
HOMES: A HigherOrder Mapping Evaluation System

Huy Vu
Oxford University

Department of Computer Science

huy.vu@cs.ox.ac.uk

Michael Benedikt
Oxford University

Department of Computer Science

michael.benedikt@cs.ox.ac.uk

ABSTRACT
We describe a system that integrates querying and query
transformation in a single higher-order query language. The
system allows users to write queries that integrate and com-
bine query transformations. The power of higher-order func-
tions also allows one to succinctly write complex relational
queries. Our demonstration shows the utility of the sys-
tem, explains the implementation architecture on top of a
relational DBMS, and explains optimizations that combine
subquery caching techniques from relational databases with
sharing detection schemes from functional programming.

1. INTRODUCTION
Higher-order functions play a fundamental role in com-

puter science; they are critical to functional programs, and
in object-oriented programming they play a key role in en-
capsulation. In database systems they have appeared in iso-
lation at several points: query-transformation plays a role
in numerous aspects of databases, including data integration
[7], access control [6], and privacy [9].

Example 1. Consider the situation where we need an in-
terface to control the access of a query over a relation in-
stance. For example, given a source R1 and a query Q,
accesses to R1 via Q are transformed for security reasons,
returning the result of Q on only a selection of R1 and re-
turning only two of the columns, a and b, in the output of
Q. This could be implemented via the following higher-order
query.
τ0 := λQ.λR1. SELECT a, b FROM

Q(SELECT ∗ FROM R1 WHERE a = 5)

The subterm SELECT ∗ FROM R1 WHERE a = 5 in
the example filters the input data; for modularity we may
wish to develop the query without a particular filter in mind.
We can thus create a more “generic” higher-order filtering
query, with a query variable Fil representing a filter:
τ ′
0 := λFil.λQ.λR1. SELECT a, b FROM Q(Fil(R1))

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

Later when we are ready to commit to using fil0, we can
reclaim τ0 as τ ′

0(fil0) with
fil0 = λR2.(SELECT ∗ FROM R2 WHERE a = 5).

A very common example of higher-order transformations
in database management is query rewriting [5]. For exam-
ple, given a query Q and a set of views V1, . . . , Vn both over
D1, . . . , Dm, we may be interested in generating the maxi-
mally contained rewriting of Q over V1, . . . , Vn. There are
many algorithms for obtaining these rewritings (e.g. Bucket
[8], MiniCon [10]). They can be encapsulated as an oper-
ator, called RW, that takes a query and a set of views as
its input, and returns a rewriting of the query. In a higher-
order querying system, users can freely make use of RW in
building more complex queries.

Example 2. A user could write a higher-order term that
takes queries Q,Fil, V1, V2 and first rewrites Q with respect
to V1 and V2 and then post-filters the result using Fil.

τ1 := λV1.λV2.λQ.λF il.τ ′
0(Fil)(RW(Q,V1, V2))

where τ ′
0 is the “post-filtering transform” of Example 1. Later

they can instantiate the views, forming τ2 by applying τ1 to

V1 = λR2. SELECT ∗ FROM R2 WHERE R2.a > 3

V2 = λR2. SELECT ∗ FROM R2 WHERE R2.b < 5

Still later they can instantiate Q, forming τ3 by applying τ2
to:

Q = λR2. SELECT ∗ FROM R2 WHERE R2.b = R2.a

and finally they can instantiate Fil by forming τ3(fil0),
where fil0 is the filter from Example 1.

Note that particular higher-order functions, such as query-
rewriting transformations, or even flexible rule-based query-
rewriting frameworks, have been implemented stand-alone
for decades. But their implementation is not part of a
system that integrates higher-order transformations with
ordinary data transformations, as in functional programs.
Functional databases allow the definition of higher-order
terms, but do not support query transformation. In [4, 11],
a framework for combining relational algebra with higher-
order functional languages is defined, which we refer to as
λ-embedded query languages: it is exactly the simply-typed
λ-calculus with database operators as “constants” (that is,
as built-in functions). In this work we will demonstrate
HOMES (Higher-Order Mapping Evaluation System), an
evaluation system for higher-order queries defined in a vari-
ant of the framework of [11].

1399

A strength of the language is that it is extremely expres-
sive, allowing users to write queries very succinctly. But
this is also a weakness, since evaluation of the language is
expensive.

Example 3. A relation with integer attributes (a, b) can
code a graph. Let τ2

p be an ordinary conjunctive query check-
ing for for the existence of a path of length 2 in such a rela-
tion: such a query is easily written as a self-join.
Consider the term.

τ16
p = (λQ1.λR1.(Q1(Q1(R1))))((λQ.λR.(Q(Q(R))))τ2

p)

One can check that τ16
p takes as input a graph and returns

a graph containing all the pairs of nodes having a path of
length 16 between them. In general, using query variables,
we can write queries of length n checking for paths of length
doubly exponential in n.

The worst-case complexity of evaluation of the language is
non-elementary [11], and so no evaluation strategy can be
efficient on every query. The implementation of HOMES
uses special techniques which combine graph reduction from
functional programming with selective materialization to in-
crease efficiency.

2. SYSTEM OVERVIEW

2.1 The Higherorder language
We review the syntax of the query language, given in [4,

11].
Types: We fix an infinite linearly-ordered set of attribute

names (or attributes). The basic types are the relational
types each given by a (possibly empty) set of attribute names,
T = (a1, . . . , am). The order of any relational type is 0.
We define higher-order types by using the functional type

constructor: if T , T ′ are types, then T → T ′ is a type whose
order is order(T → T ′) = max

(
order(T) + 1, order(T ′)

)
.

Order 1 types are often called query types.
Constants: We will fix a set of constants of each type.

Database instances are constants of relational type. The op-
erators and expressions of Relational Algebra are constants
of query type. For convenience, we accept SQL syntax for
those constants. In addition, we have constants accepting
queries as their inputs, such as RW.
Simply typed terms: Higher-order terms are built up

from constants and variables by using the operations of ab-
straction and application:

• every constant or variable is a term of the same type
as the constant or the variable;

• if X is a variable of type T and ρ is a term of type T ′,
then λX. ρ is a term of type T → T ′;

• τ is a term of type T → T ′ and ρ is a term of type T ,
then τ(ρ) is a term of type T ′.

The semantics of terms can be found in [4, 11].
The order of a term τ is the order of its type. For example,

the terms τ0 and RW in Section 1 are of order 2.
Every closed term in our language is expressible in SQL,

supplemented with recursion in case Inflationary Fixed Point
is used. Thus we have a naive method to evaluate higher-
order terms:
Apply β-reduction until no higher-order abstractions are

present, then convert the term to an equivalent SQL query
and evaluate using a standard relational engine.

2.2 System Architecture

Figure 1: System Architecture.

We will explain the components of the system architec-
ture, which is shown in Figure 1 through a running example.
Let the input higher-order term be defined as:
τ := λQ.λR1.τ

2
p{σb>5(Q(R1))}

λR2.(SELECT ∗ FROM R2 WHERE a = 3)

with τ2
p in Example 3. That is, we first form a query trans-

form that filters the query and then performs a self-join;
then we apply the transform to a particular selection query.
Given D0 a database instance, we wish to evaluate τ(D0).

The Parsing component reads the input in different forms
from users, parses the input query, and validates its type;
it produces an internal representation, a construction tree,
represented in the upper part of Figure 2. In the con-
struction tree, relational algebra operators are employed
to represent the term. For example, τ2

p is represented as
λR.πa,b(ρb,c(R) 1 ρa,c(R)).

The construction tree in Figure 2 is then input to the Op-
timization component, which also takes information from
Stored Procedure Library to evaluate higher-order constants
in the term. The library contains processing methods of
higher-order operators, which are either built-in or user de-
fined. Examples of built-in operators currently supported
are Inflationary Fixed Point (ifp) and Query Rewriting
(RW).

The output of the optimization is an evaluation plan,
which contains information about the materialization tables
and the order to process the subterms of the input term. The
evaluation plan is presented by a set of equations of which
one side is a table name, the other side is the equivalent
subterm. The Optimization component will be explained in
detail in Section 2.3.

The SQL Query Generator component implements the
evaluation plan, generating queries at runtime to a Rela-
tional Database Management System – in our implementa-
tion we use PostgreSQL 8.4.

1400

1

λR

ρb,c ρa,c

R

@

πa,b

β-reduction

Shared subgraph

?

1

ρb,c ρa,c

πa,b

?

λR1

Q R1

R2

σa=3

λR2

@

Q R1

λQ

1

ρb,c ρa,c

πa,b

R1

σa=3

-

β-reduction

λR1 λR1

σb>5

@

R R

1

λR

ρb,c ρa,c

R

@

πa,b

λR1

R1

R2

σa=3

λR2

@

R1

σb>5

R R

R1

R2

σa=3

λR2

@

σb>5 σb>5

β-reduction

Materialization candidate

Figure 2: The construction tree and the graph re-
duction stage of τ .

2.3 Optimization
In a naive evaluation, we might repeat many parts of a

term when converting to an SQL query, especially when
there are higher-order variables which support repetitions
of subterms. Many of these copying operations do not need
to be carried out during the reduction, since later reductions
eliminate them. This is a common problem in the evalua-
tion of functional programs, and we adapt the technique of
“graph reduction” to decide which subterms need not be
copied. Note that this is not as simple as detecting common
subqueries within a collection of views, since the shared sub-
term may contain variables of high order, and sharing may
not be present in the original term but may emerge in the
process of reduction. Sharing subterms is useful even when
the shared subterms return higher-order objects; but it is
particularly helpful for subterms returning relations, since
there we can calculate the result and store it in an auxiliary
table. That is, we perform (online) materialization, analo-
gous to materialization of views in standard relational query
processing.

There are thus two stages in the optimization: Graph
reduction and generation of an evaluation plan.

Stage 1 (Graph reduction): Graph reduction not
only reduces lambda variables but also calculates how many
times a subtree is called, which can be used to decide if
the subtree can be shared. We use a variant of the graph
reduction algorithm described in [12, 2] to reduce variables.
Instead of always copying subtrees, we attempt to share sub-
trees as much as possible. When the graph reduction process
finishes, we have a graph, the subgraphs of which contain
information about the number of times they are called.

Our running example τ from Section 2.2 shows the process
at its simplest. From the construction tree in the upper part
of Figure 2, we reduce to the DAG shown at the bottom of
the figure: variable R is reduced by replacing its occurrences
by pointers to the substituted subgraph, thus introducing
sharing. The shared subgraph contains a variable and it can
be reduced. The reduction of the shared subgraph produces
multiple simplifications in the construction tree. At the end,
the shared subterm is a selection over R1.

The output of this stage is a set of candidates for mate-
rialization. In our running example, the shared subgraph of
the last graph is a candidate for materialization because it
is called twice.

Stage 2 (Generation of an evaluation plan): Based
on the reduced graph, we can decide which subgraphs should
be materialized. Our optimizer produces a materialization
plan for the graph. The decisions about materialization are
based on the graph and a cost function, roughly similar to
the strategies used to decide materialization in a cost-based
way in XML query processing over relational stores (see,
e.g., [3]).

The materialization plan contains a set of tables to be
materialized and a set of equations over input relations and
materialized relations. In our example, a possible plan is:

R0 ⇐ SELECT ∗ FROM R1 WHERE a = 3 AND b > 5

Output ⇐ SELECT R1
0.a, R

2
0.b

FROM R0 AS R1
0, R0 AS R2

0 WHERE R1
0.b = R2

0.a

Where R0 is a new table name for materialization.

1401

Query 1 Query 2 Query 3 Query 4 Query 5

Query Description 1 join 8 joins 16 joins 4 joins + ifp 4 joins + RW

Time (Improved , scale = 1) 2.3s 0.9s 8.0s 3.4s 1.2s

Time (Naive, scale = 1) 2.9s 160s 18930s (5.3h) 11.3s 7.1s

Time (Improved , scale = 5) 5.5s 5.0s 10.1s 9.7s 4.6s

Time (Naive, scale = 5) 7.5s 930s > 12h 91.8s 61.8s

Table 1: Empirical evaluation results.

2.4 Empirical Evaluation
We consider the performance of our implementation on

a set of queries based on the TPC-H schema [1]. The test
database contains the following tables: customer, lineitem,
nation, orders, part, partsupp, region, and supplier. TCP-
H gives default sizes for each table, and in our experiments
instances are generated by uniformly multiplying the default
size by a scaling factor.
Table 1 presents information on evaluation of some typical

queries over instances of different scales, on an Intel R⃝Core
i3 2.27GHz machine with 4 GB RAM. The first three queries
show the improvement due to graph reduction and sharing,
especially for the more expensive queries. Queries 4 and 5
show that optimization also helps when the Fixed Point and
Query Rewriting operators are present.
Due to limited space, we give only hints of the nature of

each query in Table 1 (in the description field). We describe
the types of variables and the syntax of Query 3 in detail
below.
Three relational variables R,R1 and R2 have schema of

the table partsupp:

S = (partkey,suppkey,ps availqty,ps supplycost,ps comment)

A query variable Q has schema S → S.

The syntax of Query 3 is defined as follows.

Let ρcomp = λQ.λR.(Q(Q(R)))

Let ρjoin =
λR2.((SELECT ∗ FROM R2 WHERE partkey < 10)

JOIN (SELECT ∗ FROM R2 WHERE partkey > 5))

Let ρsel = SELECT ∗ FROM R1 WHERE suppkey < 200

Then Query 3 is defined as λR1.{ρcomp(ρcomp(ρjoin))}ρsel.
That is: our query takes a relation, filters it by suppkey, and
then applies a query to it that is built up by composing a
self-join query twice. In the table we consider the evaluation
of Query 3 on instance partsupp.
Overall, we have seen significant performance improve-

ment by applying the graph reduction plan, especially when
the materialized tables are accessed many times.

3. DEMONSTRATION DETAILS
The demonstration of HOMES shows the following two

main aspects. First, we show the usefulness of integrating
higher-order queries into a relational DBMS. The integra-
tion allows users to create and reuse higher-order queries,
including variables representing queries and query transfor-
mations. Secondly, we show how to extend traditional query

optimization techniques to higher-order query languages.
We show how our techniques yield acceptable running time
even for complex queries.

To highlight the aspects above, during the demonstration
users are guided through query development and evaluation
using the system’s GUI. They can begin with a number of
pre-rewritten higher-order queries, applying them to several
sample databases. Once the users are familiar with the syn-
tax, they can modify pre-existing queries or create new ones
from scratch. The evaluation of the queries can be done
live, showing both the output and the execution time for
several variants of the evaluation algorithm. The system
also provides facilities to illustrate the graph reduction and
materialization process in action.

4. REFERENCES
[1] Transaction processing performance council. TPC-H

Benchmark. http://www.tpc.org.

[2] A. Asperti and S. Guerrini. The Optimal
Implementation of Functional Programming
Languages. Cambridge University Press, 1998.

[3] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi,
S. Zheng, and A. Zhou. DTD-directed publishing with
attribute translation grammars. In PVLDB, pages
838–849, 2002.

[4] M. Benedikt, G. Puppis, and H. Vu. Positive Higher
Order Queries. In PODS, pages 27–38, 2010.

[5] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Y. Vardi. What is query rewriting? In KRDB,
pages 17–27, 2000.

[6] W. Fan, F. Geerts, and X. J. A. Kementsietsidis.
Rewriting Regular XPath Queries on XML Views. In
ICDE, pages 666 – 675, 2007.

[7] A. Levy, A. Rajaraman, and J. Ullman. Answering
Queries using Limited External Query Processors . In
PODS, pages 227–237, 1996.

[8] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, pages 251–262, 1996.

[9] C. Li, M. Hay, V. Rastogi, G. Miklau, and
A. McGregor. Optimizing linear counting queries
under differential privacy. In PODS, pages 123–134,
2010.

[10] R. Pottinger and A. Halevy. Minicon: A scalable
algorithm for answering queries using views. The
VLDB Journal, 10:182–198, 2001.

[11] H. Vu and M. Benedikt. Complexity of Higher-Order
Queries. In ICDT, pages 208–219, 2011.

[12] C. Wadsworth. Semantics and pragmatics of the
lambda-calculus. PhD thesis, University of Oxford,
1971.

1402

