

Massive Scale-out of Expensive Continuous Queries
Erik Zeitler

Department of Information Technology
Uppsala University
+46 18 471 3390

erik.zeitler@it.uu.se

Tore Risch
Department of Information Technology

Uppsala University
+46 18 471 6342

tore.risch@it.uu.se

ABSTRACT
Scalable execution of expensive continuous queries over massive
data streams requires input streams to be split into parallel sub-
streams. The query operators are continuously executed in
parallel over these sub-streams. Stream splitting involves both
partitioning and replication of incoming tuples, depending on how
the continuous query is parallelized. We provide a stream splitting
operator that enables such customized stream splitting. However,
it is critical that the stream splitting itself keeps up with input
streams of high volume. This is a problem when the stream
splitting predicates have some costs. Therefore, to enable
customized splitting of high-volume streams, we introduce a
parallelized stream splitting operator, called parasplit. We
investigate the performance of parasplit using a cost model and
experimentally. Based on these results, a heuristic is devised to
automatically parallelize the execution of parasplit. We show that
the maximum stream rate of parasplit is network bound, and that
the parallelization is energy efficient. Finally, the scalability of
our approach is experimentally demonstrated on the Linear Road
Benchmark, showing an order of magnitude higher stream
processing rate over previously published results, allowing at least
512 expressways.

1. INTRODUCTION
Decision-making in real time over streaming data requires proc-
essing of continuous queries involving expensive computations.
Applications include scientific and engineering settings where
complex analyses are performed over streams of high volume
from instruments and equipment. Scalable execution of such
continuous queries with expensive computations requires input
streams to be split into parallel sub-streams over which the
expensive query operators are continuously executed in parallel.
Naïvely implemented, stream splitting becomes a bottleneck for
input streams of high volume, non-trivial parallelization condi-
tions, or massive parallelization of query operators.

We eliminate this bottleneck by introducing a novel parallel
stream splitting operator, called parasplit, which splits input
streams of high volume according to non-trivial customized paral-

lelization conditions into massively parallel sub-streams. Expen-
sive query operators are applied on these sub-streams in parallel.
By parallelizing not only the expensive query operators but also
the stream splitting, we show that the maximum stream rate of
parasplit is network-bound and not bound by the cost of the split
conditions. We estimate energy efficiency by measuring CPU
cost, and show that the additional CPU cost of parallelizing the
stream splitting in parasplit is moderate compared to the cost of
only executing the stream splitting. Thus, we enable processing of
expensive continuous queries close to the capacity of the network.

To facilitate data-parallel stream processing, an input stream S
must be split into q parallel streams over which an expensive con-
tinuous query operator Q is applied in parallel on separate CPUs
PQj, j = 1…q. A typical parallelization of an expensive function
Q on a high-volume stream S is shown in Figure 1. A splitstream
function splits S into q parallel streams by partitioning and/or rep-
licating input streams into a collection of streams. For each tuple
in the input stream, splitstream decides whether the tuple should
be sent to one specific DSMS node (partitioning) or to many
DSMS nodes (replication), according to a specification provided
by the user. Q is applied on each parallel stream. The result
streams from each application of Q can be merged, e.g. based on
time stamps [4]. It is easy to see that when scaling the cost of Q
and the rate of the input stream S, it is necessary to scale the
parallelism q in order to keep up with the input stream rate.

Figure 1. Streamed data parallelism.

For each tuple in S, it must be decided to which parallel sub-
stream Sj the tuple should be sent. However, non-trivial routing
decisions will prohibit scalability when the input stream rate
increases. Furthermore, a large value of q may affect the cost of
the split. Parasplit is a splitstream function that eliminates these
bottlenecks by parallelizing its split predicates.

We proceed by introducing splitstream functions in general and
parasplit in particular (Section 2). In Section 3, we introduce
stream processes (SPs) as a DSMS node executing a sub-plan in a
distributed environment. A cost model for the SPs used by para-
split is defined (Section 3.1), resulting in general heuristics for
automatic parallelization of parasplit (Section 3.2). Parasplit has
been implemented in the parallel DSMS SCSQ [32]. It is shown
both theoretically and experimentally how to achieve network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Articles from this volume were invited to present their results at
The 37th International Conference on Very Large Data Bases, August 29th -
September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11.
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1181

bound stream rates, independent of the stream splitting cost and q
(Section 4.1). The cost heuristic is validated experimentally and
compared to the theoretical model (Section 4.2). Finally, we apply
parasplit on the Linear Road Benchmark (LRB) [3], and show that
it enables an order of magnitude higher stream processing rate
over previously published results, allowing 512 expressways
(Section 4.3). We conclude by contrasting this contribution to
other work in parallel stream processing and outline future work.

2. SPLITSTREAM FUNCTIONS
A splitstream function has the basic signature

splitstream(stream s, integer q, function rfn, function bfn) 
vector of stream sv

Variants of splitstream may have additional parameters. The input
stream s is split into q output streams in the vector sv. The first
functional argument rfn is the routing function, having signature
rfn(object tpl, integer q)  integer, which returns the output
stream number (between 0 and q–1) for each tuple that should be
routed to a single output stream. The function bfn(object tpl) 
boolean is the broadcast function, which returns true for tuples to
be broadcasted to all output streams. bfn and rfn return nil for
tuples that should be neither broadcasted nor routed, i.e. omitted.
For example, splitstream in Figure 1 splits the input stream S into
q parallel streams according to its routing and broadcast
functions, resulting in a vector of q parallel streams. Since rfn and
bfn have non-zero cost, splitstream may become a bottleneck for
high input stream rates. The splitstream function

parasplit(stream s, integer q, function rfn, function bfn)  vector
of stream sv

eliminates this bottleneck by scaling out the execution of rfn and
bfn in addition to Q.

A call to parasplit dynamically creates a distributed execution
plan that consists of many intercommunicating distributed opera-
ting system processes, each running a sub-plan. Such processes
are called stream processes, (SPs). Each SP computes tuples of its
output streams by processing its input streams according to its
local sub-plan.

Figure 2 shows the SPs involved in parasplit, with q = 8 and
p = 3. First, the window router PR reads entire physical windows
of size W containing binary represented tuples from the input
stream S. Each physical window is uniformly and randomly
routed to one of the p parallel sub-streams Si, i = 0…p–1. Uniform
routing balances Tij for all i, while random routing eliminates any
time periodicities present in the attributes used for splitting, which
balances Tij for all j over time. Since the window router is proces-
sing entire physical windows, its cost is not a bottleneck for large
enough windows and suitable scheduling, as will be validated.

Second, each window splitter PSi unpacks the tuples of the physi-
cal windows of its sub-stream Si received from PR. According to
the stream splitting functions rfn and bfn, each tuple is distributed
to zero, one or more continuous query processors PQj, j = 0…
q–1. The output stream rate of a window splitter is potentially
greater than its input stream rate if any tuples are broadcasted.
Since a compute node in a cluster usually has only a single net-
work interface, its output stream rate may not exceed its input

stream rate. Therefore, parasplit schedules all window splitters on
other compute nodes than the window router.

Third, each query processor PQj merges all received streams Tij,
i = 0…p–1, into a local stream Uj, over which the expensive query
operator Q is executed. Since the tuples arriving at PQj have
travelled through p different window splitters in parallel, the order
of arrival of the tuples at each query processor may be different
than their order of arrival at the window router. Each tuple of the
input stream S is time stamped before arrival. To maintain time
order in Uj, each query processor PQj always moves the tuple
from Tij, i = 0…p–1, with the least timestamp to Uj. Since the
window router uniformly distributes tuples over all Si, all streams
Tij have the same rate for all i. Therefore, the merge operator of
PQj does not have to idle-wait for tuples due to empty inputs.

Figure 2. Parasplit.

3. A COST MODEL FOR STREAM
PROCESSES
A distributed continuous query execution plan consists of inter-
communicating SPs. Each SP runs an execution plan containing
some or all of the sub-plans (modules) and operators shown in
Figure 3. Each input stream Sj, j = 0…u–1, is first read and de-
marshalled by a consume operator. The merge module merges
several streams into one according to its installed sub-plan. The
compute module executes a continuous sub-plan over the merged
input streams. In the split module, tuples that are emitted from the
compute module are processed according to stream splitting par-
titioning and replication conditions specified by rfn and bfn. Each
emit operator marshals and emits tuples to its result stream Ri,
i = 0…q–1. In parasplit, the window router PR and window split-
ters PSi have only one consume operator but several emit opera-
tors, while each query processor PQj has several consume opera-
tors. For example, in the parasplit example shown in Figure 2,
each SP executing PQj merges three input streams and emits one
output stream.

Figure 3. Modules and operators in a stream process.

1182

An SP in SCSQ is implemented as a UNIX process in a cluster.
However, the cost model can be applied on SPs in any distributed
environment. Consume and emit operators in SCSQ are imple-
mented for TCP, UDP, MPI, and UNIX pipes.

Next, we introduce a cost model for processing a tuple in an SP.
We investigate how the cost of executing each SP in parasplit is
affected by the scale-out of the window splitters PSi and the query
processors PQj. Based on this, we define a heuristic that enables
us to easily achieve maximum input stream rate.

3.1 Cost of streaming a tuple
The CPU cost C for an SP to process an incoming tuple is com-
puted using Equation (1).

 
 )()(bqrcebqrocs

cqucmcpcrC






(1)

The read cost cr is the cost of reading and de-marshalling an input
tuple in a consume operator. As a merge module polls the input
streams for pending data and merges the read tuples, it has both a
poll cost cp and a merge cost cm, which are multiplied by the
number of input streams u. The query cost cq is the cost per tuple
of executing the compute module on the merged stream. The se-
lectivity of the sub-plan is , so the result stream rate is multiplied
by , which affects the costs of split and emit. The split cost cs is
the cost to execute the split module per tuple received from the
compute module. The emit cost ce is the cost of marshalling and
emitting a tuple on one output stream. In the split module, b is the
proportion of tuples to be replicated to all q output streams accor-
ding to a replication condition. b is called the broadcast percent-
age. Hence, b is multiplied by q in Equation (1). The routing per-
centage r is the proportion of output tuples to be routed according
to a partitioning condition. o is the omit percentage, which is the
proportion of output tuples that are neither broadcasted nor
routed. As each output tuple is either broadcasted, routed, or
omitted, r + b + o = 1. The coefficients of the general cost
Equation (1) depend on the operators executed by the SP. We
now specialize Equation (1) for each kind of SP in parasplit.

3.1.1 Window router
The cost CPR of executing the window router PR in parasplit is
given by Equation (2). PR has only one consume operator and
therefore does not poll or merge any tuples. Furthermore, PR does
not execute any compute module. Therefore, PR has cp = cm =
cq = 0 and  = 1. As PR routes every incoming window to the
window splitters PSi, r = 1, and b = o = 0. Finally, the split and
emit costs csW and ceW of PR are the costs of distributing entire
windows of the input stream S to the window splitters.

WWWPR cecscrC  (2)

3.1.2 Window splitter
Equation (3) models the cost of processing a tuple in a window
splitter PSi. Like PR, each PSi has cp = cm = cq = 0 and  = 1, as
it does not execute any merge or compute module. The cost of
reading a tuple from PR is estimated by crW, as each incoming
stream Si contains the same kind of physical windows as the in-
coming stream to PR. cs estimates the cost of executing rfn and

bfn per tuple in PSi. ce models the cost of emitting each tuple
from PSi.

   bqrcebqrocscrC WPS  (3)

3.1.3 Query processor
Equation (4) models the cost per tuple in each query processor
PQj of merging the streams Tij from the window splitters PSi,
i = 0…p–1, and executing the continuous query operator Q. cr is
the read cost of reading a single tuple. As each PQj merges p
streams, the poll and merge costs are multiplied by p. Finally, O
is the cost of executing the expensive continuous query operator
Q in the compute module and emitting the result downstream.

  OcmcppcrCPQ  (4)

3.2 A heuristic stream rate model for
parasplit
We define the maximum stream rate of each kind of SP in para-
split as ΦPR for the window router PR, ΦPS for the window split-
ters PSi, and ΦPQ for the query processors PQj. Each of these
maximum stream rates are potential bottlenecks, since they all
affect the maximum possible stream rate in parasplit. In other
words, the maximum stream rate of parasplit ΦPARASPLIT =
min(ΦPR, ΦPS, ΦPQ). In particular, the window router is the critical
bottleneck, since the window splitter and query processors are
parallelized. The hypothesis is that for a large enough window
size W, ΦPR should be network bound.

3.2.1 Physical window size
The input stream to PR is delivered as physical windows, each
window containing W bytes. The cost of PR is influenced by the
physical window size W. With a large enough window, the cost of
executing PR for each window is insignificant compared to the
communication cost. Then, ΦPR is expected to approach maxi-
mum network speed, independent of communication protocol,
which is validated experimentally for 1 Gbps. The first step is to
find a large enough W such that ΦPR is maximized. To determine
the window size W, we profile the window router once and for all
in the cluster used. PR is executed with p = 4 routing windows to
PSi containing only the consume operators. The window size is
doubled until there is less than 0,15% improvement of ΦPR. On
our cluster, we achieved ΦPR = 987 Mbps for W = 16 kB, which is
close to our wire speed, so PR is network bound. The profiling is
fast, as each measurement is run for 1 second. In our experiments,
it converged after 9 rounds.

3.2.2 Window splitter parallelism
For a given call to parasplit, p must be determined. Let ΦD be the
desired input stream rate. We choose p such that pΦPS  ΦD so
that the window splitters are not bottlenecks. Equation (3) esti-
mates the cost per tuple of splitting a tuple in a window splitter
according to rfn and bfn. In our heuristic we assume that crW = 0,
as the cost of reading a tuple from a physical window is assumed
to be low in comparison to the more expensive rfn and bfn. We
assume o = 0, which will over-estimate CPS.

Assuming that parasplit is mainly used for scaling out computa-
tions by partitioning the input data stream, we estimate the broad-

1183

cast frequency to be rather low. To accommodate parallelization
strategies involving high amounts of broadcast, b is configurable,
but we set a default value of b = 0.01. Based on this reasoning, we
approximate CPS of Equation (3) with ĈPS of Equation (5):

   qcecsCPS  01.099.0ˆ (5)

Next, cs+ce is estimated by measuring the maximum stream rate
ΦPS

(1) of a single window splitter on a small section of the input
stream with q = 1. cs+ce = 1/ΦPS

(1). Furthermore, p should be as
small as possible to minimize the merge cost in Equation (4),
while still satisfying p  ΦD/ΦPS. Therefore, p is estimated by
Equation (6). The maximum stream rate of parasplit with this
heuristic value of p is evaluated in the experiments.

 












 qp
PS

D 01.099.0ˆ
)1(

(6)

By estimating o = 0, our heuristic in Equation (6) may choose a p
that is slightly greater than what is needed to keep up with the
desired stream rate ΦD. A too low p may not keep up with ΦD.
However, we note that if a lower bound of o is known, a smaller p
could be chosen to save cost in Equation (4), which is future
work.

3.2.3 Efficiency of parasplit
To estimate the energy efficiency of parasplit, we define
efficiency  as the CPU time ratio between all PSi, i = 0…p–1,
and all SPs involved in parasplit. Formally, the efficiency is given
by Equation (7), where CPQ

O=0 is the cost of performing the read,
poll, and merge in PQ, i.e. the cost of executing PQ with no
continuous query installed. With no query execution cost, O = 0.

)0(



O

PQPSPR

PS

CqCpC

Cp
(7)

The efficiency is a measurement of the additional work incurred
by executing parasplit in comparison to executing a window
splitter in a single process. Note however that a window splitter of
a single process would not be able to achieve the stream rate of
parasplit.

4. EVALUATING PARASPLIT
The purposes of the experiments are the following:

 Validate the heuristic for parasplit.

 Validate that parasplit is network bound in practice.

 Evaluate the efficiency of parasplit by measuring the CPU
cost overhead of parallelizing rfn and bfn in parasplit.

 Show that parasplit allows one order of magnitude more
expressways over previous work in an LRB implementation.

In all experiments, each SP is a UNIX process on a cluster of
compute nodes, each node featuring two quad-core Intel® Xeon®
E5520 CPUs @ 2.27GHz and 8 MB L2 cache. For the scale-up
experiments, a maximum of 70 such compute nodes were avail-
able. TCP was used for stream communication between SPs. All

SPs of parasplit were distributed over different compute nodes in
this cluster. Thus, the capacity of the 1 Gbps network interfaces
were the upper bound for all inter-process stream rates in the ex-
periments.

As a test stream, we use the input stream of event tuples e of
LRB. There are four kinds of events; P, A, D, and E, of which
99% are position reports P that are emitted from vehicles
travelling on the expressways numbered from 0 to L–1 . The rest
of the tuples are account balance queries A (0.5%), daily
expenditure queries D (0.1%), and estimated travel time queries E
(0.4%). Our LRB implementation scsq-plr [26], parallelizes the
execution by distributing the input stream events per expressway,
i.e. q = L. In our experiments, input events of type D and E are
omitted, so o = 0.5%. Type P events are routed to the query
processors PQj executing the corresponding expressway j=0…L–
1, so r = 99%. Type A events are broadcasted, so b = 0.5%. The
input stream is split according to rfnLR(e, q) defined as select
expressway(e) where eventtype(e)=P, and bfnLR(e)
is defined as select eventtype(e)=A. In order to measure
maximum input stream rate, the LRB input events were streamed
at maximum possible rate.

4.1 Window router stream rate
The goal of this experiment is to confirm that PR is not CPU
bound but network bound for sufficiently large window size. In
the experiment, one SP was executing PR, which received and
routed an input stream of physical windows of size W to p win-
dow splitters with only consume operators installed. p was varied
from 4 to 512. Figure 4 shows ΦPR for different p when varying W
from 72 bytes to 16kB.

The maximum stream rate is 980 Mbps, achieved for p  64. A
slightly lower maximum stream rate of 975 Mbps was measured
for p = 128. For higher values of p, the performance degrades for
unknown reasons.

0,00

200,00

400,00

600,00

800,00

1000,00

0 5 10 15
W [kB]

M
a

x
 s

tr
e

a
m

 r
a

te
 [

M
b

p
s

]

p=4
p=64
p=128
p=256
p=512

Figure 4. ΦPR for different W, p.

To alleviate the degradation in stream rate when scaling p, we
made an experiment with a two-level tree of window routers with
equal fanout  p on each level, and W = 16 kB. Figure 5 shows
that the degradation then becomes negligible even for very large
values of p. Thus, a PR tree has higher ΦPR for high values of p
than a single process PR.

4.2 Parasplit scale-up
The scale-up is defined as ΦPARASPLIT when q is increased. In the
scale-up experiments, we measure ΦPARASPLIT when varying q and
setting p according to the heuristic given in Section 3.2.2. ΦPS

(1)

1184

was measured to 123.7 Mbps, and ΦD was set to 1 Gbps. The
scale-up of the heuristic parasplit using the approximate Equation
(6) was compared to the scale-up according to the cost model
given by Equations (2) and (3). The values of crW, cs, and ce were
obtained by detailed profiling of one PR node and of one PSi node
executing rfnLR() and bfnLR(). For reference, we also measure
the scale-up of parasplit with p = 1 and with p = q. For p = 1, all
stream splitting is performed in a single process, i.e. the naïve
fsplit [32], which is the baseline for the experiments. To compare
with the so far best published stream splitting strategy, we also
measure the scale-up of maxtree [32]. Based on knowledge of
communication costs, and b and r, maxtree forms an optimized
tree of splitstream processes, where each process splits the input
stream according to rfn and bfn. The maximum stream rate of
maxtree is sensitive to the cost of rfn and bfn, a limitation not
present in parasplit. To make maxtree fully comparable, its im-
plementation is slightly improved over [32] by reading physical
windows of the input stream rather than individual tuples.

0,00
100,00

200,00
300,00

400,00
500,00
600,00

700,00
800,00

900,00
1 000,00

0 100 200 300 400 500
p

M
a

x
st

re
a

m
 r

a
te

 [M
b

p
s]

.

PR tree

Single PR

Figure 5. ΦPR for different p.

Figure 6 shows that parasplit achieves an order of magnitude
higher maximum stream rate than maxtree and naïve fsplit (p = 1)
for high values of q. The single PR measurements have a single
process window router, whereas the PR tree measurement em-
ploys a tree of window routers, as devised in Section 4.1. It is
clear that p must be chosen carefully, since parasplit with neither
p = 1 nor p = q does scale. As predicted by Equation (3), p = 1
does not scale with q.

0,00
100,00
200,00
300,00
400,00
500,00
600,00
700,00
800,00
900,00

1 000,00

0 100 200 300 400 500
q

M
ax

 s
tr

ea
m

 r
at

e
[M

bp
s]

parasplit PR tree
parasplit, single PR
cost model, single PR
p=q, single PR
p=1
maxtree

Figure 6. Scale-up.

In the single PR experiments, 849 Mbps was measured for
q = 512 and the heuristic setting of p = 55 in Equation (6),
whereas 840 Mbps was achieved for q = 512 and the cost model
setting of p = 44 in Equations (2) and (3). The scale-up of heuris-

tic parasplit (parasplit, single PR) is the same as that of parasplit
with p chosen using the cost model (cost model, single PR). This
shows that our heuristics are sound. The best maximum stream
rate was achieved using a tree shaped window router (parasplit
PR tree), confirming the results in Figure 5. In particular, for
q = 512, PR tree achieves a maximum stream rate of 913 Mbps
(p = 55 as set by the heuristic in Equation (6)).

4.3 Parasplit efficiency
The purpose of this experiment is to measure the CPU overhead
that parasplit incurs when parallelizing rfn and bfn. The total CPU
time of each SP was measured using system performance counters
in the /proc file system. Parasplit was invoked with a dummy
query Q that only counted the incoming tuples. The cost O of this
simple query was subtracted from CPQ before  was computed
using Equation (7). The same experiments were performed as in
Section Error! Reference source not found. except for maxtree.

Figure 7 shows the efficiency when increasing q. As expected, the
exact cost model based setting of p (cost model, single PR) has
the highest efficiency. However, we notice that the efficiency of
the heuristic parasplit variants (parasplit, single PR and parasplit,
PR tree) is very close to that of the cost model. Finally, we notice
that the efficiency goes down with bad choices of p (p=1, p=q).

Substantially over-estimated p = q is particularly bad, since the
poll and merge costs in the query nodes are then multiplied by p
in Equation (4). We conclude that p should be set to the recom-
mended heuristic value, and that a PR tree should be used in
parasplit for all values of p and q, as parasplit PR tree achieves
superior scale-up and does not degrade efficiency substantially
compared to any of the single PR.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 100 200 300 400 500
q

E
ff

ic
ie

n
cy

parasplit PR tree
parasplit, single PR
cost model, single PR
p=q, single PR
p=1

Figure 7. Parasplit efficiency for increasing q.

4.4 LRB experiment
As a final experiment, we compare the achievable stream rate of
scsq-plr using parasplit to other implementations of LRB [3]. The
number of expressways that an implementation is able to handle
is called the L-rating of the implementation. An LRB
implementation produces five result streams; toll and accident
alerts (event type T and AA), and query responses (event type A,
D, and E). Currently, E tuples are ignored in all LRB implemen-
tations [3]. The D tuples are computed over data that does not
change during the LRB simulation. In an experiment performed
after the publication [32], we verified that a conventional database
on a single compute node was sufficient to handle queries over
historical data (event type D) for an L-rating up to 64. However,
the conventional DBMS (MySQL) cannot handle the very high

1185

query rates presented here. A solution would involve scaling out
the historical database over many compute nodes, which is future
work. In the present experiment, we choose to ignore the D
tuples. As a consequence, the implementation used here results in
three output streams (event type T, AA, and A).

Parasplit was used to split the input stream in scsq-plr according
to Figure 8, using only a single process PR. The input stream rate
for each expressway in LRB is maximum 1700 tuples/s. The size
of each tuple is 72 bytes, so the input stream rate will be
ΦD = 1700·512·72·8 Mbps ≈ 500 Mbps. Given q = 512 and
ΦD = 500 Mbps, parasplit determines p = 25 according to Equa-
tion (6), as ΦPS

(1) = 123.7 Mbps.

The expensive continuous query Q is here the computation of the
LRB query result streams. Each PQj node was processing all tu-
ples of expressway j. The output stream of each lrj is split on
event type according to the routing function rfnO(e) defined as
select eventtype(e); where event type T is 0, AA is 1
and A is 2 in the output stream.

Figure 8. scsq-plr using parasplit.

 The toll and accident alert result streams are merged using stream
union-all (i.e. ignoring timestamp order). Account balance an-
swers from all lrj are grouped on query id, and the sums of the
account balances from all expressways lrj are aggregated for each
query id.

Aggregating q streams of account balance responses with a total
stream rate of q·Φa results in an output stream rate of Φa after the
aggregation. In scsq-plr with q = 512, the total stream rate of ac-
count balance answers is much greater than the capacity of the 1
Gbps network interfaces used in the experiments. Similar to
aggregation trees of [31], account balance answers are hierarchi-
cally aggregated in two level tree as shown in Figure 8, with
k = 22 ≈ √512 for the two-level distributed aggregation tree of
512 input streams. Finally, all union and aggregation processes
were scheduled on different compute nodes, so that disk and
network throughput for these processes was no bottleneck.

LRB requires a maximum response time (MRT) of 5 seconds for
events of type T, AA, and A. In our LRB experiment we measured
the maximum response time for all events e in the output stream
to be MRT(e) < 5 s. We conclude that scsq-plr using parasplit
achieves an L-rating of 512, with daily expenditure queries dis-
abled. Table 1 lists the currently published LRB implementations.

Table 1. LRB implementations.

Name year L #cores Comment

Aurora [3] 2004 2.5 1

SPC [19] 2006 2.5 170 3GHz Xeon

XQuery [6] 2007 1.5 1

scsq-lr [26] 2007 1.5 1 laptop

DataCell [22] 2009 1 4
1.4s average

response time

stream schema [13] 2010 5 4

scsq-plr [32] 2010 64 48 maxtree

CaaaS [9] 2011 1 2
Streaming

MapReduce

scsq-plr 2011 512 560
Parasplit.

D disabled

5. RELATED WORK
This paper complements other work on parallel DSMS imple-
mentations [1] [11] [14] [16] [18] [24] [29] [32], by employing
massive scale-out based on customizable stream splitting func-
tions.

The fragmentation and replication conditions provided as meta-
data in a distributed database [25] corresponds to the routing and
broadcast functions in parasplit. While the emphasis of distributed
databases is scaling out data, the extreme stream rates for DSMSs
require scaling out also the routing and broadcast functions,
which is the topic of this paper.

In previous work [15], we have shown that stream splitting, utiliz-
ing non-trivial routing decisions, proved to be very efficient when
parallelizing online spatio-temporal optimization of transporta-
tion. Splitstream functions were introduced in [32], where tree-
shaped distributed execution plans were shown to improve the
rate of stream splitting. These techniques enabled an L-rating of
64 in LRB. However, the splitstream trees developed in [32] were
sensitive to the cost of rfn and bfn. By contrast, we have shown
that parasplit achieves an order of magnitude higher stream rates
independent of the cost of rfn and bfn by parallelizing the stream
splitting in a lattice.

GSDM [18] distributed its stream computations by generating
parallel execution plans with tree shaped stream splitting, through
parameterized code generators. Parallelizing the queries in GSDM
was reported to achieve a maximum stream rate of 16 Mbps. By
contrast, parasplit is network bound by utilizing physical windows
and a lattice based stream splitting strategy and allows not only
routing but also broadcasting of tuples.

SPADE [14] has a stream splitting operator that includes capabili-
ties of replicating tuples [2], similar to splitstream. StreamInsight
[21] has both stream splitting operator and a broadcast operator

1186

that replicates entire streams to multiple processing operators,
similar to a publish/subscribe-system. By contrast, parasplit
allows fine grained customized specification of what individual
tuples in the stream to broadcast or route. The throughput of
distribution and replication in System S was reported to degrade
with the number of output nodes in [2]. Custom stream
partitioning was also shown to be a bottleneck in [7]. By contrast,
we have shown that parasplit provides network bound stream
processing by massive scale-out of customized splitting and
broadcasting in a lattice shaped distributed execution plan.

Gigascope [11] was extended with automatic query dependent
data partitioning in [20] for computing aggregates in high-volume
network monitoring queries, distributed over the output from spe-
cial hardware splitting a very high volume input stream. The
evaluation focused on aggregation of a number of input streams,
each with a stream rate of 200 Mbps. The input stream splitting
was outside the scope of their work, as it was assumed to be per-
formed by special hardware. By contrast, our work focuses on
stream splitting in software rather than hardware, scaling up to
network stream rate by parallelizing the stream splitting on stan-
dard PCs.

Partitioning a query plan by statically distributing the execution
of its operators proved to be a bottleneck in SPC [19]. In Medusa
[5], query plans were partitioned by dynamically migrating opera-
tors between processors. However, expensive operators are still
bottlenecks. In our work, such bottlenecks are eliminated by both
splitting the input stream into several parallel streams, and by
parallelizing the stream splitting itself. Furthermore, allowing
combined routing and broadcasting in parasplit provides a
powerful method for data parallelization.

Of the existing implementations of LRB shown in Table 1, there
are three attempts to parallelize the execution: SPC [19], Stream
Schema [13], and Continuous analytics as a Service (CaaaS) [9].
Unlike these systems, parasplit provides massive scale-up by
automatic parallelization of rfn and bfn, enabling network bound
input stream rates independent of the cost of parallelization.

The SPC implementation of LRB [19] was partitioned into 15
processing elements, each of which executed a separate stream
operator. The operator that computed all segment statistics
became a hot spot. By contrast, parasplit uses data parallelism
rather than operator parallelism, and is shown to achieve over 100
times the number of expressways of the SPC implementation.
This performance difference illustrates the usefulness of
customizable data parallelization provided by parasplit.

Automatic parallelization of stream queries based on user pro-
vided stream metadata was discussed in [13], where a parallelized
implementation of LRB was shown to achieve L = 5 on a 4-core
PC. By contrast, in parasplit, metadata is expressed as queries in
rfn and bfn.

The use of physical windows called SigSegs in XStream [16] was
shown to reduce tuple passing overhead substantially. Similarly,
we also save communication cost by operating on physical win-
dows of stream events in the window router of parasplit. While
entire SigSegs were distributed in XStream, parasplit allows mas-
sive parallelization based on hierarchical window routing and
parallelized customized distribution and replication of tuples. This

is shown to maintain network bound stream rates independent of
the cost of splitting.

Recently [28] event detection using regular expressions was im-
plemented on an FPGA, which achieved gigabit wire speed. By
contrast, parasplit allows parallelization of arbitrary CQs in soft-
ware with no need for special hardware.

MapReduce [12] can be seen as a form of parallelized group-by
over large data sets. Dryad [17] allows more flexible
parallelization schemes by implementing an explicit process
graph building language. By contrast, SCSQ does not require the
user to explicitly construct process graphs, since the process
graphs of SCSQ are automatically generated by the parallelization
functions. SCOPE [8] and Map-Reduce-Merge [30] provide an
SQL-like query language over large distributed files. However,
Dryad, Map-Reduce, and SCOPE are all batch systems, operating
on data at rest (sets), while SCSQ continuously processes
streaming data. MapReduce was recently extended with streaming
capabilities [9] [10]. The problem of scalable stream splitting is
not handled by streaming MapReduce.

A MapReduce wrapper was recently added to the DSMS System
S [22], combining data at rest with streaming data. However,
calling MapReduce from a DSMS is different from scaling out the
execution of a DSMS, which is the focus of this paper.

6. CONCLUSIONS AND FUTURE WORK
Scalable splitting of streams is necessary to achieve high stream
rates in a parallel DSMS. We have introduced parasplit, which
enables splitting input streams of high volume into a high number
of output streams by parallelizing user defined stream splitting
specifications. Parasplit is shown to enable a network bound
stream rate independent of communication protocol (e.g. 93% of a
1 Gbps interface) for parallelization of expensive continuous que-
ries over streams. This is achieved by (i) automatic parallelization
of the execution of the stream splitting specifications, and (ii) by
hierarchically routing of physical windows of sufficient size.
Based on a cost model, we devised a heuristic that automatically
chooses physical window size and parallelization of the stream
splitting specifications for close-to-optimum efficiency according
to the cost model. By scaling out stream splitting with parasplit in
the scsq-plr implementation of the Linear Road Benchmark, we
achieved an order of magnitude higher stream processing rate
over previously published results, allowing 512 expressways.

As future work, we plan to investigate alternatives for scaling out
a parallel database to combine high volumes of data at rest with
high volumes of data in motion. Furthermore, it should be
investigated how to push down selection predicates of Q into rfn,
effectively saving communication cost by increasing omit
percentage o in the window splitters.

Our experiments have been performed in a cluster of up to 70
compute nodes with 8 cores each connected by a 1 Gbps switched
network. The behavior of parasplit should be investigated for
higher network speeds, more cores, and more compute nodes.

It should be investigated if the efficiency of parasplit can be im-
proved by using hardware acceleration such as FPGAs, by com-
paring the costs of hardware accelerated parasplit to that of stan-
dard hardware parasplit.

1187

The query plan of parasplit is optimized, parallelized, and sche-
duled when the CQ is started. Although this approach was shown
to work well in our evaluations, it would be worthwhile to extend
it with methods for adaptive parallelization and scheduling of
execution over streams after the CQ has been started, as in [24]
[27] [29] [33]. For example, it should be investigated if p and W
can be set adaptively based on system load.

7. ACKNOWLEDGMENTS
This project is supported by VINNOVA, grant 2007-02916, the
Swedish Foundation for Strategic Research, grant RIT08-0041,
and ASTRON. The experiments were performed using UPPMAX
resources. UPPMAX staff is acknowledged for assistance. We
appreciate the insightful comments by the anonymous reviewers.

8. REFERENCES
[1] Ali, M.H., et al. Microsoft CEP server and online behavioral

targeting. Proc. VLDB 2009, 1558–1561.

[2] Andrade, H., Gedik, B., Wu, K.-L., Yu, P. S. Scale-Up
Strategies for Processing High-Rate Data Streams in System
S. Proc. ICDE 2009, 1375–1378.

[3] Arasu A., et al. Linear Road: A Stream Data Management
Benchmark. Proc. VLDB 2004, 480–491.

[4] Bai, Y., Thakkar, H., Wang, H., and Zaniolo, C. Optimizing
Timestamp Management in Data Stream Management Sys-
tems. Proc. ICDE 2007, 1334–1338.

[5] Balazinska, M., Balakrishnan, H., Stonebraker, M. Contract-
Based Load Management in Federated Distributed Systems.
Proc. NSDI 2004, 197–210.

[6] Botan I., et al. Extending XQuery with Window Functions.
Proc. VLDB 2007, 75–86.

[7] Brenna, L., Gehrke, J., Hong, M., Johansen, D. Distributed
event stream processing with non-deterministic finite
automata. Proc. DEBS 2009, 3:1–3:12.

[8] Chaiken, R., et al. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. Proc. VLDB 2008, 1265–
1276.

[9] Cheng, Q., Hsu, M., Zeller, H. Experience in Continuous
analytics as a Service (CaaaS). Proc EDBT 2011, 509–514.

[10] Condie, T., et al. Online aggregation and continuous query
support in MapReduce. Proc. SIGMOD 2010, 1115–1118.

[11] Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.
Gigascope: A Stream Database for Network Applications.
Proc. SIGMOD 2003, 647–651.

[12] Dean, J., Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters. Proc. OSDI 2004, 107–113.

[13] Fischer, P.M., Esmaili, K.S., and Miller, R.J. Stream schema:
providing and exploiting static metadata for data stream
processing. Proc. EDBT 2010, 207–218.

[14] Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., and Doo, M.
SPADE: The System S Declarative Stream Processing
Engine. Proc. SIGMOD 2008, 1123–1134.

[15] Gidofalvi, G., Pedersen, T. B., Risch, T., Zeitler, E. Highly
scalable trip grouping for large-scale collective transporta-
tion systems. Proc. EDBT 2008, 678–689.

[16] Girod, L., et al. XStream: A Signal-Oriented Data Stream
Management System. Proc. ICDE 2008, 397–406.

[17] Isard, M., et al. Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks. ACM SIGOPS Operating
Systems Review, Volume 41, 59–72, 2007.

[18] Ivanova, M., Risch, T. Customizable Parallel Execution of
Scientific Stream Queries. Proc. VLDB 2005, 157–168.

[19] Jain, N., et al. Design, Implementation, and Evaluation of the
Linear Road Benchmark on the Stream Processing Core.
Proc. SIGMOD 2006, 431–442.

[20] Johnson, S., Muthukrishnan, Shkapenyuk, V., Spatscheck, O.
Query-Aware Partitioning for Monitoring Massive Network
Data Streams. Proc. SIGMOD 2008, 1135–1146.

[21] Kazemitabar, S.J., et al. Geospatial stream query processing
using Microsoft SQL Server StreamInsight. Proc. VLDB
2010, 1537–1540.

[22] Kumar, V., Andrade, H., Gedik, B., Wu, K.-L. DEDUCE: at
the intersection of MapReduce and stream processing. Proc.
EDBT 2010, 657–662.

[23] Liarou, E., Goncalves, R., Idreos, S. Exploiting the Power of
Relational Databases for Efficient Stream Processing. Proc.
EDBT 2009, 323–334.

[24] Liu, B., Zhu, Y., Jbantova, M., Momberger, B., and Runden-
steiner, E.A. A Dynamically Adaptive Distributed System
for Processing Complex Continuous Queries. Proc. VLDB
2005, 1338–1341.

[25] Özsu, M.T., Valduriez, P. Principles of Distributed Database
Systems, Second Edition. Prentice-Hall (1999)

[26] SCSQ-LR home page. http://user.it.uu.se/~udbl/lr.html,
February 2011.

[27] Shah, M.A., Hellerstein, J. M., Chandrasekaran, S., Franklin,
M. J. Flux: An Adaptive Partitioning Operator for Continu-
ous Query Systems. Proc. ICDE 2002, 25–36.

[28] Woods, L., Teubner, J., Alonso G. Complex Event Detection
at Wire Speed with FPGAs. Proc. VLDB 2010, 660–669.

[29] Xing, Y., Zdonik, S., Hwang, J.-H. Dynamic Load Distribu-
tion in the Borealis Stream Processor. Proc. ICDE 2005,
791–802.

[30] Yang, H., Dasdan, A., Hsiao, R.-L. Parker, D.S. Map-reduce-
merge: simplified relational data processing on large clusters.
Proc. SIGMOD 2007, 1029–1040.

[31] Yu, Y., Gunda, P.K., Isard, M. Distributed Aggregation for
Data-Parallel Computing: Interfaces and Implementations.
Proc. 22nd ACM Symposium on Operating Systems Princi-
ples, 2009, 247–260.

[32] Zeitler, E. and Risch, T. Scalable Splitting of Massive Data
Streams. Proc. DASFAA (2) 2010, 184–198.

[33] Zhou, Y., Aberer, K., and Tan, K.-L. Toward massive query
optimization in large-scale distributed stream systems. Proc.
Middleware 2009, 326–345.

1188

