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ABSTRACT 
Scalable execution of expensive continuous queries over massive 
data streams requires input streams to be split into parallel sub-
streams. The query operators are continuously executed in 
parallel over these sub-streams. Stream splitting involves both 
partitioning and replication of incoming tuples, depending on how 
the continuous query is parallelized. We provide a stream splitting 
operator that enables such customized stream splitting. However, 
it is critical that the stream splitting itself keeps up with input 
streams of high volume. This is a problem when the stream 
splitting predicates have some costs. Therefore, to enable 
customized splitting of high-volume streams, we introduce a 
parallelized stream splitting operator, called parasplit. We 
investigate the performance of parasplit using a cost model and 
experimentally. Based on these results, a heuristic is devised to 
automatically parallelize the execution of parasplit. We show that 
the maximum stream rate of parasplit is network bound, and that 
the parallelization is energy efficient. Finally, the scalability of 
our approach is experimentally demonstrated on the Linear Road 
Benchmark, showing an order of magnitude higher stream 
processing rate over previously published results, allowing at least 
512 expressways. 

1. INTRODUCTION 
Decision-making in real time over streaming data requires proc-
essing of continuous queries involving expensive computations. 
Applications include scientific and engineering settings where 
complex analyses are performed over streams of high volume 
from instruments and equipment. Scalable execution of such 
continuous queries with expensive computations requires input 
streams to be split into parallel sub-streams over which the 
expensive query operators are continuously executed in parallel. 
Naïvely implemented, stream splitting becomes a bottleneck for 
input streams of high volume, non-trivial parallelization condi-
tions, or massive parallelization of query operators. 

We eliminate this bottleneck by introducing a novel parallel 
stream splitting operator, called parasplit, which splits input 
streams of high volume according to non-trivial customized paral-

lelization conditions into massively parallel sub-streams. Expen-
sive query operators are applied on these sub-streams in parallel. 
By parallelizing not only the expensive query operators but also 
the stream splitting, we show that the maximum stream rate of 
parasplit is network-bound and not bound by the cost of the split 
conditions. We estimate energy efficiency by measuring CPU 
cost, and show that the additional CPU cost of parallelizing the 
stream splitting in parasplit is moderate compared to the cost of 
only executing the stream splitting. Thus, we enable processing of 
expensive continuous queries close to the capacity of the network. 

To facilitate data-parallel stream processing, an input stream S 
must be split into q parallel streams over which an expensive con-
tinuous query operator Q is applied in parallel on separate CPUs 
PQj, j = 1…q. A typical parallelization of an expensive function 
Q on a high-volume stream S is shown in Figure 1. A splitstream 
function splits S into q parallel streams by partitioning and/or rep-
licating input streams into a collection of streams. For each tuple 
in the input stream, splitstream decides whether the tuple should 
be sent to one specific DSMS node (partitioning) or to many 
DSMS nodes (replication), according to a specification provided 
by the user. Q is applied on each parallel stream. The result 
streams from each application of Q can be merged, e.g. based on 
time stamps [4]. It is easy to see that when scaling the cost of Q 
and the rate of the input stream S, it is necessary to scale the 
parallelism q in order to keep up with the input stream rate. 

 

Figure 1. Streamed data parallelism. 

For each tuple in S, it must be decided to which parallel sub-
stream Sj the tuple should be sent. However, non-trivial routing 
decisions will prohibit scalability when the input stream rate 
increases. Furthermore, a large value of q may affect the cost of 
the split. Parasplit is a splitstream function that eliminates these 
bottlenecks by parallelizing its split predicates. 

We proceed by introducing splitstream functions in general and 
parasplit in particular (Section 2). In Section 3, we introduce 
stream processes (SPs) as a DSMS node executing a sub-plan in a 
distributed environment. A cost model for the SPs used by para-
split is defined (Section 3.1), resulting in general heuristics for 
automatic parallelization of parasplit (Section 3.2). Parasplit has 
been implemented in the parallel DSMS SCSQ [32]. It is shown 
both theoretically and experimentally how to achieve network 
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bound stream rates, independent of the stream splitting cost and q 
(Section 4.1). The cost heuristic is validated experimentally and 
compared to the theoretical model (Section 4.2). Finally, we apply 
parasplit on the Linear Road Benchmark (LRB) [3], and show that 
it enables an order of magnitude higher stream processing rate 
over previously published results, allowing 512 expressways 
(Section 4.3). We conclude by contrasting this contribution to 
other work in parallel stream processing and outline future work. 

2. SPLITSTREAM FUNCTIONS 
A splitstream function has the basic signature 

splitstream(stream s, integer q, function rfn, function bfn)  
vector of stream sv  

Variants of splitstream may have additional parameters. The input 
stream s is split into q output streams in the vector sv. The first 
functional argument rfn is the routing function, having signature 
rfn(object tpl, integer q)  integer, which returns the output 
stream number (between 0 and q–1) for each tuple that should be 
routed to a single output stream. The function bfn(object tpl)  
boolean is the broadcast function, which returns true for tuples to 
be broadcasted to all output streams. bfn and rfn return nil for 
tuples that should be neither broadcasted nor routed, i.e. omitted. 
For example, splitstream in Figure 1 splits the input stream S into 
q parallel streams according to its routing and broadcast 
functions, resulting in a vector of q parallel streams. Since rfn and 
bfn have non-zero cost, splitstream may become a bottleneck for 
high input stream rates. The splitstream function  

parasplit(stream s, integer q, function rfn, function bfn)  vector 
of stream sv  

eliminates this bottleneck by scaling out the execution of rfn and 
bfn in addition to Q.  

A call to parasplit dynamically creates a distributed execution 
plan that consists of many intercommunicating distributed opera-
ting system processes, each running a sub-plan. Such processes 
are called stream processes, (SPs). Each SP computes tuples of its 
output streams by processing its input streams according to its 
local sub-plan.  

Figure 2 shows the SPs involved in parasplit, with q = 8 and 
p = 3. First, the window router PR reads entire physical windows 
of size W containing binary represented tuples from the input 
stream S. Each physical window is uniformly and randomly 
routed to one of the p parallel sub-streams Si, i = 0…p–1. Uniform 
routing balances Tij for all i, while random routing eliminates any 
time periodicities present in the attributes used for splitting, which 
balances Tij for all j over time. Since the window router is proces-
sing entire physical windows, its cost is not a bottleneck for large 
enough windows and suitable scheduling, as will be validated. 

Second, each window splitter PSi unpacks the tuples of the physi-
cal windows of its sub-stream Si received from PR. According to 
the stream splitting functions rfn and bfn, each tuple is distributed 
to zero, one or more continuous query processors PQj, j = 0… 
q–1. The output stream rate of a window splitter is potentially 
greater than its input stream rate if any tuples are broadcasted. 
Since a compute node in a cluster usually has only a single net-
work interface, its output stream rate may not exceed its input 

stream rate. Therefore, parasplit schedules all window splitters on 
other compute nodes than the window router. 

Third, each query processor PQj merges all received streams Tij, 
i = 0…p–1, into a local stream Uj, over which the expensive query 
operator Q is executed. Since the tuples arriving at PQj have 
travelled through p different window splitters in parallel, the order 
of arrival of the tuples at each query processor may be different 
than their order of arrival at the window router. Each tuple of the 
input stream S is time stamped before arrival. To maintain time 
order in Uj, each query processor PQj always moves the tuple 
from Tij, i = 0…p–1, with the least timestamp to Uj. Since the 
window router uniformly distributes tuples over all Si, all streams 
Tij have the same rate for all i. Therefore, the merge operator of 
PQj does not have to idle-wait for tuples due to empty inputs. 

 

Figure 2. Parasplit. 

3. A COST MODEL FOR STREAM 
PROCESSES 
A distributed continuous query execution plan consists of inter-
communicating SPs. Each SP runs an execution plan containing 
some or all of the sub-plans (modules) and operators shown in 
Figure 3. Each input stream Sj, j = 0…u–1, is first read and de-
marshalled by a consume operator. The merge module merges 
several streams into one according to its installed sub-plan. The 
compute module executes a continuous sub-plan over the merged 
input streams. In the split module, tuples that are emitted from the 
compute module are processed according to stream splitting par-
titioning and replication conditions specified by rfn and bfn. Each 
emit operator marshals and emits tuples to its result stream Ri, 
i = 0…q–1. In parasplit, the window router PR and window split-
ters PSi have only one consume operator but several emit opera-
tors, while each query processor PQj has several consume opera-
tors. For example, in the parasplit example shown in Figure 2, 
each SP executing PQj merges three input streams and emits one 
output stream. 

 

Figure 3. Modules and operators in a stream process. 
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An SP in SCSQ is implemented as a UNIX process in a cluster. 
However, the cost model can be applied on SPs in any distributed 
environment. Consume and emit operators in SCSQ are imple-
mented for TCP, UDP, MPI, and UNIX pipes. 

Next, we introduce a cost model for processing a tuple in an SP. 
We investigate how the cost of executing each SP in parasplit is 
affected by the scale-out of the window splitters PSi and the query 
processors PQj. Based on this, we define a heuristic that enables 
us to easily achieve maximum input stream rate. 

3.1 Cost of streaming a tuple 
The CPU cost C for an SP to process an incoming tuple is com-
puted using Equation (1). 

 
 )()( bqrcebqrocs

cqucmcpcrC





 

(1)

The read cost cr is the cost of reading and de-marshalling an input 
tuple in a consume operator. As a merge module polls the input 
streams for pending data and merges the read tuples, it has both a 
poll cost cp and a merge cost cm, which are multiplied by the 
number of input streams u. The query cost cq is the cost per tuple 
of executing the compute module on the merged stream. The se-
lectivity of the sub-plan is , so the result stream rate is multiplied 
by , which affects the costs of split and emit. The split cost cs is 
the cost to execute the split module per tuple received from the 
compute module. The emit cost ce is the cost of marshalling and 
emitting a tuple on one output stream. In the split module, b is the 
proportion of tuples to be replicated to all q output streams accor-
ding to a replication condition. b is called the broadcast percent-
age. Hence, b is multiplied by q in Equation (1). The routing per-
centage r is the proportion of output tuples to be routed according 
to a partitioning condition. o is the omit percentage, which is the 
proportion of output tuples that are neither broadcasted nor 
routed. As each output tuple is either broadcasted, routed, or 
omitted, r + b + o = 1. The coefficients of the general cost 
Equation (1) depend on the operators executed by the SP. We 
now specialize Equation (1) for each kind of SP in parasplit. 

3.1.1 Window router 
The cost CPR of executing the window router PR in parasplit is 
given by Equation (2). PR has only one consume operator and 
therefore does not poll or merge any tuples. Furthermore, PR does 
not execute any compute module. Therefore, PR has cp = cm = 
cq = 0 and  = 1. As PR routes every incoming window to the 
window splitters PSi, r = 1, and b = o = 0. Finally, the split and 
emit costs csW and ceW of PR are the costs of distributing entire 
windows of the input stream S to the window splitters.  

WWWPR cecscrC   (2)

3.1.2 Window splitter 
Equation (3) models the cost of processing a tuple in a window 
splitter PSi. Like PR, each PSi has cp = cm = cq = 0 and  = 1, as 
it does not execute any merge or compute module. The cost of 
reading a tuple from PR is estimated by crW, as each incoming 
stream Si contains the same kind of physical windows as the in-
coming stream to PR. cs estimates the cost of executing rfn and 

bfn per tuple in PSi. ce models the cost of emitting each tuple 
from PSi. 

   bqrcebqrocscrC WPS   (3)

3.1.3 Query processor 
Equation (4) models the cost per tuple in each query processor 
PQj of merging the streams Tij from the window splitters PSi, 
i = 0…p–1, and executing the continuous query operator Q. cr is 
the read cost of reading a single tuple. As each PQj merges p 
streams, the poll and merge costs are multiplied by p. Finally, O 
is the cost of executing the expensive continuous query operator 
Q in the compute module and emitting the result downstream. 

  OcmcppcrCPQ   (4)

3.2 A heuristic stream rate model for 
parasplit 
We define the maximum stream rate of each kind of SP in para-
split as ΦPR for the window router PR, ΦPS for the window split-
ters PSi, and ΦPQ for the query processors PQj. Each of these 
maximum stream rates are potential bottlenecks, since they all 
affect the maximum possible stream rate in parasplit. In other 
words, the maximum stream rate of parasplit ΦPARASPLIT = 
min(ΦPR, ΦPS, ΦPQ). In particular, the window router is the critical 
bottleneck, since the window splitter and query processors are 
parallelized. The hypothesis is that for a large enough window 
size W, ΦPR should be network bound. 

3.2.1 Physical window size 
The input stream to PR is delivered as physical windows, each 
window containing W bytes. The cost of PR is influenced by the 
physical window size W. With a large enough window, the cost of 
executing PR for each window is insignificant compared to the 
communication cost. Then, ΦPR is expected to approach maxi-
mum network speed, independent of communication protocol, 
which is validated experimentally for 1 Gbps. The first step is to 
find a large enough W such that ΦPR is maximized. To determine 
the window size W, we profile the window router once and for all 
in the cluster used. PR is executed with p = 4 routing windows to 
PSi containing only the consume operators. The window size is 
doubled until there is less than 0,15% improvement of ΦPR. On 
our cluster, we achieved ΦPR = 987 Mbps for W = 16 kB, which is 
close to our wire speed, so PR is network bound. The profiling is 
fast, as each measurement is run for 1 second. In our experiments, 
it converged after 9 rounds. 

3.2.2 Window splitter parallelism 
For a given call to parasplit, p must be determined. Let ΦD be the 
desired input stream rate. We choose p such that pΦPS  ΦD so 
that the window splitters are not bottlenecks. Equation (3) esti-
mates the cost per tuple of splitting a tuple in a window splitter 
according to rfn and bfn. In our heuristic we assume that crW = 0, 
as the cost of reading a tuple from a physical window is assumed 
to be low in comparison to the more expensive rfn and bfn. We 
assume o = 0, which will over-estimate CPS. 

Assuming that parasplit is mainly used for scaling out computa-
tions by partitioning the input data stream, we estimate the broad-
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cast frequency to be rather low. To accommodate parallelization 
strategies involving high amounts of broadcast, b is configurable, 
but we set a default value of b = 0.01. Based on this reasoning, we 
approximate CPS of Equation (3) with ĈPS of Equation (5): 

   qcecsCPS  01.099.0ˆ  (5)

Next, cs+ce is estimated by measuring the maximum stream rate 
ΦPS

(1) of a single window splitter on a small section of the input 
stream with q = 1. cs+ce = 1/ΦPS

(1). Furthermore, p should be as 
small as possible to minimize the merge cost in Equation (4), 
while still satisfying p  ΦD/ΦPS. Therefore, p is estimated by 
Equation (6). The maximum stream rate of parasplit with this 
heuristic value of p is evaluated in the experiments. 

 












 qp
PS

D 01.099.0ˆ
)1(

 
(6)

By estimating o = 0, our heuristic in Equation (6) may choose a p 
that is slightly greater than what is needed to keep up with the 
desired stream rate ΦD. A too low p may not keep up with ΦD. 
However, we note that if a lower bound of o is known, a smaller p 
could be chosen to save cost in Equation (4), which is future 
work. 

3.2.3 Efficiency of parasplit 
To estimate the energy efficiency of parasplit, we define 
efficiency  as the CPU time ratio between all PSi, i = 0…p–1, 
and all SPs involved in parasplit. Formally, the efficiency is given 
by Equation (7), where CPQ

O=0 is the cost of performing the read, 
poll, and merge in PQ, i.e. the cost of executing PQ with no 
continuous query installed. With no query execution cost, O = 0. 

)0( 



O

PQPSPR

PS

CqCpC

Cp  
(7)

The efficiency is a measurement of the additional work incurred 
by executing parasplit in comparison to executing a window 
splitter in a single process. Note however that a window splitter of 
a single process would not be able to achieve the stream rate of 
parasplit.  

4. EVALUATING PARASPLIT 
The purposes of the experiments are the following: 

 Validate the heuristic for parasplit. 

 Validate that parasplit is network bound in practice. 

 Evaluate the efficiency of parasplit by measuring the CPU 
cost overhead of parallelizing rfn and bfn in parasplit. 

 Show that parasplit allows one order of magnitude more 
expressways over previous work in an LRB implementation. 

In all experiments, each SP is a UNIX process on a cluster of 
compute nodes, each node featuring two quad-core Intel® Xeon® 
E5520 CPUs @ 2.27GHz and 8 MB L2 cache. For the scale-up 
experiments, a maximum of 70 such compute nodes were avail-
able. TCP was used for stream communication between SPs. All 

SPs of parasplit were distributed over different compute nodes in 
this cluster. Thus, the capacity of the 1 Gbps network interfaces 
were the upper bound for all inter-process stream rates in the ex-
periments. 

As a test stream, we use the input stream of event tuples e of 
LRB. There are four kinds of events; P, A, D, and E, of which 
99% are position reports P that are emitted from vehicles 
travelling on the expressways numbered from 0 to L–1 . The rest 
of the tuples are account balance queries A (0.5%), daily 
expenditure queries D (0.1%), and estimated travel time queries E 
(0.4%). Our LRB implementation scsq-plr [26], parallelizes the 
execution by distributing the input stream events per expressway, 
i.e. q = L. In our experiments, input events of type D and E are 
omitted, so o = 0.5%. Type P events are routed to the query 
processors PQj executing the corresponding expressway j=0…L–
1, so r = 99%. Type A events are broadcasted, so b = 0.5%. The 
input stream is split according to rfnLR(e, q) defined as select 
expressway(e) where eventtype(e)=P, and bfnLR(e) 
is defined as select eventtype(e)=A. In order to measure 
maximum input stream rate, the LRB input events were streamed 
at maximum possible rate. 

4.1 Window router stream rate 
The goal of this experiment is to confirm that PR is not CPU 
bound but network bound for sufficiently large window size. In 
the experiment, one SP was executing PR, which received and 
routed an input stream of physical windows of size W to p win-
dow splitters with only consume operators installed. p was varied 
from 4 to 512. Figure 4 shows ΦPR for different p when varying W 
from 72 bytes to 16kB. 

The maximum stream rate is 980 Mbps, achieved for p  64. A 
slightly lower maximum stream rate of 975 Mbps was measured 
for p = 128. For higher values of p, the performance degrades for 
unknown reasons. 
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Figure 4. ΦPR for different W, p. 

To alleviate the degradation in stream rate when scaling p, we 
made an experiment with a two-level tree of window routers with 
equal fanout  p on each level, and W = 16 kB. Figure 5 shows 
that the degradation then becomes negligible even for very large 
values of p. Thus, a PR tree has higher ΦPR for high values of p 
than a single process PR. 

4.2 Parasplit scale-up 
The scale-up is defined as ΦPARASPLIT when q is increased. In the 
scale-up experiments, we measure ΦPARASPLIT when varying q and 
setting p according to the heuristic given in Section 3.2.2. ΦPS

(1) 
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was measured to 123.7 Mbps, and ΦD was set to 1 Gbps. The 
scale-up of the heuristic parasplit using the approximate Equation 
(6) was compared to the scale-up according to the cost model 
given by Equations (2) and (3). The values of crW, cs, and ce were 
obtained by detailed profiling of one PR node and of one PSi node 
executing rfnLR() and bfnLR(). For reference, we also measure 
the scale-up of parasplit with p = 1 and with p = q. For p = 1, all 
stream splitting is performed in a single process, i.e. the naïve 
fsplit [32], which is the baseline for the experiments. To compare 
with the so far best published stream splitting strategy, we also 
measure the scale-up of maxtree [32]. Based on knowledge of 
communication costs, and b and r, maxtree forms an optimized 
tree of splitstream processes, where each process splits the input 
stream according to rfn and bfn. The maximum stream rate of 
maxtree is sensitive to the cost of rfn and bfn, a limitation not 
present in parasplit. To make maxtree fully comparable, its im-
plementation is slightly improved over [32] by reading physical 
windows of the input stream rather than individual tuples. 
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Figure 5. ΦPR for different p. 

Figure 6 shows that parasplit achieves an order of magnitude 
higher maximum stream rate than maxtree and naïve fsplit (p = 1) 
for high values of q. The single PR measurements have a single 
process window router, whereas the PR tree measurement em-
ploys a tree of window routers, as devised in Section 4.1. It is 
clear that p must be chosen carefully, since parasplit with neither 
p = 1 nor p = q does scale. As predicted by Equation (3), p = 1 
does not scale with q. 
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Figure 6. Scale-up. 

In the single PR experiments, 849 Mbps was measured for 
q = 512 and the heuristic setting of p = 55 in Equation (6), 
whereas 840 Mbps was achieved for q = 512 and the cost model 
setting of p = 44 in Equations (2) and (3). The scale-up of heuris-

tic parasplit (parasplit, single PR) is the same as that of parasplit 
with p chosen using the cost model (cost model, single PR). This 
shows that our heuristics are sound. The best maximum stream 
rate was achieved using a tree shaped window router (parasplit 
PR tree), confirming the results in Figure 5. In particular, for 
q = 512, PR tree achieves a maximum stream rate of 913 Mbps 
(p = 55 as set by the heuristic in Equation (6)). 

4.3 Parasplit efficiency 
The purpose of this experiment is to measure the CPU overhead 
that parasplit incurs when parallelizing rfn and bfn. The total CPU 
time of each SP was measured using system performance counters 
in the /proc file system. Parasplit was invoked with a dummy 
query Q that only counted the incoming tuples. The cost O of this 
simple query was subtracted from CPQ before  was computed 
using Equation (7). The same experiments were performed as in 
Section Error! Reference source not found. except for maxtree. 

Figure 7 shows the efficiency when increasing q. As expected, the 
exact cost model based setting of p (cost model, single PR) has 
the highest efficiency. However, we notice that the efficiency of 
the heuristic parasplit variants (parasplit, single PR and parasplit, 
PR tree) is very close to that of the cost model. Finally, we notice 
that the efficiency goes down with bad choices of p (p=1, p=q). 

Substantially over-estimated p = q is particularly bad, since the 
poll and merge costs in the query nodes are then multiplied by p 
in Equation (4). We conclude that p should be set to the recom-
mended heuristic value, and that a PR tree should be used in 
parasplit for all values of p and q, as parasplit PR tree achieves 
superior scale-up and does not degrade efficiency substantially 
compared to any of the single PR. 
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Figure 7. Parasplit efficiency for increasing q. 

4.4 LRB experiment 
As a final experiment, we compare the achievable stream rate of 
scsq-plr using parasplit to other implementations of LRB [3]. The 
number of expressways that an implementation is able to handle 
is called the L-rating of the implementation. An LRB 
implementation produces five result streams; toll and accident 
alerts (event type T and AA), and query responses (event type A, 
D, and E). Currently, E tuples are ignored in all LRB implemen-
tations [3]. The D tuples are computed over data that does not 
change during the LRB simulation. In an experiment performed 
after the publication [32], we verified that a conventional database 
on a single compute node was sufficient to handle queries over 
historical data (event type D) for an L-rating up to 64. However, 
the conventional DBMS (MySQL) cannot handle the very high 
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query rates presented here. A solution would involve scaling out 
the historical database over many compute nodes, which is future 
work. In the present experiment, we choose to ignore the D 
tuples. As a consequence, the implementation used here results in 
three output streams (event type T, AA, and A). 

Parasplit was used to split the input stream in scsq-plr according 
to Figure 8, using only a single process PR. The input stream rate 
for each expressway in LRB is maximum 1700 tuples/s. The size 
of each tuple is 72 bytes, so the input stream rate will be 
ΦD = 1700·512·72·8 Mbps ≈ 500 Mbps. Given q = 512 and 
ΦD = 500 Mbps, parasplit determines p = 25 according to Equa-
tion (6), as ΦPS

(1) = 123.7 Mbps. 

The expensive continuous query Q is here the computation of the 
LRB query result streams. Each PQj node was processing all tu-
ples of expressway j. The output stream of each lrj is split on 
event type according to the routing function rfnO(e) defined as 
select eventtype(e); where event type T is 0, AA is 1 
and A is 2 in the output stream. 

 

Figure 8. scsq-plr using parasplit. 

 The toll and accident alert result streams are merged using stream 
union-all (i.e. ignoring timestamp order). Account balance an-
swers from all lrj are grouped on query id, and the sums of the 
account balances from all expressways lrj are aggregated for each 
query id.  

Aggregating q streams of account balance responses with a total 
stream rate of q·Φa results in an output stream rate of Φa after the 
aggregation. In scsq-plr with q = 512, the total stream rate of ac-
count balance answers is much greater than the capacity of the 1 
Gbps network interfaces used in the experiments. Similar to 
aggregation trees of [31], account balance answers are hierarchi-
cally aggregated in two level tree as shown in Figure 8, with 
k = 22 ≈ √512 for the two-level distributed aggregation tree of 
512 input streams. Finally, all union and aggregation processes 
were scheduled on different compute nodes, so that disk and 
network throughput for these processes was no bottleneck. 

LRB requires a maximum response time (MRT) of 5 seconds for 
events of type T, AA, and A. In our LRB experiment we measured 
the maximum response time for all events e in the output stream 
to be MRT(e) < 5 s. We conclude that scsq-plr using parasplit 
achieves an L-rating of 512, with daily expenditure queries dis-
abled. Table 1 lists the currently published LRB implementations. 

Table 1. LRB implementations. 

Name year L #cores Comment 

Aurora [3] 2004 2.5 1  

SPC [19] 2006 2.5 170 3GHz Xeon 

XQuery [6] 2007 1.5 1  

scsq-lr [26] 2007 1.5 1 laptop 

DataCell [22] 2009 1 4 
1.4s average 

response time 

stream schema [13] 2010 5 4  

scsq-plr [32] 2010 64 48 maxtree 

CaaaS [9] 2011 1 2 
Streaming 

MapReduce 

scsq-plr 2011 512 560 
Parasplit. 

D disabled 

5. RELATED WORK 
This paper complements other work on parallel DSMS imple-
mentations [1] [11] [14] [16] [18] [24] [29] [32], by employing 
massive scale-out based on customizable stream splitting func-
tions. 

The fragmentation and replication conditions provided as meta-
data in a distributed database [25] corresponds to the routing and 
broadcast functions in parasplit. While the emphasis of distributed 
databases is scaling out data, the extreme stream rates for DSMSs 
require scaling out also the routing and broadcast functions, 
which is the topic of this paper. 

In previous work [15], we have shown that stream splitting, utiliz-
ing non-trivial routing decisions, proved to be very efficient when 
parallelizing online spatio-temporal optimization of transporta-
tion. Splitstream functions were introduced in [32], where tree-
shaped distributed execution plans were shown to improve the 
rate of stream splitting. These techniques enabled an L-rating of 
64 in LRB. However, the splitstream trees developed in [32] were 
sensitive to the cost of rfn and bfn. By contrast, we have shown 
that parasplit achieves an order of magnitude higher stream rates 
independent of the cost of rfn and bfn by parallelizing the stream 
splitting in a lattice. 

GSDM [18] distributed its stream computations by generating 
parallel execution plans with tree shaped stream splitting, through 
parameterized code generators. Parallelizing the queries in GSDM 
was reported to achieve a maximum stream rate of 16 Mbps. By 
contrast, parasplit is network bound by utilizing physical windows 
and a lattice based stream splitting strategy and allows not only 
routing but also broadcasting of tuples. 

SPADE [14] has a stream splitting operator that includes capabili-
ties of replicating tuples [2], similar to splitstream. StreamInsight 
[21] has both stream splitting operator and a broadcast operator 
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that replicates entire streams to multiple processing operators, 
similar to a publish/subscribe-system. By contrast, parasplit 
allows fine grained customized specification of what individual 
tuples in the stream to broadcast or route. The throughput of 
distribution and replication in System S was reported to degrade 
with the number of output nodes in [2]. Custom stream 
partitioning was also shown to be a bottleneck in [7]. By contrast, 
we have shown that parasplit provides network bound stream 
processing by massive scale-out of customized splitting and 
broadcasting in a lattice shaped distributed execution plan. 

Gigascope [11] was extended with automatic query dependent 
data partitioning in [20] for computing aggregates in high-volume 
network monitoring queries, distributed over the output from spe-
cial hardware splitting a very high volume input stream. The 
evaluation focused on aggregation of a number of input streams, 
each with a stream rate of 200 Mbps. The input stream splitting 
was outside the scope of their work, as it was assumed to be per-
formed by special hardware. By contrast, our work focuses on 
stream splitting in software rather than hardware, scaling up to 
network stream rate by parallelizing the stream splitting on stan-
dard PCs. 

Partitioning a query plan by statically distributing the execution 
of its operators proved to be a bottleneck in SPC [19]. In Medusa 
[5], query plans were partitioned by dynamically migrating opera-
tors between processors. However, expensive operators are still 
bottlenecks. In our work, such bottlenecks are eliminated by both 
splitting the input stream into several parallel streams, and by 
parallelizing the stream splitting itself. Furthermore, allowing 
combined routing and broadcasting in parasplit provides a 
powerful method for data parallelization. 

Of the existing implementations of LRB shown in Table 1, there 
are three attempts to parallelize the execution: SPC [19], Stream 
Schema [13], and Continuous analytics as a Service (CaaaS) [9]. 
Unlike these systems, parasplit provides massive scale-up by 
automatic parallelization of rfn and bfn, enabling network bound 
input stream rates independent of the cost of parallelization. 

The SPC implementation of LRB [19] was partitioned into 15 
processing elements, each of which executed a separate stream 
operator. The operator that computed all segment statistics 
became a hot spot. By contrast, parasplit uses data parallelism 
rather than operator parallelism, and is shown to achieve over 100 
times the number of expressways of the SPC implementation. 
This performance difference illustrates the usefulness of 
customizable data parallelization provided by parasplit. 

Automatic parallelization of stream queries based on user pro-
vided stream metadata was discussed in [13], where a parallelized 
implementation of LRB was shown to achieve L = 5 on a 4-core 
PC. By contrast, in parasplit, metadata is expressed as queries in 
rfn and bfn. 

The use of physical windows called SigSegs in XStream [16] was 
shown to reduce tuple passing overhead substantially. Similarly, 
we also save communication cost by operating on physical win-
dows of stream events in the window router of parasplit. While 
entire SigSegs were distributed in XStream, parasplit allows mas-
sive parallelization based on hierarchical window routing and 
parallelized customized distribution and replication of tuples. This 

is shown to maintain network bound stream rates independent of 
the cost of splitting. 

Recently [28] event detection using regular expressions was im-
plemented on an FPGA, which achieved gigabit wire speed. By 
contrast, parasplit allows parallelization of arbitrary CQs in soft-
ware with no need for special hardware. 

MapReduce [12] can be seen as a form of parallelized group-by 
over large data sets. Dryad [17] allows more flexible 
parallelization schemes by implementing an explicit process 
graph building language. By contrast, SCSQ does not require the 
user to explicitly construct process graphs, since the process 
graphs of SCSQ are automatically generated by the parallelization 
functions. SCOPE [8] and Map-Reduce-Merge [30] provide an 
SQL-like query language over large distributed files. However, 
Dryad, Map-Reduce, and SCOPE are all batch systems, operating 
on data at rest (sets), while SCSQ continuously processes 
streaming data. MapReduce was recently extended with streaming 
capabilities [9] [10]. The problem of scalable stream splitting is 
not handled by streaming MapReduce. 

A MapReduce wrapper was recently added to the DSMS System 
S [22], combining data at rest with streaming data. However, 
calling MapReduce from a DSMS is different from scaling out the 
execution of a DSMS, which is the focus of this paper. 

6. CONCLUSIONS AND FUTURE WORK 
Scalable splitting of streams is necessary to achieve high stream 
rates in a parallel DSMS. We have introduced parasplit, which 
enables splitting input streams of high volume into a high number 
of output streams by parallelizing user defined stream splitting 
specifications. Parasplit is shown to enable a network bound 
stream rate independent of communication protocol (e.g. 93% of a 
1 Gbps interface) for parallelization of expensive continuous que-
ries over streams. This is achieved by (i) automatic parallelization 
of the execution of the stream splitting specifications, and (ii) by 
hierarchically routing of physical windows of sufficient size. 
Based on a cost model, we devised a heuristic that automatically 
chooses physical window size and parallelization of the stream 
splitting specifications for close-to-optimum efficiency according 
to the cost model. By scaling out stream splitting with parasplit in 
the scsq-plr implementation of the Linear Road Benchmark, we 
achieved an order of magnitude higher stream processing rate 
over previously published results, allowing 512 expressways. 

As future work, we plan to investigate alternatives for scaling out 
a parallel database to combine high volumes of data at rest with 
high volumes of data in motion. Furthermore, it should be 
investigated how to push down selection predicates of Q into rfn, 
effectively saving communication cost by increasing omit 
percentage o in the window splitters. 

Our experiments have been performed in a cluster of up to 70 
compute nodes with 8 cores each connected by a 1 Gbps switched 
network. The behavior of parasplit should be investigated for 
higher network speeds, more cores, and more compute nodes. 

It should be investigated if the efficiency of parasplit can be im-
proved by using hardware acceleration such as FPGAs, by com-
paring the costs of hardware accelerated parasplit to that of stan-
dard hardware parasplit. 
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The query plan of parasplit is optimized, parallelized, and sche-
duled when the CQ is started. Although this approach was shown 
to work well in our evaluations, it would be worthwhile to extend 
it with methods for adaptive parallelization and scheduling of 
execution over streams after the CQ has been started, as in [24] 
[27] [29] [33]. For example, it should be investigated if p and W 
can be set adaptively based on system load. 
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