

= max{2, 5} = 5

cost(GP ) = max{cost(G{p1,p2,p3}), cost(p4)}

= max{5, 10} = 10

E.2 Cross­Fragment Join Pushing
We can estimate the cost and cardinality of the execution plan

GP as follows:

cost(G{p1,p2}) = max



cost(p1),
cost(p1)

card(p1)
+

„

card(p1)
cost(p2)

snip(p2)

«ff

= max



1,
1

3
+

„

3
2

4

«ff

=
11

6
≈ 1.83

cost(G{p1,p2,p3}) = max

(

cost(G{p1,p2}),
cost(G{p1,p2})

card(G{p1,p2})

+

„

card(G{p1,p2})
cost(p3)

snip(p3)

«

)

= max

(

11

6
,

11
6
3
2

+

„

3

2

5

3

«

)

=
67

18
≈ 3.72

cost(GP ) = max

(

cost(G{p1,p2,p3}),
cost(G{p1,p2,p3})

card(G{p1,p2,p3})

+

„

card(G{p1,p2,p3})
cost(p4)

snip(p4)

«

)

= max

(

67

18
,

67
18

1
+

„

1
10

3

«

)

=
127

18
≈ 7.06

10



Q1 /open auction[initial > 200]//item//mail/from

Q2 /open auction[initial > 200][.//author/person/name[starts-with(., ’Ry’)]]//item//mail/from

Q3 /open auction[initial > 200][.//author/person/name[starts-with(., ’Ry’)]]//item//category/id

Q4 /open auction[initial > 200][.//author/person[profile/age > 30]/name[starts-with(., ’Ry’)]]//item//category/id

Q5 /open auction[initial > 200]//author/person[starts-with(name, ’Ry’)]/profile/interest/category/description

A1 /site/closed auctions/closed auction/annotation/description/text/keyword

A2 //closed auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 /site/closed auctions/closed auction[annotation/description/text/keyword]/date

A5 /site/closed auctions/closed auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

B7 //person[profile/@income]/name

A1S /site/closed auctions/closed auction[price > 600]/annotation/description/text/keyword

A2S //closed auction[price > 600]//keyword

A3S /site/closed auctions/closed auction[price > 600]//keyword

A4S /site/closed auctions/closed auction[price > 600][annotation/description/text/keyword]/date

A5S /site/closed auctions/closed auction[price > 600][descendant::keyword]/date

A6S /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)][profile/@income]/name

Table 4: Queries used for performance evaluation

site

(a)

open auctions

open auction

(b)

closed auctions

close auction

price

(c)

categories

category

(d)

people

person

name

(e)

regions

(f)

catgraph

(g)

annotation

description

(h)

profile

age income

(i)

address

city

(j)

Figure 13: Fragmentation schema used in second experiment

E.3 Label Path Filtering
We can estimate the cost of lp4

= p′
4(σRP3→4

∗
.label∈{/author/pubs/book}

(scan(RP 3→4
∗ ))) as follows:

cost(lp4
) = cost(p4)

card(l4)

snip(p4)
= 10

2

3
=

20

3
≈ 6.67

card(lp4
) = card(p4)

card(l4)

snip(p4)
= 3

2

3
= 2

snip(lp4
) = card(l4) = 2

F. PERFORMANCE EVALUATION DETAILS
Table 4 shows the queries used in our experiments.
Figure 14 shows the schema used to fragment the XMark collec-

tion for our first experiment (with some node types omitted).

open auction

annotation initial

(a)

itemref

item

mail incategory

(b)

author

(c)

seller

(d)

bidder

personref

(e)

person

name

(f)

profile

age interest

(g)

category

id

(h)

Figure 14: Fragmentation schema used in first experiment

Figure 13 shows the schema used to fragment the XMark collec-
tion for our second experiment (with some node types omitted).

11


